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Abstract: Self-attention networks are making significant progress in picture analysis tasks like image 

categorization and object detection, just as they have revolutionized natural language processing. This paper 

represents the use of self-attention networks for processing point cloud data in response to this achievement. 

To build self-attention networks for tasks like object categorization, this paper has explored self-attention 

layers for point clouds. It is used in many applications such as Point Cloud Classification, Object Detection, 

Point Cloud Generation etc. This research paper covers the basics of Point Transformer and its importance in 

Point Cloud Data. the performance of the Point Transformer algorithm was evaluated on benchmark datasets, 

such as ModelNet10 with 92.40% accuracy.  
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1.    INTRODUCTION  

The data type known as point clouds represents regions or objects in space by using the X, Y, and Z 

coordinates of individual points on a sampled surface. This collection of data points can be used to create a 

comprehensive dataset of an entire scene. When colour information is also added, then the point cloud becomes 

four-dimensional. To generate point clouds, the most commonly used technologies are 3D laser scanners and 

LiDAR (Light Detection and Ranging) [18, 57]. LiDAR works by using a laser to measure the distance of a 

surface from a scene. Multiple laser beams are fired and reflected from objects to create a set of points that 

depict the scene's geometry. 

 

 
Figure 1. Point cloud representation of kettle 

 

The use of transformers for image analysis and natural language processing act as inspiration for the 
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study's unique approach to handling point clouds with deep learning [56]. The self-attention operator of the 

transformer network, which is unaffected by the order or number of input elements, is useful for point cloud 

processing. This research focuses on developing a self-attention layer specifically for processing 3D point 

clouds and using it to construct Point Transformer networks for various 3D comprehension tasks [4]. Because 

3D point clouds are a significant component of 3D space. The resulting networks rely only on pointwise 

operations and self-attention. Table 1 provides examples of completed projects using the Point Transformer. 

 

Table 1: Applications areas for “Point Transformer” domain 

Application 

Domain 

Overview 

Point Cloud 

Classification 

 

The process of giving each point in a point cloud is a class 

designation [57]. In a number of benchmark datasets, including 

ModelNet40 and ScanObjectNN, The Point Transformer has 

produced cutting-edge results. 

Point cloud 

segmentation 

 

The task of dividing a point cloud into semantic regions, with 

each point belonging to a different region. On datasets like 

ShapeNetPart and S3DIS, the Point Transformer has shown 

promising results. 

Object Detection This domain is used for locating and identifying things in a point 

cloud. In datasets like KITTI and SemanticKITTI, the Point 

Transformer has been used for this task and produced results that 

are competitive. 

Sensor x-axis 

direction 

y-axis 

direction 

z-axis 

direction 

Camera Right Down Forward 

LiDAR Forward Left Up 

GPS/IMU Forward Left Up 
 

Point Cloud 

Generation [59] 

The task of generating new point clouds that are similar to a 

given input point cloud. The Point Transformer has been used in 

this task to generate high-quality point clouds on the ModelNet40 

dataset [52, 56, 59]. 

 

The remaining part of the paper is organized as follows. The existing work in Point cloud is described 

in Section 2. Section 3 discussed Graph Neural Network followed by Transformer and Point Transformer details 

in section 4 and 5 respectively. Section 6 represented proposed design approach. Last two sections cover the 

experimental discussion and conclusion.  

 

2. RELATED WORK 

Although pixels in 2D images are structured and conventional convolution works well to analyze them, 

but 3D point clouds are haphazardly strewn throughout 3D space, they are more difficult to analyze. The article 

then divides learning-based methods for dealing with 3D point clouds into three groups: (i) projection-based 

networks, (ii) voxel-based networks, and (iii) point-based networks.  

In order to process irregular inputs like point clouds, projection-based networks turn their irregular 

representations into regular ones. Multi-view projection, which projects 3D point clouds onto different picture 

planes, is used to achieve this [4]. Then, feature representations are extracted from these surfaces using 2D 

CNNs [56]. In contrast to 2D CNNs, which are efficient at processing routine inputs, this is different. The output 

representations are produced by multi-view feature fusion. Another method that is comparable to projection-

based networks is TangentConv. Local surface geometry is projected onto a tangent at each location, resulting in 

the creation of a tangent. Yet, tangent estimation has a significant impact on TangentConv's correctness. One 

limitation of using projection in these frameworks is that the geometric data contained in point clouds may be 

lost during the projection stage. Furthermore, these methods might not utilize the points' spatial knowledge to 
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their maximum potential when creating dense pixel grids on projection planes [56]. This can result in a decrease 

in accuracy, especially when dealing with occlusion. 

By using 3D voxelization and 3D convolutions, voxel-based networks offer an alternate technique for 

transforming irregular point clouds into regular representations. However, due to the cubic growth in voxel 

count as the resolution grows, if the number of voxels is not controlled effectively, the computational and 

memory expenses might be enormous. These techniques make use of sparsity because the majority of voxels are 

usually vacant. OctNet combines imbalanced octrees with hierarchical partitions to lower the computational and 

memory needs. Sparse convolution techniques further reduce the amount of processing and memory required by 

only evaluating the convolution kernel at occupied voxels. Despite the accuracy of these methods, the 

quantization of the voxel grid may cause some geometric detail to be lost. 

Researchers have built point-based networks, in contrast to projecting or quantizing point clouds onto 

traditional grids in 2D or 3D, direct analysis of point clouds as sets imbedded in continuous space is preferred 

[56]. PointNet uses permutation-invariant operators like pointwise MLPs and pooling layers to integrate features 

across a collection [56]. PointNet++ improves sensitivity to the local geometric arrangement inside a 

hierarchical spatial framework by utilizing these concepts. Many sampling techniques are used by some models, 

including [7, 11, 27, 46, 50], to effectively sample the point set. 

 To create connections between point sets and conduct message passing on the resulting graph, various 

strategies have been presented. Graph convolutions in DGCNN are performed on kNN graphs, but in PointWeb, 

dense connections are made between nearby neighborhoods. Many techniques apply continuous convolutions 

without quantization on the 3D point set directly. PCCN represents convolutional kernels using MLPs [42]. 

Kernel weights are described by SpiderCNN as a family of polynomial functions [49]. Spherical in order to 

overcome the problem of 3D rotation equivariance, CNN uses spherical convolution [8]. Based on the input 

coordinates, PointConv and KPConv compute convolution weights [37,46]. Using coordinates, InterpCNN 

interpolates pointwise kernel weights [22]. In order to reorganize the input unordered point clouds, PointCNN 

advises utilizing special operators [2, 20]. Ummenho and colleagues apply continuous convolutions to learn 

particle-based fluid dynamics [38, 56, 58]. 

 

3.   GRAPH NEURAL NETWORK 

Graph Neural Networks (GNN) is a modern, data-driven approach to analyzing large graphs and 

discovering their structure. A GNN consists of three key components: (i) information associated with each node 

(and optionally each edge) in the graph, represented as a single-dimensional vector known as an embedding, (ii) 

a recursive message-passing aggregation algorithm that aggregates vertex/edge embedding in novel ways and 

(iii) a neural network model (typically an MLP), that learns the graph structure iteratively via standard gradient-

descent training algorithms used in DL. The impact of GNNs on the modern world cannot be overstated – they 

have the power to analyze complex relationships at both the macro scale such as the Internet or social media 

networks and the micro-scale of protein molecules in the human and their interactions with drug molecules to 

aid in drug discovery. Conducting such analyses on graphs via machine learning techniques requires specifying 

tasks such as node classification, link prediction, graph classification, community detection, and network 

similarity. The GNN approach can augment, rather than substitute, traditional graph analytics to achieve the 

“best-of-both-worlds” – accuracy of exact graph analysis combined with the speed of training neural networks. 

There are two broad flavours of GNN training – full-batch training and mini-batch training via 

sampling techniques. Depending on the type of graph data, a data scientist may choose either flavor for their 

application. In full-batch training, all nodes in the training dataset participate in the computation in every 

iteration; because each vertex is associated with a dense feature vector, full-batch training on large graphs 

requires a large amount of memory to store both the embedding and their gradients. On the other hand, mini-

batch training selects a set of vertices and associated sampled neighborhoods from the training dataset every 

iteration; if the vertex set size is small and the extent of the sampled neighborhood around each vertex is limited, 

then mini-batch training presents lower memory capacity requirements. In either flavor, the two key primitives 

involved in the computation are (i) Aggregation and (ii) Update. Figure 2 pictorially represents the entire 

process of GNN training using these two primitives. We now describe these two primitives. 
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Figure 2. Aggregation and Update in GNN Training for vertex 

 

3.1 Aggregation Primitive 

Let G (V, E) be the input graph with vertices V and edges E and let Fv and Fe be the associated vertex 

and edge features, respectively. The sizes of Fv and Fe are |V| x dand |E| x d respectively, where 𝑑 is the feature-

vector size. We can represent Aggregation as a tuple (Fv, Fe, ⊗, ⊕, Fo), where ⊗ and ⊕ are element-wise 

operators on Fv or Fe (or a combination thereof) and Fo is the output feature associated with a vertex or edge. 

⊗ can be an element-wise binary or unary operator. In binary form, it operates on a pair of inputs; valid pairs 

are (Fv, Fv) and (Fv, Fe), in an appropriate order. The operator ⊕ performs element-wise reduction on the result 

of the binary operation to the final output. Mathematically, if AGG represents the Aggregation operation, then 

 

 
 

 If one of the operands, say y does not exist, then ⊗ becomes a unary operator: it reduces each 

instance of operand x (using the reduction operator) into the final output feature-vector z. In Figure 2, the grey-

colored boxes in each layer represent AGG. Going from bottom to top, AGG aggregates features associated with 

vertices B, C, D, and E, respectively, in the first layer and those associated with A and F, respectively in the 

second layer. We discuss the performance implications of the Aggregation operator in some detail later in this 

article. 

 

3.2 Update Primitive 

The Update primitive is typically an MLP consisting of a Linear operator (e.g., torch.nn.Linear) 

followed by one or more element-wise operators (e.g., Rectified Linear Unit (ReLU), DropOut, etc.). The Linear 

operator contains learnable parameters (i.e., weights and biases) that together constitute the GNN model. As 

shown in Figure 1, the model weights are represented as connections between the purple- and brown-colored 

neurons, as well as between the brown- and white-colored neurons in the example 2-layer neural network. Thus, 

the Update primitive produces an updated set of vertex embedding by filtering them through model parameters 

after the Aggregation primitive aggregates initial vertex embedding. 

4. TRANSFORMER 

By examining interactions between various data items, the Transformer model, a sort of neural 

network, excels at comprehending the context and meaning of sequential data, such as sentences. It employs 

attention, or self-attention, which makes use of mathematical methods to ascertain how various pieces in a series 

connect to one another, even if they are spread out over a large distance. The encoder and decoder are the two 

components that make up the Transformer, which is intended to change one sequence into another. The 

Transformer does not make use of recurrent networks, in contrast to earlier sequence-to-sequence models (GRU, 
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LSTM, etc.). 

The Transformer model's self-attention process involves determining attention weights for each 

element in the input sequence depending on how those elements relate to one another. The next layer of the 

network receives the weighted sum of the input sequence that was computed using these attention weights. This 

enables the network to process the input sequence in parallel by allowing it to choose focus on various portions 

of the sequence. This varies from standard neural network topologies like recurrent neural networks or 

convolutional neural networks, where each element in the sequence is processed one at a time. The self-attention 

method is shown in Figure 3 with Q standing for the query, K for the key, and V for the values. 

 
Figure 3. Working of self-attention 

 

For instance, the search engine will compare your query to a set of keys (such as video titles and 

descriptions) connected with probable videos in the database if you input a search query on YouTube to 

discover a video. The best videos (values) that match your search will then be shown. Multi-head attention and 

feedforward neural networks are two crucial elements of the Transformer design. While feedforward neural 

networks offer non-linear changes of the input sequence, multi-head attention enables the network to 

concentrate on different points of the input sequence at once. Layer normalization and residual connections, 

which aid in training stability and performance enhancement, are also included in the architecture. 

The model in question is a recurrence-free variation of recurrent neural networks (RNN). Before 

passing through multi-head attention, positional information must be supplied to the input embedding’s to 

account for the lack of repetition. The given equation was utilized for this positional encoding. 

 

                     𝑝𝑖𝑗 =

{
 
 

 
 sin (

𝑖

10000
𝑗

𝑑

)

cos (
𝑖̇

10000
𝑗

𝑑

)

                            (Eq. 1) 

 

If an object's position in a given input sequence is even, the sine function is applied, and if it is odd, the 

cosine function is applied. A huge value of 10,000 is used to ensure that the complete cycle is exceedingly large, 

which is required for encoding words, which could be longer than 1,000 words. The value of j is mapped to both 

sine and cosine using the map column indices. The dimension of the output embedding space is d. 
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Figure 4. Encoder and Decoder structure of a transformer 

 

The Encoder is shown in Figure 4 on the left side, while the Decoder is shown in Figure 4 on the right 

side. The "Nx" notation indicates that encoder-decoder modules that can be layered many times. Feed Forward 

and Multi-Head Attention layers make up the majority of these modules. The input and output sentences are first 

turned into an n-dimensional space through embedding because text strings cannot be processed directly. 

 

5. POINT TRANSFORMER  

The Point Transformer is a neural network architecture designed for point cloud processing, which is 

the task of processing data represented in 3D space as a set of points. The Point Transformer is based on the 

Transformer architecture, which was originally designed for NLP tasks, and it aggregates information from 

neighboring points using a self-attention mechanism [58]. Point Transformer represents each point in the point 

cloud as a feature vector. These feature vectors are then processed by the Point Transformer's multiple layers, 

each of which consists of a self-attention module followed by a feedforward neural network. The self-attention 

module enables the network to aggregate information from neighboring points, whereas the feedforward 

network performs non-linear transformations on the feature vectors. 

The use of relative positional encoding is one of the Point Transformer's key innovations. Relative 

positional encoding is based on the relative positions of points within a local neighborhood, and it is used to 

encode spatial relationships [58]. This method applies convolutional filters to a point cloud, allowing the 

network to capture local spatial relationships between points. The dynamic set convolutions are used in the Point 

Transformer's feedforward network shown in Figure 5. They are computed based on the relative positions of 

points within a neighborhood.  

 
Figure. 5 The point transformer layer 
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Given that the attention is calculated over each point's k nearest neighbors, the resulting Point 

Transformer layer is localized. MLP with two linear layers and a ReLU nonlinearity is a mapping function that 

is utilized to calculate vector attention. Both the attention and the value vectors are added, and the latter two are 

then multiplied to produce the output. Trainable positional encodings are computed using a separate MLP with 

two linear layers and a ReLU. The Point Transformer network for segmentation tasks is structured as a U-Net, 

with 5 down sampling point attention layers, 5 up sampling layers, and at last MLP layer, with skip connections 

between the down and up layers of the same output size. Only the down sampling part is used at the end for 

classification tasks, with an average pooling layer and MLP layer. The Table 2 discusses the comparative study 

of Point Transformer, Projection Based Networks, Voxel Based Networks, and, Point Based Networks. 

 

Table 2: Comparative study 

 

POINT TRANSFORMER 

A recently created method for analyzing point clouds called Point Transformer 

is based on the Transformer architecture. In order to learn feature 

representations for specific points in the point cloud, it employs self-attention 

techniques. Message passing is then used to aggregate features across nearby 

neighborhoods. In the classification, segmentation, and object recognition of 

point clouds, Point Transformer has demonstrated encouraging results [58]. 

 

PROJECTION BASED NETWORKS 

Point cloud data is projected onto a 2D or 3D grid by projection-based 

networks, also known as image-based networks. Standard convolutional neural 

network (CNN) procedures are then used to extract features from the projected 

data. This method, where the point cloud data is projected onto a grid for a 

bird's eye perspective, is frequently employed in lidar-based perception for 

autonomous driving. 

 

VOXEL BASED NETWORKS 

The point cloud data is discretized into a 3D voxel grid by voxel-based 

networks, which then use CNN procedures to extract characteristics from the 

voxel data. This method discretizes the 3D space into a grid, which is like 

projection-based networks in that it does not project the point cloud onto a 2D 

grid. For object detection and point cloud segmentation, voxel-based networks 

are frequently used. 

 

 

POINT BASED NETWORKS 

Point-based networks, sometimes referred to as point-based convolutional 

neural networks (PointCNN), work directly with the unprocessed point cloud 

data, without projection or discretization. Point-based networks learn features 

from nearby neighborhoods of points using techniques like ball query and 

farthest point sampling, then aggregate the features over various scales. In the 

classification, segmentation, and registration of point clouds, point-based 

networks have demonstrated promising results. 
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6. PROPOSED DESIGN  

 
 

Figure. 6 Proposed Design 

 

Figure 6 depicts the Point Transformer’s overall design, which includes decoders for various tasks, a 

neighborhood embedding backbone, an attention-based sub-network, and a residual backbone. Transformer, 

which initially encodes the input characteristics into a new high-dimensional feature space. For many point 

cloud processing tasks, the semantic associations between points are expressed in this way. To learn about the 

nearby localities, it first embeds the input coordinates of the point cloud into a new space. The four stacked 

offset-attention layers that make up the attention-based sub-network enable it to develop semantically rich and 

discriminatory representations for each point. Then, to utilize the context information of the point cloud, we take 

the output feature of the attention-based sub-network into the residual backbone. 

During the categorization exercise, the global feature is input into the classification decoder, which has 

MLP layers (1024, 512, 256, and Nc), and dropout operation with an invariable probability of 0.5 to convert the 

global feature to Nc object categories, to identify Nc object categories in point cloud P. Additionally, we employ 

batch normalization together with the activation function LeakyReLU in each layer. Similar criteria are used 

when choosing other hyperparameters. The category label for this point cloud is chosen based on the highest-

scoring category. In the task of portion segmentation. Obtaining the precise semantic label for each point is 

necessary if we are to segment the point cloud into Ns parts (such as cub handles and airplane wings; a 

component hardly requests to be contiguous). As shown in Figure 1, the part segmentation decoder uses three 

shared full-connected layers (512, 256, and Ns) to categorize each point using the global feature produced by the 

residual backbone. To be more specific, the activation function ReLU and a dropout layer with a probability of 

0.5 are placed after the first fully connected layer. On the second full-connected layer, only the activation 

function ReLU is used. All layers are additionally batch-normalized. 

7.  EXPERIMENTAL DISCUSSION  

ModelNet10 dataset is a part of ModelNet40 dataset, containing 4,899 pre-aligned shapes from 10 

categories. There are 3,991 (80%) shapes for training and 908 (20%) shapes for testing. The CAD models are in 

Object File Format (OFF). MATLAB functions to read and visualize OFF files are provided in Princeton Vision 

Toolkit (PVT). To build the core of the dataset, a list of the most common object categories in the world was 

compiled, using the statistics obtained from the SUN database. Once a vocabulary for objects was established, 

3D CAD models belonging to each object category was collected using online search engines by querying for 

each object category term. Then, human workers on Amazon Mechanical Turk were hired to manually decide 

whether each CAD model belonged to the specified categories, using an in-house designed tool with quality 

control. To obtain a very clean dataset, 10 popular object categories were chosen while manually deleted the 

models that did not belong to these categories. Furthermore, manual alignment of orientation of CAD models 
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was performed for the 10-class subset.  

 

 
Figure. 7 Modelent10 Point Cloud Image 

 

Evaluate the performance of the Point Transformer algorithm on benchmark datasets, such as 

ModelNet10. This includes measuring accuracy, speed, memory usage, and scalability.  

 

 
Figure. 8 Confusion Matrix of ModelNet10 dataset 

 

A confusion matrix is used in machine learning to evaluate the performance of a classification model. It 

is a matrix of actual vs predicted values, and it helps to visualize the true positives, true negatives, false 

positives, and false negatives.  As per the Fig. 8, in confusion matrix   almost true positives for all the class lies 

between 50-100.   The accuracy of the model is 92.40% and loss of the model is 3.46%. 

 

8. Conclusion 

The Point Transformer has demonstrated cutting-edge performance on a wide range of NLP (Natural 

Language Processing) tasks, including machine translation, language modeling, and text categorization. It has 

also been effectively used in other fields, such as speech recognition, music generation, image processing and 

video processing. The Transformer's success has led to the development of various extensions and adaptations, 

such as the BERT (Bidirectional Encoder Representations from Transformers) model and the GPT (Generative 

Pre-Trained Transformer) series. Its impact on the field of deep learning has been significant, and it has become 
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a critical component of many cutting-edge neural network architectures. 
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