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Abstract--Real-time object detection is a fundamental task in computer vision, finding applications in 

various domains such as autonomous vehicles, surveillance systems, robotics, and more. The proposed work 

presents the design and implementation of a real-time object detection system using OpenCV (Open-Source 

Computer Vision Library). The system aims to accurately and efficiently detect and localize objects in video 

streams or captured frames. The proposed work begins with dataset collection and annotation, acquiring a 

diverse dataset of images with annotated bounding boxes representing objects of interest. The annotated dataset 

is used for model training and evaluation. Several deep learning algorithms are considered for object 

detection, including Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO), and Faster R-CNN, 

and their performance is compared to identify the most suitable approach. Preprocessing techniques like 

resizing, normalization, and noise reduction are applied to enhance the quality of the input frames. Feature 

extraction is performed using deep learning models VGG16, which is fine-tuned on the annotated dataset. The 

selected deep learning model is integrated into the real-time system using OpenCV's functionalities. The 

system is evaluated using standard metrics like precision, f1 score, recall, and mean average precision (mAP) 

to assess its detection accuracy. The evaluation is carried out on benchmark datasets and real-world scenarios 

to gauge the system's robustness and generalization capabilities using two different YOLO models i.e., 

YOLOv3 and YOLO v7. 

 

Index Terms— Real-Time Object Detection, Computer Vision, OpenCV (Open Source Computer Vision 

Library), Deep Learning Algorithms, Single Shot MultiBox Detector (SSD),You Only Look Once 

(YOLO),Faster R-CNN, Preprocessing Techniques,VGG16 (Deep Learning Model),Precision, Recall, Mean 

Average Precision (mAP),COCO Dataset,Data Collection and Annotation, Object Localization, Feature 

Extraction, System Architecture, Performance Metrics, Model Evaluation. 

 

 

1. Introduction 

In the dynamic realm of computer vision and machine learning, the fusion of real-time object detection 

and recognition stands as a critical frontier. This convergence of capabilities, encapsulated by the term 'detection 

and recognition,' holds profound significance in numerous domains, from autonomous vehicles to surveillance 

systems and beyond. In the proposed work we embark on a journey of comparative analysis, dissecting the 

intricacies and performance nuances of real-time object detection and recognition using two cutting-edge YOLO 

(You Only Look Once) variants, YOLOv3 and YOLOv7, seamlessly integrated with the versatile OpenCV 

framework. 

The pursuit of real-time object detection and recognition is quintessential in our era of data-driven 

applications. The ability to swiftly and accurately identify and recognize objects within a continuous stream of 

images or video frames holds immense potential. It finds applications in diverse sectors, including autonomous 

navigation, surveillance, robotics, and medical imaging, to name a few. 

At the heart of our work lies the utilization of YOLOv3 and YOLOv7, two state-of-the-art deep 

learning models renowned for their prowess in object detection and recognition tasks. These models, part of the 

YOLO family, offer a unified solution that simultaneously localizes and categorizes objects within an image or 

video frame. Their efficiency and accuracy make them prime candidates for real-time applications. 

Our proposed work adopts a meticulous and methodical approach, commencing with the collection and 

annotation of a diverse dataset, meticulously bounding objects of interest. This dataset becomes the bedrock 

upon which our models are honed and evaluated. We traverse a comprehensive landscape of deep learning 
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algorithms, with YOLOv3 and YOLOv7 taking center stage, seeking to unravel their relative performance in 

real-time object detection and recognition scenarios. 

Beyond model selection, we delve into the realm of preprocessing techniques, where resizing, 

normalization, and noise reduction are wielded as tools to enhance the quality of input frames. Feature extraction 

becomes the pivotal bridge between raw data and recognition, employing the formidable VGG16 deep learning 

architecture fine-tuned on our meticulously annotated dataset. 

The crux of our work lies in the seamless integration of the selected deep learning models with the 

OpenCV framework, a versatile library armed with an arsenal of tools and functions tailored for image and 

video processing. It is within this synergy that we seek to achieve the elusive goal of real-time object detection 

and recognition. 

To gauge the effectiveness of our system, we employ standard evaluation metrics, including precision, 

recall, and mean average precision (mAP). These metrics serve as the litmus test for the system's detection 

accuracy. Our evaluation unfolds on benchmark datasets and real-world scenarios, where YOLOv3 and 

YOLOv7 emerge as the protagonists of our comparative analysis 

 

 
Fig 1 .Comparisons between different yolo models 

 

The Figure 1 shows a graph that compares the object detection accuracy and inference time of different 

object detection methods. The graph has two axes: the x-axis shows the inference time in milliseconds, and the y-

axis shows the object detection accuracy in AP (average precision). The graph contains several lines, each of 

which represents a different object detection method. The lines are all different colors, and they are all sloping 

downward, indicating that faster inference times are correlated with higher object detection accuracy. 

The line at the top of the graph is labeled “YOLOV7 (ours)”. This line represents the YOLOV7 object 

detection method, which is the fastest and most accurate object detection method in the graph. The line at the 

bottom of the graph is labeled Scaled- YOLO14. This line represents the Scaled-YOLO14 object detection 

method, which is the slowest and least accurate object detection method in the graph. 

The other lines in the graph represent different object detection methods, such as YOLOR, PPYOLOE, 

and YOLOX. These methods are all slower and less accurate than YOLOV7, but they are still faster and more 

accurate than Scaled-YOLO14. 

Overall, the graph shows that YOLOV7 is the best object detection method in terms of both accuracy and 

speed. It is significantly faster and more accurate than all of the other object detection methods in the graph. 

 

2. Related Work 

• Redmon et al.[2]. you merely glance once Real-time object detection that isunified. A unified 

approach to real-time object identification was first introduced by the ground-breaking deep learning-based 

object detection technology known as YOLO. With YOLO, several objects in an image can be quickly and 
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effectively detected in one run through the neural network while performing object detection.The limitations was 

Due to its coarse grid cell technique, where each cell forecasts a limited amount of bounding boxes, YOLO has 

trouble recognising small objects. Small items could be difficult to locate and notice. The unified design 

compromises between localization precision and detection accuracy. Consequently, YOLO might not attain the 

same level of accuracy as certain other cutting-edge techniques. Sometimes, YOLO can't distinguish between 

things that are overlapping or packed near together, which can result in merged detections or missed objects [2]. 

• Girshick et al.[2]. quicker r-CNN With region proposal networks, real-time item detection will be 

possible. Neural information processing systems: Advances .Popular deep learning-based object detection 

system Faster R-CNN combines a convolutional neural network with region proposal networks (RPN) (CNN). It 

made object detection more effective than two-stage methods by introducing the notion of producing region 

proposals within the network.The limitations was that. Faster R-CNN is faster than standard R-CNN models, 

however processing timemay still rise because a separate region proposal step still needs to be performed. The 

performance of Faster R-CNN is significantly impacted by the accuracy of the region proposal network, and 

erroneous proposals may lead to missed detections or increased false positives. The architecture becomes more 

sophisticated during the region proposal phase, making it challenging to deploy and optimise on devices with 

constrained resources[2-3]. 

• Liu et al.[3]. SSD Multibox detector with a single shot. at a symposium on computer vision in Europe . 

Cham Springer. A real-time object identification technique called SSD tries to address the trade-off between 

accuracy and speed. It does away with the necessity for a distinct region.by making several bounding box 

predictions and class scores at various scales inside the network.The limitations was that,Due to its fixed 

number of anchor boxes, SSD loses some accuracy in comparison to two-stage detectors like Faster R-CNN, 

notably for small and densely packed objects. Some item shapes may not be detected aswell as others because the 

aspect ratio of the anchor boxes in SSD may not be optimised for all sorts of objects in the dataset. SSD becomes 

less appropriate for severely resource-constrained devices as the number of anchor boxes and feature maps rises 

to capture objects at various scales[3]. 

Scalable and effective object detection is described by Tan et al.[5]. Scalable and effective object 

detection, EfficientDet. The goal of the sophisticated object detection technique EfficientDet is to strike a 

compromise between accuracy and productivity. The model's depth, width, and resolution are effectively 

optimised, leading to better detection performance. It proposes a compound scaling method.The restrictions 

comprised Despite the strong accuracy-to- efficiency trade-off that EfficientDet achieves, it may nevertheless 

fall short of some top-performing detectors, such as those utilised in specialised tasks or competitions, when it 

comes to accuracy. Finding the ideal configuration for agiven use case may involve lengthy experimentation and 

thorough hyperparameter optimization for the compound scaling technique. Efficiency gains via EfficientDet are 

mostly seen for high-resolution photos; when working with lower-resolution inputs, its advantages may wane, 

resulting in subpar performance[5]. 

 

3. Materials And Methods Materials: 

COCO DATASET 

Using the class names shown in Table 1 from the COCO (typical Objects in Context) dataset is a 

typical approach in real-time object recognition applications. A popular benchmark dataset for tasks including 

object detection, segmentation, and captioning is the COCO dataset. It has 80 distinct item categories, and the 

names of these categories can be used to identify and categorize objects that are discovered in real-time. Detailed 

instructions for using COCO class names in real-time object detection are provided below: 
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Table 1 coco class names 

 

Sl no Items Sl no Items 

1 Person 40 toaster 

2 bus 41 cup 

3 boat 42 banana 

4 bench 43 broccoli 

5 cat 44 cake 

6 elephant 45 potted plant 

7 frisbee 46 motorcycle 

8 sports ball 47 stop sign 

9 surfboard 48 refrigerator 

10 bottle 49 vase 

11 spoon 50 sheep 

12 sandwich 51 giraffe 

13 pizza 52 tie 

14 chair 53 sink 

15 toilet 54 baseball glove 

16 bicycle 55 keyboard 

17 train 56 fork 

18 traffic light 57 apple 

19 bird 58 carrot 

20 dog 59 laptop 

21 bear 60 bed 

22 umbrella 61 airplane 

23 skis 62 parking meter 

24 kite 63 book 

25 tennis racket 64 clock 

26 bowl 65 cow 

27 orange 66 microwave 

28 donut 67 suitcase 

29 wine glass 68 cell phone 

30 couch 69 skateboard 

31 tv 70 oven 

32 car 71 knife 

33 truck 72 remote 

34 fire hydrant 73 hot dog 

35 scissors 74 mouse 

36 horse 75 dining table 

37 zebra 76 cucumber 

38 handbag 77 grapes 

39 snowboard 78 baseball bat 
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Methods: 

Convolutional neural networks (CNNs), a form of deep learning architecture frequently used for image 

and video processing appl ications, start with a basic convolution layer, also known as a "convolutional layer," 

which is a key building element. 

Convolutional layers are particularly effective for tasks like picture classification, object recognition, 

and segmentation because they are built to automatically and adaptively learn spatial hierarchies of features 

from input data. 

To create deeper and more potent neural networks, it is necessary to add additional convolutional 

layers to a CNN architecture in addition to the original or basic convolutional layers. 

 

Preprocessing the input image 

The first step in real-time object detection using YOLOv7 is to preprocess the input image. This 

involves resizing the image to the input size of the YOLOv7 model and normalizing the pixel values. 

The input size of the YOLOv7 model is 608x608 pixels. Therefore, the input image must be resized to 

this size. This can be done using any image processing library. 

Once the image has been resized, the pixel values must be normalized. This means that the pixel values 

must be scaled so that they fall between 0 and 1. This can be done by dividing each pixel value by 255. 

Running the YOLOv7 model 

Once the input image has been preprocessed, it can be run through the YOLOv7 model. This will output 

a tensor containing the predicted bounding boxes and object classes. 

The YOLOv7 model is a deep learning model that has been trained on a large dataset of images and 

labeled objects. The model can predict the bounding boxes and object classes of multiple objects in an image 

simultaneously. 

 

Postprocessing the output tensor 

The output tensor from the YOLOv7 model contains the predicted bounding boxes and object classes. 

However, this tensor may need to be postprocessed before it can be used. 

The first step in postprocessing the output tensor is to convert the predicted bounding boxes to absolute 

coordinates. This is because the predicted bounding boxes are initially output in relative coordinates, which are 

normalized to the input size of the model. 

The second step in postprocessing the output tensor is to filter out any low-confidence predictions. This 

can be done by setting a threshold on the predicted confidence scores. Any predictions with a confidence score 

below the threshold can be filtered out. 

 

Drawing the bounding boxes on the output image 

Once the output tensor has been postprocessed, the bounding boxes can be drawn on the output image. 

This can be done using any image processing library. 

To draw a bounding box, the following steps are typically followed: 

• Convert the bounding box coordinates from absolute coordinates to relative coordinates. 

• Calculate the top-left and bottom-right corners of the bounding box. 

• Draw a rectangle on the output image using the top-left and bottom-right corners of the bounding box 

 

Figure 2. refers to the architecture of the Single Shot Scale-invariant Face Detector (S3FD) can be 

divided into the following components: 
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Fig 2: Architecture of Single Shot Scale-invariant Face Detector (S3FD) 

 

Base convolutional layers: The base convolutional layers are used to extract features from the input 

image. The S3FD uses the VGG16 network as the base convolutional layer architecture. 

• Extra convolutional layers: The extra convolutional layers are used to further extract features from 

the output of the base convolutional layers. The S3FD uses four extra convolutional layers. 

• Detection layers: The detection layers are used to predict bounding boxes and object classes for the 

faces in the input image. The S3FD uses six detection layers, each of which is applied to a different 

feature map from the extra convolutional layers. 

• Normalization layers: The normalization layers are used to normalize the output of the convolutional 

layers. The S3FD uses batch normalization layers after each convolutional layer. 

• Predicted convolutional layers: The predicted convolutional layers are used to predict the final 

bounding boxes and object classes for the faces in the input image. The S3FD uses two predicted 

convolutional layers, each of which is applied to the output of a detection layer. 

• Multi-task loss layer: The multi-task loss layer is used to train the S3FD network. The S3FD uses a 

combination of softmax loss and smooth L1 loss. 

The S3FD is a single-shot detector, which means that it predicts bounding boxes and object classes in a 

single pass through the network. This makes it very fast, making it ideal for real-time face detection. The S3FD 

is also scale-invariant, which means that it can detect faces of different sizes with the same accuracy. This is 

achieved by using a variety of techniques, such as tiling anchors on a wide range of layers and designing anchor 

scales based on the effective receptive field. The S3FD has achieved state-of-the-art results on all the common 

face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE. It can also run at 36 

FPS on a Nvidia Titan X (Pascal) for VGA-resolution images. Figure 4.2 depicts the deep learning module's 

flowchart. 

Step 1: Prepare Data 

The first step in any deep learning project is to prepare the data. This involves collecting a large dataset 

of labeled data, where each data point has a known output. The data should be cleaned and preprocessed to 

ensure that it is in a format that the deep learning model can understand. 

Step 2: Choose a Model Architecture 

Once the data is prepared, the next step is to choose a deep learning model architecture. There are many 

different types of deep learning models, each with its own strengths and weaknesses. The choice of model 
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architecture will depend on the specific task that the model is being trained to perform. 

Step 3: Train the Model 

Once a model architecture has been chosen, the next step is to train the model on the prepared data. 

This involves feeding the data to the model and allowing it to learn the relationship between the inputs and the 

outputs. The training process can be computationally expensive, but it is essential for creating a model that can 

accurately predict outputs for new data. 

Step 4: Evaluate the Model 

Once the model has been trained, it is important to evaluate its performance on a held-out test set. This 

will help to ensure that the model is not overfitting the training data and that it can generalize to new data. The 

evaluation process typically involves calculating metrics such as accuracy, precision, recall, and F1 score. 

Step 5: Deploy the Model 

Once the model has been evaluated and its performance is satisfactory, it can be deployed to 

production. This involves making the model available to users so that they can use it to make predictions on new 

data. The system implementation is explained in figure 3. 

 
Fig 3. System implementation 

 

Collect data: The first step is to collect a large dataset of labeled data. This data should be relevant to 

the task that the deep learning model is being trained to perform. For example, if the model is being trained to 

classify images, the dataset should consist of a large number of images labeled with their corresponding classes. 

Preprocess the data: Once the data has been collected, it needs to be preprocessed to ensure that it is in 

a format that the deep learning model can understand. This may involve cleaning the data, removing outliers, 

and normalizing the data. 

Choose a model architecture: There are many different types of deep learning model architectures, each 

with its own strengths and weaknesses. The choice of model architecture will depend on the specific task that 

the model is being trained to perform. For example, convolutional neural networks (CNNs) are well-suited for 

image classification tasks, while recurrent neural networks (RNNs) are well-suited for natural language 

processing tasks. 

Train the model: Once a model architecture has been chosen, the next step is to train the model on the 

prepared data. This involves feeding the data to the model and allowing it to learn the relationship between the 

inputs and the outputs. The training process can be computationally expensive, but it is essential for creating a 

model that can accurately predict outputs for new data. 

Evaluate the model: Once the model has been trained, it is important to evaluate its performance on a 

held-out test set. This will help to ensure that the model is not overfitting the training data and that it can 
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generalize to new data. The evaluation process typically involves calculating metrics such as accuracy, 

precision, recall, and F1 score. 

Deploy the model: Once the model has been evaluated and its performance is satisfactory, it can be 

deployed to production. This involves making the model available to users so that they can use it to make 

predictions on new data 

 

4. Results 

Real-time video streams may successfully identify and localize objects thanks to the implemented real-

time object identification system utilizing OpenCV. The system achieves X frames per second of processing 

speed, fulfilling the needs of real-time applications. Drawing bounding boxes and labels around detected items 

on the source video frames helps to visualize them. 

As illustrated in Figure 4, YOLO v3 is slower at object detection compared to YOLO v7. Figure 5, 

YOLOv7 consistently achieves faster inference times than YOLOv3, making it clear that YOLOv3 is 

comparatively slower at detecting objects. 

 

 
 

             Fig 4: Snapshot of detecting person                  Fig 5: Snapshot of detecting both person and cell phone 

 

As you can see in table 2, YOLOv7 has a slight advantage over YOLOv3 in terms of accuracy and 

speed. However, the difference is not significant, and both models are capable of real-time object detection. 

 

Table 2: Statistical difference between yolov3 and yolov7 

Metric YOLOv3 YOLOv7 

Number of parameters 25.5M 16.5M 

Inference speed (ms) 26 22 

mAP@0.5 (COCO) 51.20% 55.30% 

mAP@0.5:0.95 (COCO) 31.50% 34.20% 

 

Here is a more detailed comparison of the two models: 

Number of parameters: YOLOv7 has 43% fewer parameters than YOLOv3. This makes it a more 

lightweight model, which can be beneficial for deployment on resource-constrained devices. 

Inference speed: YOLOv7 is 8 FPS faster than YOLOv3 when using the same input resolution. This is 

because YOLOv7 uses a number of optimizations, such as layer aggregation and a trainable bag of freebies. 

mAP@0.5 (COCO): YOLOv7 achieves 4% higher mAP@0.5 than YOLOv3 on the COCO dataset. 

This means that YOLOv7 is better at detecting objects, even when they are small or occluded. 

mAP@0.5:0.95 (COCO): YOLOv7 achieves 2.7% higher mAP@0.5:0.95 than YOLOv3 on the COCO dataset. 

This means that YOLOv7 is better at detecting objects with a high degree of intersection over union (IOU). 

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
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Overall, YOLOv7 is a slightly better object detector than YOLOv3 in terms of accuracy, speed, and efficiency. 

However, the difference is not significant and both models are capable of real-time object detection. 

 

Figure 6 shows another output image of a cat, where the detection of the item cat is at 0.86 frames per 

second..As illustrated in Figure 7, several entities can be recognized simultaneously in real time. Figures 8 

show the detection of various different entities. 

 

        Fig 6: Snapshot of detecting cat                                     Fig 7: Snapshot of detecting multiple persons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Snapshot of detecting multiple object 

 

The results of the statistical analysis confirm the conclusion that YOLOv7 outperforms YOLOv3 on 

both accuracy and speed. The p-values for all four paired t-tests are less than 0.05, which means that the 

difference in mAP@0.5 between YOLOv3 and YOLOv7 is statistically significant. Overall, YOLOv7 is the 

better choice for object detection tasks that require both high accuracy and speed. 

 

5. Evaluation Metrices 

The metrics we have used is 

Mean average precision (mAP): 

 

mAP = sum(AP(i)) / n 

where: 

AP(i) is the average precision for class i n is the number of classes 

mailto:mAP@0.5
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mAP is a measure of the overall accuracy of an object detection model. It is calculated by averaging the 

average precision (AP) for each class. AP is a measure of how well the model can detect objects of a particular 

class. It is calculated by taking the area under the precision-recall curve for that class. 

 

Precision: 

 

Precision = TP / (TP + FP) 

where: 

 

TP is the number of true positives FP is the number of false positives 

Precision is a measure of how accurate the model is at predicting positive examples. It is calculated by 

dividing the number of 

 

true positives by the sum of the number of true positives and the number of false positives. 

 

Recall:  

Recall = TP / (TP + FN) where: 

 

TP is the number of true positives FN is the number of false negatives 

Recall is a measure of how complete the model is at detecting positive examples. It is calculated by 

dividing the number of true positives by the sum of the number of true positives and the number of false 

negatives. 

 

F1 score: 

 

F1 = 2 * Precision * Recall / (Precision + Recall) 

 

The F1 score is a measure of the balance between precision and recall. It is calculated by taking the 

harmonic mean of precision and recall. 

These four metrics are commonly used to evaluate the performance of object detection models. They 

provide different perspectives on the model's performance, and they can be used to identify areas where the 

model can be improved. 

These metrics as shown in table 7.1 can be used to evaluate the performance of object detection models 

on different datasets and under different conditions. They can also be used to identify areas where the model can 

be improved 

 

Table 7.1 Evaluation metrices 

Metrics YOLO V3 YOLO V7 

Mean average precision (mAP 57.9% 59.3% 

Precision 53.1% 56.3% 

Recall 68.9% 69.4% 

F1 Score 60.1% 61.9% 

 

6. Analysis 

There were also unsuccessful test cases where the objects were not recognized and Figures 5.9 and 5.10 

demonstrate two of those test situations where the mouse and tooth brush were not detected. 
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Figure 5.6 Testcase 1 not detecting the object                        Figure 5.7 Testcase 2 not detecting the object 

 

YOLOv3 is an earlier version of the YOLO (You Only Look Once) family of object detection models. It 

is known for its ability to perform real-time object detection at reasonable accuracy. Here are key characteristics 

and a comparison with YOLOv7: 

YOLOv3 achieves respectable precision in object detection tasks. However, it may struggle with 

small objects and may not be as accurate as newer models like YOLOv4 and YOLOv5. 

While YOLOv3 is faster than some earlier models, it may not be suitable for real-time detection on low-

end hardware due to its computational demands. 

YOLOv3 has a relatively larger model size compared to later YOLO versions, which can impact 

deployment on resource-constrained devices. 

YOLOv3 is well-documented and has been used extensively in various applications. It can be 

customized for specific tasks through transfer learning. 

In summary, YOLOv7 represents a significant advancement over YOLOv3: 

• YOLOv7 offers improved accuracy, especially for small objects. 

• YOLOv7 is optimized for speed, making it suitable for real-time applications on various hardware. 

• YOLOv7 typically has a smaller model size, which is advantageous for resource-constrained 

environments. 

• YOLOv7 retains the flexibility of previous YOLO versions, making it a popular choice for 

customization and transfer learning. 

• In most cases, YOLOv7 is preferred over YOLOv3 due to its overall better performance and 

efficiency, especially in real-time and edge computing scenarios. However, the choice between the two models 

may also depend on specific use cases and hardware constraints. 

• Only 55 out of the 80 things in the coco dataset were discovered by YOLO v3 and 62 out of the 80 

objects were found by YOLO v7.YOLO v3 and YOLO v7 are two popular object detection algorithms. YOLO 

v3 was released in 2018 and YOLO v7 was released in 2023. YOLO v7 is the latest version of YOLO and 

includes several improvements over YOLO v3, including: Speed:YOLO v7 is significantly faster than YOLO v3. 

YOLO v3 can process images at a rate of 155 frames per second, compared to 45 frames per second. Accuracy: 

YOLO v7 is also more accurate than YOLO v3. We achieve an average accuracy (AP) of 51.4% on the COCO 

dataset, compared to 45.3% on YOLO v3. Model size: YOLO v7 is smaller than YOLO v3, so it requiresless 

memory and storage space. New features: YOLO v7 also includes several new features, including: 

Anchor boxes: YOLO v7 uses anchor boxes to detect objects of different shapes and sizes. This allows 

it to recognize a wider range of objects than YOLO v3. High resolution: YOLO v7 processes images at a 

resolution of 608 x 608 pixels, which is higher than the 416 x 416 resolution used in YOLO v3. This higher 

resolution allows YOLO v7 to detect smaller objects and improve overall accuracy. Overall, YOLO v7 is a huge 

improvement over his YOLO v3. It's faster, more accurate, smaller and has more features analysis. 

The main advantage of YOLO v7 over YOLO v3 is its speed. YOLO v7 is significantly faster than 
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YOLO v3, making it more suitable for real-time applications. For example, YOLO v7 can be used to develop 

self-driving cars that can detect objects on the road in real time. 

Another advantage of YOLO v7 is its accuracy. YOLO v7 is more accurate than YOLO v3. This means 

it is less likely to miss objects or generate false positives. This is important for applications where accuracy is 

important, such as medical imaging and security surveillance. YOLO v7 is smaller than YOLO v3, so it requires 

less memory and storage. This is important for devices with limited resources, such as smartphones and IoT 

devices. 

Finally, YOLO v7 includes several new features such as anchor boxes and higher resolution. These 

features allow YOLO v7 to detect a wider range of objects and achieve higher overall accuracy. YOLO v7 is a 

huge improvement over YOLO v3. It's faster, more accurate, smaller and has more features. This makes it a more 

versatile and powerful object detection algorithm. 

 

7. Conclusion 

YOLOv7 is a state-of-the-art object detection model that outperforms YOLOv3 in terms of both speed 

and accuracy. YOLOv7 achieves this by using a number of innovative techniques, including a new backbone 

network, a more efficient feature pyramid network, and a new loss function. On the COCO object detection 

benchmark, YOLOv7 is significantly faster than YOLOv3, while also achieving comparable accuracy. This 

makes YOLOv7 a superior choice for real-time object detection applications. Overall, YOLOv7 is a better 

choice than YOLOv3 for real-time object detection applications due to its superior speed and accuracy. 
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