
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1903

Real Time Object Detection & Recognition: A

Comparative Study of YOLOv3 and YOLOv7 in

OpenCV

[1]T M Geethanjali, [2]Prithviraj B, [3]Prajwal K M, [4] Prajwal Gowda C M, [5] Priyanka

[1]Assistant professor

[1]-[5]PES College of Engineering/Department of ISE, Mandya, India.

Abstract--Real-time object detection is a fundamental task in computer vision, finding applications in

various domains such as autonomous vehicles, surveillance systems, robotics, and more. The proposed work

presents the design and implementation of a real-time object detection system using OpenCV (Open-Source

Computer Vision Library). The system aims to accurately and efficiently detect and localize objects in video

streams or captured frames. The proposed work begins with dataset collection and annotation, acquiring a

diverse dataset of images with annotated bounding boxes representing objects of interest. The annotated dataset

is used for model training and evaluation. Several deep learning algorithms are considered for object

detection, including Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO), and Faster R-CNN,

and their performance is compared to identify the most suitable approach. Preprocessing techniques like

resizing, normalization, and noise reduction are applied to enhance the quality of the input frames. Feature

extraction is performed using deep learning models VGG16, which is fine-tuned on the annotated dataset. The

selected deep learning model is integrated into the real-time system using OpenCV's functionalities. The

system is evaluated using standard metrics like precision, f1 score, recall, and mean average precision (mAP)

to assess its detection accuracy. The evaluation is carried out on benchmark datasets and real-world scenarios

to gauge the system's robustness and generalization capabilities using two different YOLO models i.e.,

YOLOv3 and YOLO v7.

Index Terms— Real-Time Object Detection, Computer Vision, OpenCV (Open Source Computer Vision

Library), Deep Learning Algorithms, Single Shot MultiBox Detector (SSD),You Only Look Once

(YOLO),Faster R-CNN, Preprocessing Techniques,VGG16 (Deep Learning Model),Precision, Recall, Mean

Average Precision (mAP),COCO Dataset,Data Collection and Annotation, Object Localization, Feature

Extraction, System Architecture, Performance Metrics, Model Evaluation.

1. Introduction

In the dynamic realm of computer vision and machine learning, the fusion of real-time object detection

and recognition stands as a critical frontier. This convergence of capabilities, encapsulated by the term 'detection

and recognition,' holds profound significance in numerous domains, from autonomous vehicles to surveillance

systems and beyond. In the proposed work we embark on a journey of comparative analysis, dissecting the

intricacies and performance nuances of real-time object detection and recognition using two cutting-edge YOLO

(You Only Look Once) variants, YOLOv3 and YOLOv7, seamlessly integrated with the versatile OpenCV

framework.

The pursuit of real-time object detection and recognition is quintessential in our era of data-driven

applications. The ability to swiftly and accurately identify and recognize objects within a continuous stream of

images or video frames holds immense potential. It finds applications in diverse sectors, including autonomous

navigation, surveillance, robotics, and medical imaging, to name a few.

At the heart of our work lies the utilization of YOLOv3 and YOLOv7, two state-of-the-art deep

learning models renowned for their prowess in object detection and recognition tasks. These models, part of the

YOLO family, offer a unified solution that simultaneously localizes and categorizes objects within an image or

video frame. Their efficiency and accuracy make them prime candidates for real-time applications.

Our proposed work adopts a meticulous and methodical approach, commencing with the collection and

annotation of a diverse dataset, meticulously bounding objects of interest. This dataset becomes the bedrock

upon which our models are honed and evaluated. We traverse a comprehensive landscape of deep learning

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1904

algorithms, with YOLOv3 and YOLOv7 taking center stage, seeking to unravel their relative performance in

real-time object detection and recognition scenarios.

Beyond model selection, we delve into the realm of preprocessing techniques, where resizing,

normalization, and noise reduction are wielded as tools to enhance the quality of input frames. Feature extraction

becomes the pivotal bridge between raw data and recognition, employing the formidable VGG16 deep learning

architecture fine-tuned on our meticulously annotated dataset.

The crux of our work lies in the seamless integration of the selected deep learning models with the

OpenCV framework, a versatile library armed with an arsenal of tools and functions tailored for image and

video processing. It is within this synergy that we seek to achieve the elusive goal of real-time object detection

and recognition.

To gauge the effectiveness of our system, we employ standard evaluation metrics, including precision,

recall, and mean average precision (mAP). These metrics serve as the litmus test for the system's detection

accuracy. Our evaluation unfolds on benchmark datasets and real-world scenarios, where YOLOv3 and

YOLOv7 emerge as the protagonists of our comparative analysis

Fig 1 .Comparisons between different yolo models

The Figure 1 shows a graph that compares the object detection accuracy and inference time of different

object detection methods. The graph has two axes: the x-axis shows the inference time in milliseconds, and the y-

axis shows the object detection accuracy in AP (average precision). The graph contains several lines, each of

which represents a different object detection method. The lines are all different colors, and they are all sloping

downward, indicating that faster inference times are correlated with higher object detection accuracy.

The line at the top of the graph is labeled “YOLOV7 (ours)”. This line represents the YOLOV7 object

detection method, which is the fastest and most accurate object detection method in the graph. The line at the

bottom of the graph is labeled Scaled- YOLO14. This line represents the Scaled-YOLO14 object detection

method, which is the slowest and least accurate object detection method in the graph.

The other lines in the graph represent different object detection methods, such as YOLOR, PPYOLOE,

and YOLOX. These methods are all slower and less accurate than YOLOV7, but they are still faster and more

accurate than Scaled-YOLO14.

Overall, the graph shows that YOLOV7 is the best object detection method in terms of both accuracy and

speed. It is significantly faster and more accurate than all of the other object detection methods in the graph.

2. Related Work

• Redmon et al.[2]. you merely glance once Real-time object detection that isunified. A unified

approach to real-time object identification was first introduced by the ground-breaking deep learning-based

object detection technology known as YOLO. With YOLO, several objects in an image can be quickly and

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1905

effectively detected in one run through the neural network while performing object detection.The limitations was

Due to its coarse grid cell technique, where each cell forecasts a limited amount of bounding boxes, YOLO has

trouble recognising small objects. Small items could be difficult to locate and notice. The unified design

compromises between localization precision and detection accuracy. Consequently, YOLO might not attain the

same level of accuracy as certain other cutting-edge techniques. Sometimes, YOLO can't distinguish between

things that are overlapping or packed near together, which can result in merged detections or missed objects [2].

• Girshick et al.[2]. quicker r-CNN With region proposal networks, real-time item detection will be

possible. Neural information processing systems: Advances .Popular deep learning-based object detection

system Faster R-CNN combines a convolutional neural network with region proposal networks (RPN) (CNN). It

made object detection more effective than two-stage methods by introducing the notion of producing region

proposals within the network.The limitations was that. Faster R-CNN is faster than standard R-CNN models,

however processing timemay still rise because a separate region proposal step still needs to be performed. The

performance of Faster R-CNN is significantly impacted by the accuracy of the region proposal network, and

erroneous proposals may lead to missed detections or increased false positives. The architecture becomes more

sophisticated during the region proposal phase, making it challenging to deploy and optimise on devices with

constrained resources[2-3].

• Liu et al.[3]. SSD Multibox detector with a single shot. at a symposium on computer vision in Europe .

Cham Springer. A real-time object identification technique called SSD tries to address the trade-off between

accuracy and speed. It does away with the necessity for a distinct region.by making several bounding box

predictions and class scores at various scales inside the network.The limitations was that,Due to its fixed

number of anchor boxes, SSD loses some accuracy in comparison to two-stage detectors like Faster R-CNN,

notably for small and densely packed objects. Some item shapes may not be detected aswell as others because the

aspect ratio of the anchor boxes in SSD may not be optimised for all sorts of objects in the dataset. SSD becomes

less appropriate for severely resource-constrained devices as the number of anchor boxes and feature maps rises

to capture objects at various scales[3].

Scalable and effective object detection is described by Tan et al.[5]. Scalable and effective object

detection, EfficientDet. The goal of the sophisticated object detection technique EfficientDet is to strike a

compromise between accuracy and productivity. The model's depth, width, and resolution are effectively

optimised, leading to better detection performance. It proposes a compound scaling method.The restrictions

comprised Despite the strong accuracy-to- efficiency trade-off that EfficientDet achieves, it may nevertheless

fall short of some top-performing detectors, such as those utilised in specialised tasks or competitions, when it

comes to accuracy. Finding the ideal configuration for agiven use case may involve lengthy experimentation and

thorough hyperparameter optimization for the compound scaling technique. Efficiency gains via EfficientDet are

mostly seen for high-resolution photos; when working with lower-resolution inputs, its advantages may wane,

resulting in subpar performance[5].

3. Materials And Methods Materials:

COCO DATASET

Using the class names shown in Table 1 from the COCO (typical Objects in Context) dataset is a

typical approach in real-time object recognition applications. A popular benchmark dataset for tasks including

object detection, segmentation, and captioning is the COCO dataset. It has 80 distinct item categories, and the

names of these categories can be used to identify and categorize objects that are discovered in real-time. Detailed

instructions for using COCO class names in real-time object detection are provided below:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1906

Table 1 coco class names

Sl no Items Sl no Items

1 Person 40 toaster

2 bus 41 cup

3 boat 42 banana

4 bench 43 broccoli

5 cat 44 cake

6 elephant 45 potted plant

7 frisbee 46 motorcycle

8 sports ball 47 stop sign

9 surfboard 48 refrigerator

10 bottle 49 vase

11 spoon 50 sheep

12 sandwich 51 giraffe

13 pizza 52 tie

14 chair 53 sink

15 toilet 54 baseball glove

16 bicycle 55 keyboard

17 train 56 fork

18 traffic light 57 apple

19 bird 58 carrot

20 dog 59 laptop

21 bear 60 bed

22 umbrella 61 airplane

23 skis 62 parking meter

24 kite 63 book

25 tennis racket 64 clock

26 bowl 65 cow

27 orange 66 microwave

28 donut 67 suitcase

29 wine glass 68 cell phone

30 couch 69 skateboard

31 tv 70 oven

32 car 71 knife

33 truck 72 remote

34 fire hydrant 73 hot dog

35 scissors 74 mouse

36 horse 75 dining table

37 zebra 76 cucumber

38 handbag 77 grapes

39 snowboard 78 baseball bat

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1907

Methods:

Convolutional neural networks (CNNs), a form of deep learning architecture frequently used for image

and video processing appl ications, start with a basic convolution layer, also known as a "convolutional layer,"

which is a key building element.

Convolutional layers are particularly effective for tasks like picture classification, object recognition,

and segmentation because they are built to automatically and adaptively learn spatial hierarchies of features

from input data.

To create deeper and more potent neural networks, it is necessary to add additional convolutional

layers to a CNN architecture in addition to the original or basic convolutional layers.

Preprocessing the input image

The first step in real-time object detection using YOLOv7 is to preprocess the input image. This

involves resizing the image to the input size of the YOLOv7 model and normalizing the pixel values.

The input size of the YOLOv7 model is 608x608 pixels. Therefore, the input image must be resized to

this size. This can be done using any image processing library.

Once the image has been resized, the pixel values must be normalized. This means that the pixel values

must be scaled so that they fall between 0 and 1. This can be done by dividing each pixel value by 255.

Running the YOLOv7 model

Once the input image has been preprocessed, it can be run through the YOLOv7 model. This will output

a tensor containing the predicted bounding boxes and object classes.

The YOLOv7 model is a deep learning model that has been trained on a large dataset of images and

labeled objects. The model can predict the bounding boxes and object classes of multiple objects in an image

simultaneously.

Postprocessing the output tensor

The output tensor from the YOLOv7 model contains the predicted bounding boxes and object classes.

However, this tensor may need to be postprocessed before it can be used.

The first step in postprocessing the output tensor is to convert the predicted bounding boxes to absolute

coordinates. This is because the predicted bounding boxes are initially output in relative coordinates, which are

normalized to the input size of the model.

The second step in postprocessing the output tensor is to filter out any low-confidence predictions. This

can be done by setting a threshold on the predicted confidence scores. Any predictions with a confidence score

below the threshold can be filtered out.

Drawing the bounding boxes on the output image

Once the output tensor has been postprocessed, the bounding boxes can be drawn on the output image.

This can be done using any image processing library.

To draw a bounding box, the following steps are typically followed:

• Convert the bounding box coordinates from absolute coordinates to relative coordinates.

• Calculate the top-left and bottom-right corners of the bounding box.

• Draw a rectangle on the output image using the top-left and bottom-right corners of the bounding box

Figure 2. refers to the architecture of the Single Shot Scale-invariant Face Detector (S3FD) can be

divided into the following components:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1908

Fig 2: Architecture of Single Shot Scale-invariant Face Detector (S3FD)

Base convolutional layers: The base convolutional layers are used to extract features from the input

image. The S3FD uses the VGG16 network as the base convolutional layer architecture.

• Extra convolutional layers: The extra convolutional layers are used to further extract features from

the output of the base convolutional layers. The S3FD uses four extra convolutional layers.

• Detection layers: The detection layers are used to predict bounding boxes and object classes for the

faces in the input image. The S3FD uses six detection layers, each of which is applied to a different

feature map from the extra convolutional layers.

• Normalization layers: The normalization layers are used to normalize the output of the convolutional

layers. The S3FD uses batch normalization layers after each convolutional layer.

• Predicted convolutional layers: The predicted convolutional layers are used to predict the final

bounding boxes and object classes for the faces in the input image. The S3FD uses two predicted

convolutional layers, each of which is applied to the output of a detection layer.

• Multi-task loss layer: The multi-task loss layer is used to train the S3FD network. The S3FD uses a

combination of softmax loss and smooth L1 loss.

The S3FD is a single-shot detector, which means that it predicts bounding boxes and object classes in a

single pass through the network. This makes it very fast, making it ideal for real-time face detection. The S3FD

is also scale-invariant, which means that it can detect faces of different sizes with the same accuracy. This is

achieved by using a variety of techniques, such as tiling anchors on a wide range of layers and designing anchor

scales based on the effective receptive field. The S3FD has achieved state-of-the-art results on all the common

face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE. It can also run at 36

FPS on a Nvidia Titan X (Pascal) for VGA-resolution images. Figure 4.2 depicts the deep learning module's

flowchart.

Step 1: Prepare Data

The first step in any deep learning project is to prepare the data. This involves collecting a large dataset

of labeled data, where each data point has a known output. The data should be cleaned and preprocessed to

ensure that it is in a format that the deep learning model can understand.

Step 2: Choose a Model Architecture

Once the data is prepared, the next step is to choose a deep learning model architecture. There are many

different types of deep learning models, each with its own strengths and weaknesses. The choice of model

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1909

architecture will depend on the specific task that the model is being trained to perform.

Step 3: Train the Model

Once a model architecture has been chosen, the next step is to train the model on the prepared data.

This involves feeding the data to the model and allowing it to learn the relationship between the inputs and the

outputs. The training process can be computationally expensive, but it is essential for creating a model that can

accurately predict outputs for new data.

Step 4: Evaluate the Model

Once the model has been trained, it is important to evaluate its performance on a held-out test set. This

will help to ensure that the model is not overfitting the training data and that it can generalize to new data. The

evaluation process typically involves calculating metrics such as accuracy, precision, recall, and F1 score.

Step 5: Deploy the Model

Once the model has been evaluated and its performance is satisfactory, it can be deployed to

production. This involves making the model available to users so that they can use it to make predictions on new

data. The system implementation is explained in figure 3.

Fig 3. System implementation

Collect data: The first step is to collect a large dataset of labeled data. This data should be relevant to

the task that the deep learning model is being trained to perform. For example, if the model is being trained to

classify images, the dataset should consist of a large number of images labeled with their corresponding classes.

Preprocess the data: Once the data has been collected, it needs to be preprocessed to ensure that it is in

a format that the deep learning model can understand. This may involve cleaning the data, removing outliers,

and normalizing the data.

Choose a model architecture: There are many different types of deep learning model architectures, each

with its own strengths and weaknesses. The choice of model architecture will depend on the specific task that

the model is being trained to perform. For example, convolutional neural networks (CNNs) are well-suited for

image classification tasks, while recurrent neural networks (RNNs) are well-suited for natural language

processing tasks.

Train the model: Once a model architecture has been chosen, the next step is to train the model on the

prepared data. This involves feeding the data to the model and allowing it to learn the relationship between the

inputs and the outputs. The training process can be computationally expensive, but it is essential for creating a

model that can accurately predict outputs for new data.

Evaluate the model: Once the model has been trained, it is important to evaluate its performance on a

held-out test set. This will help to ensure that the model is not overfitting the training data and that it can

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1910

generalize to new data. The evaluation process typically involves calculating metrics such as accuracy,

precision, recall, and F1 score.

Deploy the model: Once the model has been evaluated and its performance is satisfactory, it can be

deployed to production. This involves making the model available to users so that they can use it to make

predictions on new data

4. Results

Real-time video streams may successfully identify and localize objects thanks to the implemented real-

time object identification system utilizing OpenCV. The system achieves X frames per second of processing

speed, fulfilling the needs of real-time applications. Drawing bounding boxes and labels around detected items

on the source video frames helps to visualize them.

As illustrated in Figure 4, YOLO v3 is slower at object detection compared to YOLO v7. Figure 5,

YOLOv7 consistently achieves faster inference times than YOLOv3, making it clear that YOLOv3 is

comparatively slower at detecting objects.

 Fig 4: Snapshot of detecting person Fig 5: Snapshot of detecting both person and cell phone

As you can see in table 2, YOLOv7 has a slight advantage over YOLOv3 in terms of accuracy and

speed. However, the difference is not significant, and both models are capable of real-time object detection.

Table 2: Statistical difference between yolov3 and yolov7

Metric YOLOv3 YOLOv7

Number of parameters 25.5M 16.5M

Inference speed (ms) 26 22

mAP@0.5 (COCO) 51.20% 55.30%

mAP@0.5:0.95 (COCO) 31.50% 34.20%

Here is a more detailed comparison of the two models:

Number of parameters: YOLOv7 has 43% fewer parameters than YOLOv3. This makes it a more

lightweight model, which can be beneficial for deployment on resource-constrained devices.

Inference speed: YOLOv7 is 8 FPS faster than YOLOv3 when using the same input resolution. This is

because YOLOv7 uses a number of optimizations, such as layer aggregation and a trainable bag of freebies.

mAP@0.5 (COCO): YOLOv7 achieves 4% higher mAP@0.5 than YOLOv3 on the COCO dataset.

This means that YOLOv7 is better at detecting objects, even when they are small or occluded.

mAP@0.5:0.95 (COCO): YOLOv7 achieves 2.7% higher mAP@0.5:0.95 than YOLOv3 on the COCO dataset.

This means that YOLOv7 is better at detecting objects with a high degree of intersection over union (IOU).

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1911

Overall, YOLOv7 is a slightly better object detector than YOLOv3 in terms of accuracy, speed, and efficiency.

However, the difference is not significant and both models are capable of real-time object detection.

Figure 6 shows another output image of a cat, where the detection of the item cat is at 0.86 frames per

second..As illustrated in Figure 7, several entities can be recognized simultaneously in real time. Figures 8

show the detection of various different entities.

 Fig 6: Snapshot of detecting cat Fig 7: Snapshot of detecting multiple persons

Fig 8: Snapshot of detecting multiple object

The results of the statistical analysis confirm the conclusion that YOLOv7 outperforms YOLOv3 on

both accuracy and speed. The p-values for all four paired t-tests are less than 0.05, which means that the

difference in mAP@0.5 between YOLOv3 and YOLOv7 is statistically significant. Overall, YOLOv7 is the

better choice for object detection tasks that require both high accuracy and speed.

5. Evaluation Metrices

The metrics we have used is

Mean average precision (mAP):

mAP = sum(AP(i)) / n

where:

AP(i) is the average precision for class i n is the number of classes

mailto:mAP@0.5

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1912

mAP is a measure of the overall accuracy of an object detection model. It is calculated by averaging the

average precision (AP) for each class. AP is a measure of how well the model can detect objects of a particular

class. It is calculated by taking the area under the precision-recall curve for that class.

Precision:

Precision = TP / (TP + FP)

where:

TP is the number of true positives FP is the number of false positives

Precision is a measure of how accurate the model is at predicting positive examples. It is calculated by

dividing the number of

true positives by the sum of the number of true positives and the number of false positives.

Recall:

Recall = TP / (TP + FN) where:

TP is the number of true positives FN is the number of false negatives

Recall is a measure of how complete the model is at detecting positive examples. It is calculated by

dividing the number of true positives by the sum of the number of true positives and the number of false

negatives.

F1 score:

F1 = 2 * Precision * Recall / (Precision + Recall)

The F1 score is a measure of the balance between precision and recall. It is calculated by taking the

harmonic mean of precision and recall.

These four metrics are commonly used to evaluate the performance of object detection models. They

provide different perspectives on the model's performance, and they can be used to identify areas where the

model can be improved.

These metrics as shown in table 7.1 can be used to evaluate the performance of object detection models

on different datasets and under different conditions. They can also be used to identify areas where the model can

be improved

Table 7.1 Evaluation metrices

Metrics YOLO V3 YOLO V7

Mean average precision (mAP 57.9% 59.3%

Precision 53.1% 56.3%

Recall 68.9% 69.4%

F1 Score 60.1% 61.9%

6. Analysis

There were also unsuccessful test cases where the objects were not recognized and Figures 5.9 and 5.10

demonstrate two of those test situations where the mouse and tooth brush were not detected.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1913

Figure 5.6 Testcase 1 not detecting the object Figure 5.7 Testcase 2 not detecting the object

YOLOv3 is an earlier version of the YOLO (You Only Look Once) family of object detection models. It

is known for its ability to perform real-time object detection at reasonable accuracy. Here are key characteristics

and a comparison with YOLOv7:

YOLOv3 achieves respectable precision in object detection tasks. However, it may struggle with

small objects and may not be as accurate as newer models like YOLOv4 and YOLOv5.

While YOLOv3 is faster than some earlier models, it may not be suitable for real-time detection on low-

end hardware due to its computational demands.

YOLOv3 has a relatively larger model size compared to later YOLO versions, which can impact

deployment on resource-constrained devices.

YOLOv3 is well-documented and has been used extensively in various applications. It can be

customized for specific tasks through transfer learning.

In summary, YOLOv7 represents a significant advancement over YOLOv3:

• YOLOv7 offers improved accuracy, especially for small objects.

• YOLOv7 is optimized for speed, making it suitable for real-time applications on various hardware.

• YOLOv7 typically has a smaller model size, which is advantageous for resource-constrained

environments.

• YOLOv7 retains the flexibility of previous YOLO versions, making it a popular choice for

customization and transfer learning.

• In most cases, YOLOv7 is preferred over YOLOv3 due to its overall better performance and

efficiency, especially in real-time and edge computing scenarios. However, the choice between the two models

may also depend on specific use cases and hardware constraints.

• Only 55 out of the 80 things in the coco dataset were discovered by YOLO v3 and 62 out of the 80

objects were found by YOLO v7.YOLO v3 and YOLO v7 are two popular object detection algorithms. YOLO

v3 was released in 2018 and YOLO v7 was released in 2023. YOLO v7 is the latest version of YOLO and

includes several improvements over YOLO v3, including: Speed:YOLO v7 is significantly faster than YOLO v3.

YOLO v3 can process images at a rate of 155 frames per second, compared to 45 frames per second. Accuracy:

YOLO v7 is also more accurate than YOLO v3. We achieve an average accuracy (AP) of 51.4% on the COCO

dataset, compared to 45.3% on YOLO v3. Model size: YOLO v7 is smaller than YOLO v3, so it requiresless

memory and storage space. New features: YOLO v7 also includes several new features, including:

Anchor boxes: YOLO v7 uses anchor boxes to detect objects of different shapes and sizes. This allows

it to recognize a wider range of objects than YOLO v3. High resolution: YOLO v7 processes images at a

resolution of 608 x 608 pixels, which is higher than the 416 x 416 resolution used in YOLO v3. This higher

resolution allows YOLO v7 to detect smaller objects and improve overall accuracy. Overall, YOLO v7 is a huge

improvement over his YOLO v3. It's faster, more accurate, smaller and has more features analysis.

The main advantage of YOLO v7 over YOLO v3 is its speed. YOLO v7 is significantly faster than

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

1914

YOLO v3, making it more suitable for real-time applications. For example, YOLO v7 can be used to develop

self-driving cars that can detect objects on the road in real time.

Another advantage of YOLO v7 is its accuracy. YOLO v7 is more accurate than YOLO v3. This means

it is less likely to miss objects or generate false positives. This is important for applications where accuracy is

important, such as medical imaging and security surveillance. YOLO v7 is smaller than YOLO v3, so it requires

less memory and storage. This is important for devices with limited resources, such as smartphones and IoT

devices.

Finally, YOLO v7 includes several new features such as anchor boxes and higher resolution. These

features allow YOLO v7 to detect a wider range of objects and achieve higher overall accuracy. YOLO v7 is a

huge improvement over YOLO v3. It's faster, more accurate, smaller and has more features. This makes it a more

versatile and powerful object detection algorithm.

7. Conclusion

YOLOv7 is a state-of-the-art object detection model that outperforms YOLOv3 in terms of both speed

and accuracy. YOLOv7 achieves this by using a number of innovative techniques, including a new backbone

network, a more efficient feature pyramid network, and a new loss function. On the COCO object detection

benchmark, YOLOv7 is significantly faster than YOLOv3, while also achieving comparable accuracy. This

makes YOLOv7 a superior choice for real-time object detection applications. Overall, YOLOv7 is a better

choice than YOLOv3 for real-time object detection applications due to its superior speed and accuracy.

References

[1] .Bharti, C., & Choudhary, R. (2019). Data Preprocessing for Machine Learning A Review.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once Unified, Real-

Time Object Detection.

[3] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD Single

Shot MultiBox Detector.

[4] MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler

[5] Tan, M., Pang, R., Le, Q. V., & Vasudevan, V. (2020). EfficientDet Scalable and Efficient Object

Detection.

[6] Tong, H., Zhou, K., Fu, H., & Yu, X. (2019). Real-Time Multiple Object Detection on FPGA.

[7] EfficientDet: Scalable and Efficient Object Detection by Mingxing Tan

[8] Real-Time Object Detection with YOLO by Alexey Gruzdev.

[9] Real-Time Object Detection with OpenCV and YOLO by PyImageSearch.

[10] Gupta, A., Vatsa, A. K., & Singh, R. (2020). Static Object Detection in Geo-Spatial Image Using Deep

Learning.

[11] Mamatha, N. G., & Giri Prasad, M. N. (2021). Moving Object Detection in Video A Survey.

[12] Dubey, S. R., & Potdar, R. M. (2021). Deep Learning for Visual Object Recognition A Comprehensive

Survey.

[13] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4 Optimal Speed and Accuracy of

Object Detection.

[14] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,.& Zheng, X. (2016). TensorFlow A

system for large- scale machine learning.

[15] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019). PyTorch

An imperative style, high-performance deep learning library.

[16] Singh, G., & Kaur, S. (2021). A Review of Object Detection Methods and Techniques in the Computer

Vision Domain.

[17] Focal Loss for Dense Object Detection by Tsung-Yi Lin

[18] Bredell, G., & van Rooyen, G. J. (2017). Review of Object Detection Performance Metrics and Evaluation

Techniques.

[19] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.

[20] Zhu, X., Zhang, J., Han, W., & Yu, N. (2021). Deep learning in object detection applications A survey.

