Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

Real Time Object Detection & Recognition: A
ComparativeStudy of YOLOv3 and YOLOV7 In
OpenCV

T M Geethanjali, PPrithviraj B, BlPrajwal K M, [*1Prajwal Gowda C M, [*!Priyanka

[Assistant professor
WSIPES College of Engineering/Department of ISE, Mandya, India.

Abstract--Real-time object detection is a fundamental task in computer vision, finding applications in
various domains such as autonomous vehicles, surveillance systems, robotics, and more. The proposed work
presents the design and implementation of a real-time object detection system using OpenCV (Open-Source
Computer Vision Library). The system aims to accurately and efficiently detect and localize objects in video
streams or captured frames. The proposed work begins with dataset collection and annotation, acquiring a
diverse dataset of imageswith annotated bounding boxes representing objects of interest. The annotated dataset
is used for model training and evaluation. Several deep learning algorithms are considered for object
detection, including Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO), and Faster R-CNN,
and their performance is compared to identify the most suitable approach. Preprocessing techniques like
resizing, normalization, and noise reduction are applied to enhance the quality of the input frames. Feature
extraction is performed using deep learning models VGG16, which is fine-tuned on the annotated dataset. The
selected deep learning model is integrated into the real-time system using OpenCV's functionalities. The
system is evaluated using standard metrics like precision, f1 score, recall, and mean average precision (mAP)
to assess its detection accuracy. The evaluation is carried out on benchmark datasets and real-world scenarios
to gauge the system's robustness and generalization capabilities using two different YOLO models i.e.,
YOLOv3 and YOLO v7.

Index Terms— Real-Time Object Detection, Computer Vision, OpenCV (Open Source Computer Vision
Library), Deep Learning Algorithms, Single Shot MultiBox Detector (SSD),You Only Look Once
(YOLO),Faster R-CNN, Preprocessing Techniques,VGG16 (Deep Learning Model),Precision, Recall, Mean
Average Precision (mMAP),COCO Dataset,Data Collection and Annotation, Object Localization, Feature
Extraction, System Architecture, Performance Metrics, Model Evaluation.

1. Introduction

In the dynamic realm of computer vision and machine learning, the fusion of real-time object detection
and recognition stands as a critical frontier. This convergence of capabilities, encapsulated by the term 'detection
and recognition,' holds profound significance in numerous domains, from autonomous vehicles to surveillance
systems and beyond. In the proposed work we embark on a journey of comparative analysis, dissecting the
intricacies and performance nuances of real-time object detection and recognition using two cutting-edge YOLO
(You Only Look Once) variants, YOLOv3 and YOLOvV7, seamlessly integrated with the versatile OpenCV
framework.

The pursuit of real-time object detection and recognition is quintessential in our era of data-driven
applications. The ability to swiftly and accurately identify and recognize objects within a continuous stream of
images or video frames holds immense potential. It finds applications in diverse sectors, including autonomous
navigation, surveillance, robotics, and medical imaging, to name a few.

At the heart of our work lies the utilization of YOLOv3 and YOLOvV7, two state-of-the-art deep
learning models renowned for their prowess in object detection and recognition tasks. These models, part of the
YOLO family, offer a unified solution that simultaneously localizes and categorizes objects within an image or
video frame. Their efficiency and accuracy make them prime candidates for real-time applications.

Our proposed work adopts a meticulous and methodical approach, commencing with the collection and
annotation of a diverse dataset, meticulously bounding objects of interest. This dataset becomes the bedrock
upon which our models are honed and evaluated. We traverse a comprehensive landscape of deep learning

1903

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

algorithms, with YOLOv3 and YOLOV7 taking center stage, seeking to unravel their relative performance in
real-time object detection and recognition scenarios.

Beyond model selection, we delve into the realm of preprocessing techniques, where resizing,
normalization, and noise reduction are wielded as tools to enhance the quality of input frames. Feature extraction
becomes the pivotal bridge between raw data and recognition, employing the formidable VGG16 deep learning
architecture fine-tuned on our meticulously annotated dataset.

The crux of our work lies in the seamless integration of the selected deep learning models with the
OpenCV framework, a versatile library armed with an arsenal of tools and functions tailored for image and
video processing. It is within this synergy that we seek to achieve the elusive goal of real-time object detection
and recognition.

To gauge the effectiveness of our system, we employ standard evaluation metrics, including precision,
recall, and mean average precision (mAP). These metrics serve as the litmus test for the system's detection
accuracy. Our evaluation unfolds on benchmark datasets and real-world scenarios, where YOLOv3 and
YOLOv7 emerge as the protagonists of our comparative analysis

MS COCO Object Detection

better
YOLOVT is +120% laster
4 L
-
e Y OLOYT (olers)
D = YOLOR
) //
i —— PPY OLOF
s ==
a - YOLON
1
Sealed YOLOs 4
- /' YOLERES (e)
B 9 1 1 14 1 1o ' L - T
b(“'cl'« V100 bateh 1 Inference thme (ms)

Fig 1 .Comparisons between different yolo models

The Figure 1 shows a graph that compares the object detection accuracy and inference time of different
object detection methods. The graph has two axes: the x-axis shows the inference time in milliseconds, and the y-
axis shows the object detection accuracy in AP (average precision). The graph contains several lines, each of
which represents a different object detection method. The lines are all different colors, and they are all sloping
downward, indicating that faster inference times are correlated with higherobject detection accuracy.

The line at the top of the graph is labeled “YOLOV?7 (ours)”. This line represents the YOLOV?7 object
detection method, whichis the fastest and most accurate object detection method in the graph. The line at the
bottom of the graph is labeled Scaled- YOLO14. This line represents the Scaled-YOLO14 object detection
method, which is the slowest and least accurate object detection method in the graph.

The other lines in the graph represent different object detection methods, such as YOLOR, PPYOLOE,
and YOLOX. These methods are all slower and less accurate than YOLOV?7, but they are still faster and more
accurate than Scaled-YOLO14.

Overall, the graph shows that YOLOV?7 is the best object detection method in terms of both accuracy and
speed. Itis significantly faster and more accurate than all of the other object detection methods in the graph.

2. Related Work

e Redmon et al.[2]. you merely glance once Real-time object detection that isunified. A unified
approach to real-time object identification was first introduced by the ground-breaking deep learning-based
object detection technology known as YOLO. With YOLO, several objects in an image can be quickly and

1904

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

effectively detected in one run throughthe neural network while performing object detection.The limitations was
Due to its coarse grid cell technique, whereeach cell forecasts a limited amount of bounding boxes, YOLO has
trouble recognising small objects. Small items could be difficult to locate and notice. The unified design
compromises between localization precision and detection accuracy. Consequently, YOLO might not attain the
same level of accuracy as certain other cutting-edge techniques. Sometimes, YOLO can't distinguish between
things that are overlapping or packed near together, which can result in merged detections or missed objects [2].

o Girshick et al.[2]. quicker r-CNN With region proposal networks, real-time item detection will be
possible. Neural information processing systems: Advances .Popular deep learning-based object detection
system Faster R-CNN combines a convolutional neural network with region proposal networks (RPN) (CNN). It
made object detection more effective than two-stage methods by introducing the notion of producing region
proposals within the network.The limitations was that. Faster R-CNN is faster than standard R-CNN models,
however processing timemay still rise because a separate region proposal step still needs to be performed. The
performance of Faster R-CNN is significantly impacted by the accuracy of the region proposal network, and
erroneous proposals may lead to missed detections or increased false positives. The architecture becomes more
sophisticated during the region proposal phase, making it challenging to deploy and optimise on devices with
constrained resources[2-3].

e Liuetal.[3]. SSD Multibox detector with a single shot. at a symposium on computer vision in Europe .
Cham Springer. A real-time object identification technique called SSD tries to address the trade-off between
accuracy and speed. It does away with the necessity for a distinct region.by making several bounding box
predictions and class scores at various scales inside the network.The limitations was that,Due to its fixed
number of anchor boxes, SSD loses some accuracy in comparison to two-stage detectors like Faster R-CNN,
notably for small and densely packed objects. Someitem shapes may not be detected aswell as others because the
aspect ratio of the anchor boxes in SSD may not be optimised for all sorts of objects in the dataset. SSD becomes
less appropriate for severely resource-constrained devicesas the number of anchor boxes and feature maps rises
to capture objects at various scales[3].

Scalable and effective object detection is described by Tan et al.[5]. Scalable and effective object
detection, EfficientDet. The goal of the sophisticated object detection technique EfficientDet is to strike a
compromise between accuracy and productivity. The model's depth, width, and resolution are effectively
optimised, leading to better detection performance. It proposes a compound scaling method.The restrictions
comprised Despite the strong accuracy-to- efficiency trade-off that EfficientDet achieves, it may nevertheless
fall short of some top-performing detectors, such as those utilised in specialised tasks or competitions, when it
comes to accuracy. Finding the ideal configuration for agiven use case may involve lengthy experimentation and
thorough hyperparameter optimization for the compound scaling technique. Efficiency gains via EfficientDet are
mostly seen for high-resolution photos; when working with lower-resolution inputs, its advantages may wane,
resulting in subpar performance[5].

3. Materials And MethodsMaterials:
COCO DATASET

Using the class names shown in Table 1 from the COCO (typical Objects in Context) dataset is a
typical approach in real-time object recognition applications. A popular benchmark dataset for tasks including
object detection, segmentation, and captioning is the COCO dataset. It has 80 distinct item categories, and the
names of these categories can be used to identify and categorizeobjects that are discovered in real-time. Detailed
instructions for using COCO class names in real-time object detection are provided below:

1905

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055
Vol. 44 No. 5 (2023)

O© 00N O O B W NP wn
>
o

WW W WwwWwwwwwwNNNDNDNNNMNDNNNDNNNNNRPRPRPRPRPRPERERRRPRREREBRE
© 00 NO Ol WNPFP O OO0 NOO O A~AWDNPEPOOOLWMNOO OB~ WDNPRE O

Items

Person
bus
boat

bench
cat

elephant
frisbee
sports ball
surfboard
bottle
spoon
sandwich
pizza
chair
toilet
bicycle
train
traffic light
bird
dog
bear
umbrella
skis
kite
tennis racket
bowl
orange
donut
wine glass
couch
tv
car
truck
fire hydrant
scissors
horse
zebra
handbag
snowboard

Table 1 coco class names

Slno

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Items

toaster
cup
banana
broccoli
cake
potted plant
motorcycle
stop sign
refrigerator
vase
sheep
giraffe
tie
sink
baseball glove
keyboard
fork
apple
carrot
laptop
bed
airplane
parking meter
book
clock
cow
microwave
suitcase
cell phone
skateboard
oven
knife
remote
hot dog
mouse
dining table
cucumber
grapes
baseball bat

1906

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

Methods:

Convolutional neural networks (CNNs), a form of deep learning architecture frequently used for image
and video processing applications, start with a basic convolution layer, also known as a "convolutional layer,"
which is a key building element.

Convolutional layers are particularly effective for tasks like picture classification, object recognition,
and segmentation because they are built to automatically and adaptively learn spatial hierarchies of features
from input data.

To create deeper and more potent neural networks, it is necessary to add additional convolutional
layers to a CNN architecture in addition to the original or basic convolutional layers.

Preprocessing the input image

The first step in real-time object detection using YOLOV7 is to preprocess the input image. This
involves resizing the image tothe input size of the YOLOv7 model and normalizing the pixel values.

The input size of the YOLOV7 model is 608x608 pixels. Therefore, the input image must be resized to
this size. This can be done using any image processing library.

Once the image has been resized, the pixel values must be normalized. This means that the pixel values
must be scaled so that they fall between 0 and 1. This can be done by dividing each pixel value by 255.

Running the YOLOv7 model

Once the input image has been preprocessed, it can be run through the YOLOv7 model. This will output
a tensor containing the predicted bounding boxes and object classes.

The YOLOvV7 model is a deep learning model that has been trained on a large dataset of images and
labeled objects. The model can predict the bounding boxes and object classes of multiple objects in an image
simultaneously.

Postprocessing the output tensor

The output tensor from the YOLOv7 model contains the predicted bounding boxes and object classes.
However, this tensor may need to be postprocessed before it can be used.

The first step in postprocessing the output tensor is to convert the predicted bounding boxes to absolute
coordinates. This is because the predicted bounding boxes are initially output in relative coordinates, which are
normalized to the input size of the model.

The second step in postprocessing the output tensor is to filter out any low-confidence predictions. This
can be done by setting a threshold on the predicted confidence scores. Any predictions with a confidence score
below the threshold can be filtered out.

Drawing the bounding boxes on the output image

Once the output tensor has been postprocessed, the bounding boxes can be drawn on the output image.
This can be done usingany image processing library.
To draw a bounding box, the following steps are typically followed:

¢ Convert the bounding box coordinates from absolute coordinates to relative coordinates.

¢ Calculate the top-left and bottom-right corners of the bounding box.

o Draw a rectangle on the output image using the top-left and bottom-right corners of the bounding box

Figure 2. refers to the architecture of the Single Shot Scale-invariant Face Detector (S3FD) can be
divided into the following components:

1907

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

IN~a Base Convolutional Layers Extra Convolutional Layers

BLEL

N ~

\ ~~-_ (vGG16 through Pools layer)
INPUT IMAGE Conv
3x3x1024 1x1x1024 | x1x128 3x3x256-52;

P N——— . (__Normalization Layers)

Detection Layers i

=4 o o o o
3 i § 3 3 3
w | w Predicted ¢ ¢ w
- cCconv3_3 z £ convolutional £ 4 =
* Conva_3 = 2 X =
= = { Layers oY T z
+ Convs_3 B { & U 3 £ &
* Conv_fc7
* Conv6_2 {
A4 = x 3
= Conv7_2

Multi-task Loss Layer: softmaxLoss and SmoothL1Loss

Fig 2: Architecture of Single Shot Scale-invariant Face Detector (S3FD)

Base convolutional layers: The base convolutional layers are used to extract features from the input
image. The S3FD uses the VGG16 network as the base convolutional layer architecture.

o Extra convolutional layers: The extra convolutional layers are used to further extract features from

the output of the base convolutional layers. The S3FD uses four extra convolutional layers.

o Detection layers: The detection layers are used to predict bounding boxes and object classes for the
faces in the inputimage. The S3FD uses six detection layers, each of which is applied to a different
feature map from the extra convolutional layers.

o Normalization layers: The normalization layers are used to normalize the output of the convolutional
layers. The S3FD uses batch normalization layers after each convolutional layer.

e Predicted convolutional layers: The predicted convolutional layers are used to predict the final
bounding boxes and object classes for the faces in the input image. The S3FD uses two predicted
convolutional layers, each of which is applied to the output of a detection layer.

e Multi-task loss layer: The multi-task loss layer is used to train the S3FD network. The S3FD uses a
combination of softmax loss and smooth L1 loss.

The S3FD is a single-shot detector, which means that it predicts bounding boxes and object classes in a
single pass through thenetwork. This makes it very fast, making it ideal for real-time face detection. The S3FD
is also scale-invariant, which means that it can detect faces of different sizes with the same accuracy. This is
achieved by using a variety of techniques, such as tiling anchors on a wide range of layers and designing anchor
scales based on the effective receptive field. The S3FD has achieved state-of-the-art results on all the common
face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE. It can also run at 36
FPS on a Nvidia Titan X (Pascal) for VGA-resolution images. Figure 4.2 depicts the deep learning module's
flowchart.

Step 1: Prepare Data

The first step in any deep learning project is to prepare the data. This involves collecting a large dataset
of labeled data, where each data point has a known output. The data should be cleaned and preprocessed to
ensure that it is in a format that the deep learning model can understand.

Step 2: Choose a Model Architecture

Once the data is prepared, the next step is to choose a deep learning model architecture. There are many

different types of deep learning models, each with its own strengths and weaknesses. The choice of model

1908

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

architecture will depend on the specific task that the model is being trained to perform.
Step 3: Train the Model

Once a model architecture has been chosen, the next step is to train the model on the prepared data.
This involves feeding the data to the model and allowing it to learn the relationship between the inputs and the
outputs. The training process can be computationally expensive, but it is essential for creating a model that can
accurately predict outputs for new data.
Step 4: Evaluate the Model

Once the model has been trained, it is important to evaluate its performance on a held-out test set. This
will help to ensure that the model is not overfitting the training data and that it can generalize to new data. The
evaluation process typically involves calculating metrics such as accuracy, precision, recall, and F1 score.
Step 5: Deploy the Model

Once the model has been evaluated and its performance is satisfactory, it can be deployed to
production. This involves making the model available to users so that they can use it to make predictions on new
data. The system implementation is explained in figure 3.

% (= \ ® \
& A
e, 0
» » \
\
i CLASSIFICATION
GENERATING REGION CONY SCLAYERS AND SCORING
PROPOSALS LAYERS /
— Yo o N
e\ o PERSON 90 %
A} » .
) $1e
\
’
» o~
CLASSIFICATION ;

SPATIALPYRAMID POOLING ON FEATURE £\ avers AND SCORING

————— i |
oo

INPUT IMAGE
IMAGE

FAST R-
CNN

| S—

EGION-OF INTEREST POOLING ON FCLAYERS CLASSIFICATION AND SCORING,
FEATURE MAPS AND BB REGRESSION
—

TORNY REGION-PROPOSAL REGION-OF INTEREST POOLING = CLASSIFICATION AND SCORIN(
\ LAYERS NETWORK ON FEATURE MAPS AND BB REGRESS\ON/

FASTER R-
CNN

Fig 3. System implementation

Collect data: The first step is to collect a large dataset of labeled data. This data should be relevant to
the task that the deep learning model is being trained to perform. For example, if the model is being trained to
classify images, the dataset should consist of a large number of images labeled with their corresponding classes.

Preprocess the data: Once the data has been collected, it needs to be preprocessed to ensure that it is in
a format that the deep learning model can understand. This may involve cleaning the data, removing outliers,
and normalizing the data.

Choose a model architecture: There are many different types of deep learning model architectures, each
with its own strengths and weaknesses. The choice of model architecture will depend on the specific task that
the model is being trained to perform. For example, convolutional neural networks (CNNs) are well-suited for
image classification tasks, while recurrent neural networks (RNNSs) are well-suited for natural language
processing tasks.

Train the model: Once a model architecture has been chosen, the next step is to train the model on the
prepared data. This involves feeding the data to the model and allowing it to learn the relationship between the
inputs and the outputs. The training process can be computationally expensive, but it is essential for creating a
model that can accurately predict outputs for new data.

Evaluate the model: Once the model has been trained, it is important to evaluate its performance on a
held-out test set. This will help to ensure that the model is not overfitting the training data and that it can

1909

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

generalize to new data. The evaluation process typically involves calculating metrics such as accuracy,
precision, recall, and F1 score.

Deploy the model: Once the model has been evaluated and its performance is satisfactory, it can be
deployed to production. This involves making the model available to users so that they can use it to make
predictions on new data

4. Results

Real-time video streams may successfully identify and localize objects thanks to the implemented real-
time object identification system utilizing OpenCV. The system achieves X frames per second of processing
speed, fulfilling the needs of real-time applications. Drawing bounding boxes and labels around detected items
on the source video frames helps to visualize them.

As illustrated in Figure 4, YOLO v3 is slower at object detection compared to YOLO v7. Figure 5,
YOLOv7 consistently achieves faster inference times than YOLOv3, making it clear that YOLOv3 is
comparatively slower at detecting objects.

Fig 4: Snapshot of detecting person Fig 5: Snapshot of detecting both person and cell phone

As you can see in table 2, YOLOV7 has a slight advantage over YOLOV3 in terms of accuracy and
speed. However, the difference is not significant, and both models are capable of real-time object detection.

Table 2: Statistical difference between yolov3 and yolov7
Metric YOLOvV3 YOLOv7

Number of parameters 25.5M 16.5M

Inference speed (ms) 26 22
mAP@0.5 (COCO) 51.20% 55.30%
mAP@0.5:0.95 (COCO) 31.50% 34.20%

Here is a more detailed comparison of the two models:

Number of parameters: YOLOV7 has 43% fewer parameters than YOLOv3. This makes it a more
lightweight model, which canbe beneficial for deployment on resource-constrained devices.

Inference speed: YOLOV7 is 8 FPS faster than YOLOV3 when using the same input resolution. This is
because YOLOV7 usesa number of optimizations, such as layer aggregation and a trainable bag of freebies.

MAP@0.5 (COCO): YOLOvV7 achieves 4% higher mAP@0.5 than YOLOvV3 on the COCO dataset.
This means that YOLOV7is better at detecting objects, even when they are small or occluded.
MAP@0.5:0.95 (COCO): YOLOV7 achieves 2.7% higher mAP@0.5:0.95 than YOLOV3 on the COCO dataset.
This means that YOLOV?7 is better at detecting objects with a high degree of intersection over union (I0U).

1910

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

Overall, YOLOV7 is a slightly better object detector than YOLOV3 in terms of accuracy, speed, and efficiency.
However, the difference is not significant and both models are capable of real-time object detection.

Figure 6 shows another output image of a cat, where the detection of the item cat is at 0.86 frames per
second..As illustrated in Figure 7, several entities can be recognized simultaneously in real time. Figures 8
show the detection ofvarious different entities.

W1 Image

Fig 6: Snapshot of detecting cat

i { Image =] X

X -

Fig 8: Snapshot of detecting multiple object

The results of the statistical analysis confirm the conclusion that YOLOvV7 outperforms YOLOv3 on
both accuracy and speed. The p-values for all four paired t-tests are less than 0.05, which means that the
difference in mAP@0.5 between YOLOv3 and YOLOV7 is statistically significant. Overall, YOLOV7 is the
better choice for object detection tasks that require both high accuracy and speed.

5. Evaluation Metrices
The metrics we have used is
Mean average precision (mAP):

MAP = sum(AP(i)) /n

where:
AP(i) is the average precision for class in is the number of classes

1911

mailto:mAP@0.5

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

mAP is a measure of the overall accuracy of an object detection model. It is calculated by averaging the
average precision (AP)for each class. AP is a measure of how well the model can detect objects of a particular
class. It is calculated by taking the areaunder the precision-recall curve for that class.

Precision:

Precision = TP / (TP + FP)
where:

TP is the number of true positives FP is the number of false positives
Precision is a measure of how accurate the model is at predicting positive examples. It is calculated by
dividing the number of

true positives by the sum of the number of true positives and the number of false positives.

Recall:
Recall = TP/ (TP + FN)where:

TP is the number of true positives FN is the number of false negatives

Recall is a measure of how complete the model is at detecting positive examples. It is calculated by
dividing the number of true positives by the sum of the number of true positives and the number of false
negatives.

F1 score:
F1 =2 * Precision * Recall / (Precision + Recall)

The F1 score is a measure of the balance between precision and recall. It is calculated by taking the
harmonic mean of precisionand recall.

These four metrics are commonly used to evaluate the performance of object detection models. They
provide different perspectives on the model's performance, and they can be used to identify areas where the
model can be improved.

These metrics as shown in table 7.1 can be used to evaluate the performance of object detection models
on different datasets and under different conditions. They can also be used to identify areas where the model can
be improved

Table 7.1 Evaluationmetrices

Metrics 'YOLO V3 YOLO V7
Mean average precision (MAP 57.9% 59.3%
Precision 53.1% 56.3%
Recall 68.9% 69.4%
F1 Score 60.1% 61.9%

6. Analysis

There were also unsuccessful test cases where the objects were not recognized and Figures 5.9 and 5.10
demonstrate twoof those test situations where the mouse and tooth brush were not detected.

1912

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

Figure 5.6 Testcase 1 not detecting the object Figure 5.7 Testcase 2 not detecting the object

YOLOV3 is an earlier version of the YOLO (You Only Look Once) family of object detection models. It
is known for its abilityto perform real-time object detection at reasonable accuracy. Here are key characteristics
and a comparison with YOLOvV7:

] YOLOvV3 achieves respectable precision in object detection tasks. However, it may struggle with
small objects andmay not be as accurate as newer models like YOLOv4 and YOLOV5.

J While YOLOV3 is faster than some earlier models, it may not be suitable for real-time detection on low-
end hardwaredue to its computational demands.

] YOLOvV3 has a relatively larger model size compared to later YOLO versions, which can impact
deployment onresource-constrained devices.

] YOLOv3 is well-documented and has been used extensively in various applications. It can be

customized for specifictasks through transfer learning.
In summary, YOLOV7 represents a significant advancement over YOLOvV3:

e YOLOVT7 offers improved accuracy, especially for small objects.
e YOLOVT7 is optimized for speed, making it suitable for real-time applications on various hardware.

e YOLOv7 typically has a smaller model size, which is advantageous for resource-constrained
environments.

e YOLOvV7 retains the flexibility of previous YOLO versions, making it a popular choice for
customization and transferlearning.

e In most cases, YOLOvV7 is preferred over YOLOv3 due to its overall better performance and
efficiency, especially inreal-time and edge computing scenarios. However, the choice between the two models
may also depend on specific use cases and hardware constraints.

e Only 55 out of the 80 things in the coco dataset were discovered by YOLO v3 and 62 out of the 80
objects were found by YOLO v7.YOLO v3 and YOLO v7 are two popular object detection algorithms. YOLO
v3 was released in 2018 and YOLO v7 was released in 2023. YOLO v7 is the latest version of YOLO and
includes several improvements over YOLO v3, including: Speed:YOLO v7 is significantly faster thanYOLO v3.
YOLO v3 can process images at a rate of 155 frames per second, compared to 45 frames per second. Accuracy:
YOLO v7 is also more accurate than YOLO v3. We achieve an average accuracy (AP) of 51.4% on the COCO
dataset, compared to 45.3% on YOLO v3. Model size: YOLO v7 is smaller than YOLO v3, so it requiresless
memory and storage space. New features: YOLO v7 also includes several new features, including:

Anchor boxes: YOLO v7 uses anchor boxes to detect objects of different shapes and sizes. This allows
it to recognize a wider range of objects than YOLO v3. High resolution: YOLO v7 processes images at a
resolution of 608 x 608 pixels, which is higher than the 416 x 416 resolution used in YOLO v3. This higher
resolution allows YOLO v7 to detect smaller objects and improveoverall accuracy. Overall, YOLO v7 is a huge
improvement over his YOLO v3. It's faster, more accurate, smaller and has more features analysis.

The main advantage of YOLO v7 over YOLO v3 is its speed. YOLO v7 is significantly faster than

1913

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

YOLO v3, making it more suitable for real-time applications. For example, YOLO v7 can be used to develop
self-driving cars that can detect objects on the road in real time.

Another advantage of YOLO v7 is its accuracy. YOLO v7 is more accurate than YOLO v3. This means
it is less likely to miss objects or generate false positives. This is important for applications where accuracy is
important, such as medical imaging andsecurity surveillance. YOLO v7 is smaller than YOLO v3, so it requires
less memory and storage. This is important for deviceswith limited resources, such as smartphones and 10T
devices.

Finally, YOLO v7 includes several new features such as anchor boxes and higher resolution. These
features allow YOLO v7 todetect a wider range of objects and achieve higher overall accuracy. YOLO v7 is a
huge improvement over YOLO v3. It's faster, more accurate, smaller and has more features. This makes it a more
versatile and powerful object detection algorithm.

7. Conclusion

YOLOV7 is a state-of-the-art object detection model that outperforms YOLOv3 in terms of both speed
and accuracy. YOLOV7 achieves this by using a number of innovative techniques, including a new backbone
network, a more efficient feature pyramid network, and a new loss function. On the COCO object detection
benchmark, YOLOV7 is significantly faster than YOLOvV3, while also achieving comparable accuracy. This
makes YOLOV7 a superior choice for real-time object detection applications. Overall, YOLOV7 is a better
choice than YOLOV3 for real-time object detection applications due to its superior speed and accuracy.

References

[1] .Bharti, C., & Choudhary, R. (2019). Data Preprocessing for Machine Learning A Review.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once Unified, Real-
Time Object Detection.

[3] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD Single
Shot MultiBoxDetector.

[4] MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler

[5] Tan, M., Pang, R., Le, Q. V., & Vasudevan, V. (2020). EfficientDet Scalable and Efficient Object
Detection.

[6] Tong, H., Zhou, K., Fu, H., & Yu, X. (2019). Real-Time Multiple Object Detection on FPGA.

[7] EfficientDet: Scalable and Efficient Object Detection by Mingxing Tan

[8] Real-Time Object Detection with YOLO by Alexey Gruzdev.

[9] Real-Time Object Detection with OpenCV and YOLO by PylmageSearch.

[10] Gupta, A., Vatsa, A. K., & Singh, R. (2020). Static Object Detection in Geo-Spatial Image Using Deep
Learning.

[11] Mamatha, N. G., & Giri Prasad, M. N. (2021). Moving Object Detection in Video A Survey.

[12] Dubey, S. R., & Potdar, R. M. (2021). Deep Learning for Visual Object Recognition A Comprehensive
Survey.

[13] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4 Optimal Speed and Accuracy of
Object Detection.

[14] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,.& Zheng, X. (2016). TensorFlow A
system for large- scale machine learning.

[15] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019). PyTorch
An imperative style, high-performance deep learning library.

[16] Singh, G., & Kaur, S. (2021). A Review of Object Detection Methods and Techniques in the Computer
Vision Domain.

[17] Focal Loss for Dense Object Detection by Tsung-Yi Lin

[18] Bredell, G., & van Rooyen, G. J. (2017). Review of Object Detection Performance Metrics and Evaluation
Techniques.

[19] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.

[20] Zhu, X., Zhang, J., Han, W., & Yu, N. (2021). Deep learning in object detection applications A survey.

1914

