ℓ-HILBERT MEAN LABELING OF SOMEPATH RELATED GRAPHS

[1]R.Pappathi, [2]M.P.Syed Ali Nisaya

[1]Research Scholar,(Reg.No: 18121072092007), Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627010, Tamilnadu, India.

^[2]Assistant Professor, Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627010, Tamilnadu, India.

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627012, Tamilnadu, India)

Email: [1]pappathiram2017@gmail.com, [2]syedalinisaya@mdthinducollege.org

Abstract:

Let G be a graph with p vertices and q edges. The q^{th} hilbert number is denoted by \mathbb{H}_q and is defined by $\mathbb{H}_q = 4(q-1)+1$ where $q \geq 1$. A ℓ - hilbert mean labeling is an injective function $f:V(G) \rightarrow \{0,1,2,\ldots,\mathbb{H}_{\ell+(q-1)}\}$, where $\ell \geq 1$ that induces a bijection $f^*:E(G) \rightarrow \{\mathbb{H}_\ell,\mathbb{H}_{\ell+1},\mathbb{H}_{\ell+2},\ldots,\mathbb{H}_{\ell+(q-1)}\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

for all $uv \in E(G)$. A graph which admits such labeling is called a ℓ - hilbert mean graph. In this paper, a new type of labeling called ℓ - hilbert mean labeling is introduced and the path related graphs is studied.

AMS Subject Classification – 05C78

Keywords: Hilbert numbers, Hilbert mean labeling, Hilbert mean graph.

1. Introduction

Let G = (V, E) be a graph with p vertices and q edges. The graph considered in this paper are simple, finite, undirected and without loops or multiple edges. Terms not defined here are used in the sense of Harary [4]. For number theoretic terminology [1] is followed. A graph labeling is an assignment of integers to the vertices or the edges or both subject to certain conditions. If the domain of the mapping is a set of vertices (edges/both) then the labeling is called a vertex (edge/total) labeling. A dynamic survey of graph labeling is regularly updated by Gallian [2] and it is published by Electronic Journal of Combinatorics. The concept of mean labeling was introduced by S.Somasundaram and R.Ponraj [6]. For Triangular mean labeling and k- Mean labeling refer [5] and [3] and Hilbert mean labeling was introduced in [7].

2. Preliminaries

Definition 2.1: A path P_n is obtained by joining u_i to the consecutive vertices u_{i+1} for $1 \le i \le n-1$.

Definition 2.2: The graph obtained by joining a single pendant edge to each vertex of a path P_n is called a comb. It is denoted by $P_n \odot K_1$ (or) P_n^+ .

Definition 2.3: Bistar is the graph obtained by joining the apex vertices of two copies of star $K_{1,n}$.

Definition 2.4: The H-graph of path $P_n(n \ge 3)$ is the graph obtained from two copies of P_n with the vertices u_1, u_2, \cdots, u_n and v_1, v_2, \cdots, v_n by joining the vertices $\left(u_{\frac{n+1}{2}}, v_{\frac{n+1}{2}}\right)$ if n is odd and $\left(u_{\frac{n}{2}+1}, v_{\frac{n}{2}}\right)$ if n is even. It is denoted by $H(P_n)$.

Definition 2.5: A F- tree $F(P_n)$ is a graph obtained from path on $n \ge 3$ vertices by appending two pendant edges one to an end vertex and other to vertex adjacent to an end vertex.

Definition 2.6: The ladder graph L_n is a planar, undirected graph with 2n vertices and 3n-2 edges. The ladder graph L_n is a graph obtained as the Cartesian product of P_2 and P_n .

Definition 2.7: The slanting ladder SL_n is a graph that consists of two copies of P_n having vertex set $\{u_i: 1 \le n\}$ $i \le n$ } $\cup \{v_i: 1 \le i \le n\}$ and the edge set is formed by adjoining u_{i+1} and v_i for all $1 \le i \le n-1$.

Definition 2.8: The graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path is called a Twig graph and it is denoted by T(n).

Definition 2.9: A graph G with p vertices and q edges is called a mean graph if there is an injective function ffrom the vertices of G to $\{0,1,2,...,q\}$ in such a way that when each edge e=uv is labeled with (f(u)+f(v) / 2 if f(u) + f(v) is even and (f(u) + f(v) + 1) / 2 if f(u) + f(v) is odd, then the resulting edge labels are distinct. Here f is called a mean labeling of G. If G is a mean graph, then the edges get labels 1, 2, ..., q.

Definition 2.10 [3]: A (p,q) graph G is set to have k-mean labeling, if there is an injective function f from the vertices of G to $\{0, 1, 2, ..., k + q - 1\}$ such that the induced map f^* defined on E by

$$f^*(uv) = \begin{cases} \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd} \\ \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \end{cases}$$

is a bijection from E to $\{k, k+1, k+2, ..., k+q-1\}$. A graph that admits a k-mean labeling is called a kmean graph.

Definition 2.11: The n^{th} hilbert number H_n is given by the formula 4(n-1)+1 for $n \ge 1$. The first few hilbert numbers are 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, etc.

Definition 2.12: Let G be a graph with p vertices and q edges. The n^{th} hilbert number is denoted H_n and is defined by $H_n = 4(n-1) + 1$ where $n \ge 1$. A hilbert mean labeling is an injective function $f: V(G) \to 0$ $\{0, 1, 2, ..., H_q\}$, where H_q is the q^{th} hilbert number that induces a bijection $f^*: E(G) \to \{H_1, H_2, ..., H_q\}$ defined

$$f^{*}(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

for all $uv \in E(G)$. A graph which admits such labeling is called a hilbert mean graph

3. Main Results

Definition 3.1: Let G be a graph with p vertices and q edges. The q^{th} hilbert number is denoted by H_q and is defined by $H_q = 4(q-1) + 1$ where $q \ge 1$. A ℓ - hilbert mean labeling is an injective function $f: V(G) \to \mathbb{R}$ $\{0,1,2,\ldots, \mathbb{H}_{\ell+(q-1)}\} \text{ where } \ell \geq 1, \text{ that induces a bijection } f^* \colon E(G) \to \{\mathbb{H}_{\ell},\mathbb{H}_{\ell+1},\mathbb{H}_{\ell+2},\ldots,\mathbb{H}_{\ell+(q-1)}\} \text{ defined by }$ $f^*(uv) = \begin{cases} \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd} \\ \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \end{cases}$

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

for all $uv \in E(G)$. A graph which admits such labeling is called a ℓ - hilbert mean graph.

Theorem 3.2: P_m is a ℓ - hilbert mean graph, where $m \geq 2$.

Proof: Let $G = P_m$. Let $V(G) = \{x_i : 1 \le i \le m\}$ and $E(G) = \{x_i : x_{i+1} : 1 \le i \le m-1\}$.

We observe that G has m vertices and m-1 edges.

Define $f: V(G) \rightarrow \{0, 1, 2, ..., \mathbb{H}_{\ell+m-2}\}$ as follows.

Case 1: *m is odd and* $\ell \ge 2$, $f(x_1) = 4\ell - 7$

For $2 \le i \le m$,

$$f(x_i) = \begin{cases} 4(\ell+i-3)+1, & i \text{ is odd} \\ 4(\ell+i-2), & i \text{ is even} \end{cases}$$

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

For $1 \le i \le m$,

$$f(x_i) = \begin{cases} 4(\ell+i-2), & i \text{ is odd} \\ 4(\ell+i-3)+1, & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling $f^*: E(G) \to \{\mathcal{H}_\ell, \mathcal{H}_{\ell+1} \dots, \mathcal{H}_{\ell+m-2}\}$ is defined as follows.

$$f^*(x_i x_{i+1}) = \mathbb{H}_{\ell+(i-1)}$$
, where $1 \le i \le m-1$

Thus, we get the induced edge labels as H_{ℓ} , $H_{\ell+1}$..., $H_{\ell+m-2}$.

Hence P_m is a ℓ - hilbert mean graph, where $m \ge 2$.

Example 3.3: The ℓ - hilbert mean labeling of P_4 is shown in figure 1.

Figure - 1

Theorem 3.4: P_m^+ is a ℓ - hilbert mean graph, where $m \geq 3$.

Proof: Let $G = P_m^+$. Let $V(G) = \{x_i, y_i : 1 \le i \le m\}$ and

$$E(G) = \{y_i \, y_{i+1} \colon 1 \le i \le m-1\} \cup \{x_i \, y_i \colon 1 \le i \le m \}.$$

We observe that G has 2m vertices and 2m - 1 edges.

Define $f: V(G) \to \{0, 1, 2, ..., \mathbb{H}_{\ell+2m-2}\}$ as follows.

$$f(x_i) = 4(\ell + 2i - 3),$$
 $1 \le i \le m$

$$f(x_l) = f(t + 2t - 3), \qquad 1 \le t \le n$$

$$f(y_i) = 4(\ell + 2i - 3) + 1, \quad 1 \le i \le m$$

Clearly f is injective and the induced edge labeling $f^*: E(G) \to \{ \mathcal{H}_{\ell}, \mathcal{H}_{\ell+1}, \dots, \mathcal{H}_{\ell+2m-2} \}$ is defined as follows.

$$f^*(y_i y_{i+1}) = H_{\ell+i-1}$$
, where $1 \le i \le m-1$

$$f^*(x_i y_i) = \mathcal{H}_{\ell+2(i-1)}$$
, where $1 \le i \le m$

Thus, we get the induced edge labels as H_{ℓ} , $H_{\ell+1}$..., $H_{\ell+2m-2}$.

Hence P_m^+ is a ℓ - hilbert mean graph, where $m \geq 3$.

Example 3.5: The ℓ - hilbert mean labeling of P_4^+ is shown in figure 2.

Figure - 2

Theorem 3.6: $B_{n,n}$ is a ℓ - hilbert mean graph, where $n \geq 2$.

Proof: Let $G = B_{n,n}$, where $n \ge 2$.

Let
$$V(G) = \{x, y, x_i, y_i : 1 \le i \le n\}$$
 and $E(G) = \{xy, xx_i, yy_i : 1 \le i \le n\}$

We observe that G has 2n + 2 vertices and 2n + 1 edges.

Define $f: V(G) \to \{0, 1, 2, ..., H_{\ell+2n}\}$ is defined as follows.

$$f(x) = 4(\ell - 1), f(x_i) = 4(\ell + 2i - 3) + 1, \quad 1 \le i \le n$$

$$f(y_i) = 4(\ell + 2i - 1), \quad 1 \le i \le n, f(y) = 4(\ell + 2n - 1) + 1.$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(xx_i) = \mathcal{H}_{\ell+(i-1)}$$
 where $1 \le i \le n$, $f^*(xy) = \mathcal{H}_{\ell+n}$,

$$f^*(yy_i) = \mathcal{H}_{\ell+(n+i)}$$
 where $1 \le i \le n$

Thus, we get the induced edge labels as H_{ℓ} , $H_{\ell+1}$, ..., $H_{\ell+2n}$.

Hence $B_{n,n}$ is a ℓ - hilbert mean graph, where $n \geq 3$.

Example 3.7: ℓ - hilbert mean labeling of $B_{4,4}$ is shown in figure 3.

Figure - 3

Theorem 3.8: $H(P_n)$ is a ℓ - hilbert mean graph, where $n \geq 3$.

Proof: Let
$$G = H(P_n)$$
, Let $V(G) = \{x_i, y_i : 1 \le i \le n\}$ and

$$E(G) = \{x_i y_i : 1 \le i \le n\} \cup \{x_i x_{i+1}, y_i y_{i+1} : 1 \le i \le n-1\}$$

Let G has 2n vertices and 2n - 1 edges.

We define a labeling $f: V(G) \to \{0, 1, 2, ..., \mathbb{H}_{\ell+2n-2}\}$ as follows.

Case 1: n is odd, For $1 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & i \text{ is odd} \\ 4(\ell + i - 3) + 1, & i \text{ is even} \end{cases}$$

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & i \text{ is odd} \\ 4(\ell + i - 3) + 1, & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + n + i - 3) + 1, & i \text{ is odd} \\ 4(\ell + n + i - 2), & i \text{ is even} \end{cases}$$

Case 2: n is even, For $1 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell+i-2), & i \text{ is odd} \\ 4(\ell+i-3)+1 & i \text{ is even} \end{cases}$$

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & i \text{ is odd} \\ 4(\ell + i - 3) + 1, & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + n + i - 2), & i \text{ is odd} \\ 4(\ell + n + i - 3) + 1, & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*\left(x_{\frac{n+1}{2}}, y_{\frac{n+1}{2}}\right) = H_{\ell+(n-1)}$$
, where n is odd

$$f^*\left(x_{\frac{n+2}{2}}, y_{\frac{n}{2}}\right) = H_{\ell+(n-1)}$$
, where *n* is even

$$f^*(x_i x_{i+1}) = H_{\ell+(i-1)}$$
, where $1 \le i \le n-1$

$$f^*(y_i y_{i+1}) = H_{\ell+(n+i-1)}$$
, where $1 \le i \le n-1$

Thus, we get the induced edge labels as \mathcal{H}_{ℓ} , $\mathcal{H}_{\ell+1}$..., $\mathcal{H}_{\ell+2n-2}$.

Hence $H(P_n)$ is a ℓ - hilbert mean graph, where $n \geq 3$.

Example 3.9: ℓ - hilbert mean labeling of $H(P_3)$ is shown in figure 4.

Figure - 4

Theorem 3.10: $F(P_n)$ is a ℓ - hilbert mean graph, where n is even and $n \ge 4$.

Proof: Let
$$G = F(P_n)$$
. Let $V(G) = \{x_i : i = 1, 2\} \cup \{y_i : 1 \le i \le n\}$ and

$$E(G) = \{x_i y_i : i = 1, 2\} \cup \{y_i y_{i+1} : 1 \le i \le n - 1\}.$$

We observe that G has n + 2 vertices and n + 1 edges.

We define a labeling $f: V(G) \to \{0, 1, 2, ..., \mathbb{H}_{\ell+n}\}$ as follows.

$$f(y_1) = 4\ell - 3$$
, $f(x_i) = 4(\ell + 2i - 3)$, $i = 1, 2$

For $1 \le i \le n - 1$,

$$f(y_{i+1}) = \begin{cases} 4(\ell+i)+1, & i \text{ is odd} \\ 4(\ell+i+1), & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(x_i y_i) = H_{\ell+2(i-1)}$$
, where $i = 1, 2, f^*(y_1 y_2) = H_{\ell+1}$,

$$f^*(y_i y_{i+1}) = \mathcal{H}_{\ell+(i+1)}$$
, where $2 \le i \le n-1$

Thus, we get the induced edge labels as H_{ℓ} , $H_{\ell+1}$..., $H_{\ell+n}$.

 $F(P_n)$ is a ℓ - hilbert mean graph, where n is even and $n \ge 4$.

Example 3.11: ℓ - hilbert mean labeling of $F(P_4)$ is shown in figure 5.

Figure - 5

Theorem 3.12: L_n is a ℓ - hilbert mean graph, where $n \geq 3$.

Proof: Let
$$G = L_n$$
. Let $V(G) = \{x_i, y_i : 1 \le i \le n\}$ and

$$E(G) = \{x_i y_i : 1 \le i \le n\} \cup \{x_i x_{i+1}, y_i y_{i+1} : 1 \le i \le n-1\}$$

Let G has 2n vertices 3n-2 edges. Define $f:V(G)\to\{0,1,2,...,H_{\ell+3n-3}\}$ as follows.

Case 1: n is odd and $\ell \geq 1$,

For $1 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & i \text{ is odd} \\ 4(\ell + i - 3), & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + 2n + i - 4) + 1, & i \text{ is odd} \\ 4(\ell + 2n + i - 3), & i \text{ is even} \end{cases}$$

Case 2: n is even and $\ell \ge 2$, $f(x_1) = 4\ell - 7$,

For $2 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 3) + 1, & i \text{ is odd} \\ 4(\ell + i - 2), & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + 2n + i - 3), & i \text{ is odd} \\ 4(\ell + 2n + i - 4) + 1, & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(x_i x_{i+1}) = H_{\ell+(i-1)}$$
, where $1 \le i \le n-1$,

$$f^*(y_i y_{i+1}) = H_{\ell+(2n+i-2)}$$
, where $1 \le i \le n-1$,

$$f^*(x_i y_i) = H_{\ell+(n+i-2)}$$
, where $1 \le i \le n$

Thus, we get the induced edge labels as \mathcal{H}_{ℓ} , $\mathcal{H}_{\ell+1}$..., $\mathcal{H}_{\ell+3n-3}$.

Hence L_n is a ℓ - hilbert mean graph, where $n \geq 3$.

Example 3.13: ℓ - hilbert mean labeling of L_3 is shown in figure 6.

Figure - 6

Theorem 3.14: SL_n is a ℓ - hilbert mean graph, where n is even and $n \ge 3$.

Proof: Let $G = SL_n$. Let $V(G) = \{x_{i,j}y_i : 1 \le i \le n\}$ and

$$E(G) = \{x_i x_{i+1}, y_i y_{i+1}, x_{i+1} y_i : 1 \le i \le n-1\}$$

Let G has 2n vertices 3n-3 edges. Define $f:V(G)\to\{0,1,2,...,H_{\ell+3n-4}\}$ as follows.

Case 1: *n* is odd and $\ell \ge 2$, $f(x_1) = 4\ell - 7$,

For $2 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 3) + 1, & i \text{ is odd} \\ 4(\ell + i - 2), & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + 2n + i - 5), & i \text{ is odd} \\ 4(\ell + 2n + i - 4) + 1, & i \text{ is even} \end{cases}$$

$$(4(\ell+2n+i-4)+1, iis$$

Case 2: n is even and $\ell \geq 2$,

For $1 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & i \text{ is odd} \\ 4(\ell + i - 3) + 1, & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + 2n + i - 4), & i \text{ is odd} \\ 4(\ell + 2n + i - 5) + 1, & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(x_i x_{i+1}) = H_{\ell+(i-1)}$$
, where $1 \le i \le n-1$

$$f^*(y_i y_{i+1}) = H_{\ell+(2n+i-3)}$$
, where $1 \le i \le n-1$

$$f^*(x_{i+1}y_i) = H_{\ell+(n+i-2)}$$
, where $1 \le i \le n-1$

Thus, we get the induced edge labels as \mathcal{H}_{ℓ} , $\mathcal{H}_{\ell+1}$, ..., $\mathcal{H}_{\ell+3n-4}$.

Hence SL_n is a ℓ - hilbert mean graph, where n is even and $n \geq 3$.

Example 3.15: ℓ - hilbert mean labeling of SL_4 is shown in figure 7.

Figure - 7

Theorem 3.16: T(n) is a ℓ - hilbert mean graph, where n is *even* and $n \ge 4$.

Proof: Let
$$G = T(n)$$
. Let $V(G) = \{x_i : 1 \le i \le n\} \cup \{y_i, z_i : 1 \le i \le n - 2\}$

$$E(G) = \{x_i \ x_{i+1} : 1 \le i \le n-1\} \cup \{y_i z_i : 1 \le i \le n-2\} \cup \{x_i z_i : 1 \le i \le n-2\}$$

Let G has 3n - 4 vertices and 3n - 5 edges.

Define a function $f: V(G) \to \{0, 1, 2, ..., \mathbb{H}_{\ell+2n-2}\}$ as follows.

For $1 \le i \le n$,

$$f(x_i) = \begin{cases} 4(\ell + 3i - 4), & i \text{ is odd} \\ 4(\ell + 3i - 7) + 1, & i \text{ is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + 3i - 2), & i \text{ is odd} \\ 4(\ell + 3i - 5) + 1, & i \text{ is even} \end{cases}$$

$$f(z_i) = \begin{cases} 4(\ell + 3i), & i \text{ is odd} \\ 4(\ell + 3i - 3) + 1, & i \text{ is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(x_i x_{i+1}) = H_{\ell+(i-1)}$$
, where $1 \le i \le n-1$

$$f^*(x_{i+1}y_i) = H_{\ell+(3i-2)}$$
, where $1 \le i \le n-2$

$$f^*(x_{i+1} z_i) = H_{\ell+(3i-1)}$$
, where $1 \le i \le n-2$

Thus, we get the induced edge labels as \mathcal{H}_{ℓ} , $\mathcal{H}_{\ell+1}$, ..., $\mathcal{H}_{\ell+2n-2}$.

Hence T(n) is a ℓ - hilbert mean graph, where n is even and $n \ge 4$.

Example 3.17: ℓ - hilbert mean labeling of T(4) is shown in figure 8.

Figure - 8

4. Conclusion

In this paper, we have introduced ℓ - hilbert mean labeling and studied ℓ - hilbert mean labeling of some path related graphs. This work contributes several new results to the theory of graph labeling.

References

- [1] M.Apostal, Introduction to Analytic Number Theory, Narosa publishing House, Second Edition, 1991.
- [2] A.Gallian, A Dynamic survey of graph labeling, The Electronic journal of Combinatorics, 16, 2013, #
- [3] B.Gayathri and V.Sulochana, (k,d)-Mean Labeling of Some Family of Trees, International Journal of Science Research, Vol. 5 (1) (2016), 62-67.
- [4] F.Harary, Graph Theory, New Delhi, Narosa Publishing House, 2001.
- [5] R.Pappathi and M.P.Syed Ali Nisaya, "Triangular Mean Labeling of Union of F Tree Graphs", MuktShabd Journal, Vol. 9 (8), August 2020, 2122-2131.
- [6] S.Somasundaram and R.Ponraj, Mean labeling of graphs, National academy of science letter, 26(7-8) (2003), 10-13.
- [7] M.P.Syed Ali Nisaya and R.Pappathi, Hilbert Mean Labeling of Some Simple Graphs, Proceedings of the International Conference on Mathematical Science and its Recent Advancements, May 2022, 195 198.