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Abstract:- In this paper we modeled the system as a Markovian two heterogeneous servers in a queueing
system, with Server-1 being completely dependable. Whenever the system, server-1, lacks any users, remains
idle and gets ready to serve the arriving new customers. But Server-2 switches over to the working Vacation
(WV) mode. Failures occur only when Server-2 is operational. We obtained some performance measures.

Keywords: keywordl, Keyword2, keyword3.working vacation, failure, QBD processes. In service systems,
computer systems, and telecommunication systems, there are queuing systems with server failures.

1. Introduction

In service systems, computer systems, and telecommunication systems, there are queuing systems with server
failures and money transitions in Banks. The majority of publications discuss trustworthy service stations'
queueing methods. However, we frequently encounter situations in practice when service stations may not
promptly respond to requests.

Because service station failures and a lack of available repair resources can have a significant impact on system
performance, queueing systems with unreliable service stations are worthwhile research issues from the
perspective of performance prediction. A parallel queueing system with server failure and repair was examined
by Wartenhorst (1995).

First proposed was an M/M/1 queue with balking by Haight (1957). Haight (1959) also suggested an M/M/1
queue with reneging customers.In an M/M/1/N queue, the combined effects of balking and reneging have been
studied by Ancker and Gafarian (1963a), (1963b).In 1968, Mitrany and Avi-ltzhak studied an M/M/N queue
with plenty of room for server repairs and breakdowns.

In their work, the transformation method was used to determine the moment generating function of the queue
size. An M/M/2 queueing system with balking and heterogeneous servers was researched by Singh (1970). In
which he discovered the mean queue length and stationary queue length distribution and contrasted the model
with homogenous servers with the model with heterogeneous servers. The same model was taken into account
by Vinod (1985) utilizing the matrix-geometric solution approach. He put certain limitations on the server
downtime for N = 1 (either occuring only when the server is active or irrespective of the queue length).

The many servers queueing system M/M/c/N with balking and reneging was examined by Abou-El-Ata and
Hariri in 1992. An optional second channel in a two-phase queueing system was studied by Selvam and
Srivasankaran in 1994. A single unstable server system with numerous breakdown modes and two potential
stages of repair was researched by Hsien and Andersland in 1995. A total probability decomposition technique
was devised by Tang (1997) for obtaining the recursive formulation of the equilibrium system size distribution.
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This approach could be used to talk about batch arrival discrete-time or continuous-time queueing systems. An
ideal N-policy model for a single server Markovian queue with breakdown, repair, and state-dependent arrival
rate was examined by Srivastava and Jain in 1999.

From the perspective of queueing, Wang and Chang (2002) investigated an M/M/R/N queue with balking,
reneging, and server breakdowns. This research was expanded upon to examine an M/M/c/N queue with
balking, reneging, and server failures. They arrived at the steady-state probabilities in matrix form after solving
the steady-state probability equations iteratively.In 2003, Nakdimon and Yechiali examined numerous polling
systems that experienced both random failures and fixes.In a two-server queue with Bernoulli schedules and a
single vacation policy, where the two servers offer consumers heterogeneous exponential service, Madan et al.
(2003) studied the problem. For various states of the servers, they were able to obtain steady-state probability
generating functions of the system size.The two phase queueing method with general service periods was taken
into consideration by Artalejo and Choudhury in 2004. Wang (2004) talked about server failures and an M/G/1
queue with a second optional service. An M/M/1/N queueing system with balking, reneging, and server
vacations was taken into consideration by Zhang et al. (2005). A multi-server queue with bulk arrival and two
types of server breakdowns was examined by Sultan et al. (2005).An N policy M/G/1 queueing system with a
single detachable, unreliable server, whose arrivals form a Poisson process, is the subject of Wang et al. The
distribution of service times, repair times, and startup times is considered to be uniform. The probability-
generating function was expressed by Wang et al. (2008) after utilizing LT to study the transient solution of the
M/G/1 retrial queueing system with server failure. In other words, they investigated if the model's time-
dependent solution existed.Yue et al. (2009) gave the model from Kumar and Madheswari (2005) further
thought. They were able to show the conclusions of the conditional stochastic decomposition for the stationary
queue length and waiting time. They also obtained the explicit expression of the rate matrix.

Vacation models for several servers are more adaptable and practical than those on a single server. When idle,
certain servers in many realistic multiple server systems do auxiliary tasks or take vacations, while other servers
are constantly ready to serve incoming clients. "Partial server vacation models™ are this class of models.

The remaining chapters are structured as follows. The proposed model description and a QBD model
formulation are provided in Section 6.2. The stationary condition is derived in Section 6.3. In 6.4, the explicit
matrice form expressions of the steady-state probabilities are obtained. Some performance measures are
provided in Section 6.5. There are numerical examples in section 6.6, and there are some observations and
thoughts in part 6.7.

2 Proposed Model

A Markovian queueing system with two heterogeneous servers that is totally dependable is how the
researcher modeled the system. Server-1 sits idle whenever there are no users in the system and prepares to
service any incoming new users. However, Server-2 changes to the WV mode. Failures only happen while
Server-2 is operational.

2.1 Assumptions Of The Proposed Model
The assumptions of the system model are given as follows:

(i) The system consists of two servers. While Server-2 is vulnerable to WV and failures, Server-1 is
completely reliable. When the system is completely empty, server-2 enters a WV. This WV's duration has a
parameter «« and follows an exponential distribution. Customers are serviced at a mean rate u, that follows an
exponential distribution during this WV.

(if) Server-2 failures only happen at busy times. Server-2's lifespan and repair times are exponentially
distributed with respect to a parameter S .

(iif) A Poisson process with an arrival rate A governs consumer arrivals. Depending on how they arrive, clients
create a single queue that can hold an endless number of people.
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(iv) A new customer always chooses server-1 if server-1 is idle and server-2 is in a WV mode.

(v) If a brand-new client arrives and discovers that both servers are occupied, he joins either server in the
system.

(vi) If server-1 is occupied and server-2 is down, customers who are already waiting or who have just arrived
must wait in line until server-2's services are resumed or server-1 becomes idle.

(vii) On an FCFS basis, the two servers offer heterogeneous exponential service to users at service rates of u,
andu,, respectively, for Server 1 and Server 2.

2.2 Qbd Process Infinitesimal Generator

Let X (t) represent the status of the servers at time t, and let N (t) be the number of customers in the
system at time t.

0,Server — 1 is the best option, and Server — 2 is on leave.
X (t) =41, Each server is occupied.
2,Server — 1is occupied, and Server — 2 fails.

The SP defines the state space as {N(t), X(t)}, a CTMC on the state space. E={(0j)u(1,j),j=
0,1,2}U{(1, k), i>2,k=12}.

The levels 0, 1, 2,... are defined as the sets of the system states 0 ={(0,0), (0,1),(0,2)}, 1 = {(1,0), (1,1),
(1,2)}, and 1 = {(i,1), (i,2)} if i > 2. The components of the sets are sorted in lexicographical order. The
transition rate matrix Q for the process {(N(t), X(t)), t > 0} has a block-tridiagonal structure that is given by

By, By,
B, B, By,
Q= BZl Al AO
AZ Al AO
A A A

The matrix Q has the structure of a QBD process and is an infinitesimal generator of the MP {(N (t), X (1)), t
>0}. The square matrices of order 2 that make up the submatricesA,,A; and A,are provided by

_[A 0 _[-A+a+u, +u,) a
AO_[O A]’Al_[ B —A+ B+ tu)l

A =[“1+“0 0 ]
2 0 )

The boundary matrices are defined by

BOO = 0 _A 0 !BOO =10 A 0
0 B -1+ pB) 0 0 2
—(A+p, +pq) 0 Mo
By, = 0 —(A+u + ) 0
0 0 - A+B8+u)
Uy 0 0 A 0

0

Bio = [t + 12 0 0 Bip = [A 0]1321 = %2 gl i ]

0 H1 B 0 2 !
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3 The System's Stationary State
The stability requirement for the model is stated in the following theorem.

Theorem 6.3.1:

Ala+p)

The system's necessary and sufficient condition is p = T YT
1 2

Proof

Define matrix A as A, + A; + A,. Matrix A can therefore be expressed as

a=[5 ) o

It is obvious that A is an irreducible MP generator. Let = = (m,, ;) be a stationary likelihood vector for this
MP. The linear equations (ry, m;)A = 0 and m, + m; = lare then satisfied.

That is, —mea+ma=0

o — 8 = 0 and

m, + m, = 1Solving these equations, we have

Ty = a:;ﬁ'nl = ﬁ (3.2) The essential and sufficient factor for the QBD process's
stability is
mAye < mhye (3.3

Where e is an ordered 2-column vector whose members are all equal to one. Substituting the value of A4,,4, and
e in (3.3), we get

A1y +1q) < oy + p2) + 1y (1)

Using (3.2), we get the stationary condition p < 1 which becomes

Ala+pB)
=—-x1 3.4
(a+P)ps+Buz (3.4)

4 Steady State Probabilities

Assume N and X are the stationary random variables that represent the system's customer and server counts,
respectively. A symbol for the stationary probability is

= tlit P{L®)=i]j@®) =j}, (L)) EE
Where j =0, 1, 2,...and i = 1, 2,... The stationary probability vector P of the generator Q exists under the
stationary condition p < 1. Whereas, and for, this stationary probability vector P is divided

as P = (Py, P, P,), where Py = (Pyo, Po1, Poz),  Pi = (Pio, P11, P1z) and Py = (Py, Pp) fori =
2. Using Neuts's (1981) matrix-geometric solution approach the stationary probability vector P is given by

PyByo + P1B1p =0 (4.1)

PyByy + P,B;; + P,B,; =0 (4.2)
P,Bi, + P,(A; + RA,) =0 (4.3)
P, = P,R'"%,i =3,4,5,..(4.4)
and the restoring circumstance

P061 + P1€1 + Pz(] - R)_le =1 (4.5)
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Where | is an identity matrix of order two, e;is a column vector of order three with a value of one for each
element and R, also known as the rate matrix, is the smallest non-negative solution with a spectral radius of less

than one to the matrix quadratic equation

RZAZ + RA]_ + AO == O (46)
Theorem 4.1

If p < 1, the smallest non-negative answer to matrix equation (4.6) is as follows:

R=[ 2] @n

21 T2

and using the following relation, RA.e

[0y Qg+ p,) + oty ]

Rhe - Ler(ﬂl + )+ Ny
[A]
el

Using (4.9) and (4.10) in (4.8), we get
rll(/ul + /JV) +1, (/u]_ + luz) =4

rzl(ful +,le) + rzz(ful +,Ll2) =1

From (4.11), we get

From (4.12), we get

| )

/11+/'lv
and
o 22 [ 2
P ) )\
RiA |r(r + 1,00 ) (1 + 11,)
| (ra ) e+ a1)
RAl_I_—rll(/1+a+yl+yv)+r12ﬂ
{—r21(/1+a+y1+yv)+r22/3'

= Ae(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

A
J M~ (—] I, + 1,0, (4.15)
(a4 + 1)

r,+ rzz)(,u1 + /Uz)—|

| (4.16)
+ r12r21)(/11 + ,Uz)J

ro—(A+ B+ +u)r, |
11 ( B+ + 1) 12J 4.17)
N —(A+ B+ + 1),

Substituting (4.15), (4.16) and A, in (4.6), we get

(2 + 00 ) (i + 1) =ty (A+a+ s+ 1)+ 1,8+ A =0 (4.18)
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rlz(rn"'rzz)(:ul"':uz)"" a—(A+ B+ +u,)r, =0 (4.19)
G (T + 0 ) (e + 11,) =V (A+a+ g+ p1,) +1, =0 (4.20)
(r222 + r12r21)(,u1+,u2)+ aa—(A+ B+ + ), +A=0 (4.21)

Using (4.15) the first term of (4.18) is

, A? A A
r, + - -  + 146, (/11 + :uv)
(g + p )y + 1) g+ 1, M+,

That is,

22 j_[i(uﬁﬂv)

J fy = ATy, + 1,0, (4 + 1,) (4.22)
Myt Myt

rﬁ(u1+uv)+£

Using (4.13) the third term of (4.18) becomes

([ ‘ ]—[””””]rnJﬂ (4.23)
H+ Ay Hy+ Ay

Substituting (4.13), (4.14), (4.22) and (4.23) in (4.18), we get

s ke A A
r, + - -  + 146, (:ul + :uv)
(g + p )y + 1) g+ 4, My +

A
1, (A+a+pu +pu,)+ [ j—(ﬂlJr#VJrn B+1=0
Myt Hy )

2
M, — Arl

—Br,, + +C =0(4.24)

r-ll r-22

A A A A
where,Az( ]+( ra +1],B: A ,C:( J[ tp +1]
Hy+ U, Hy+ U, M+ H, R AN e

Using (4.15) the first term of (4.21) is

1

) A? A
M + - - M + 141 (:ul + /12)
(g + ) + 1)) g+ 4y o,
That is,
( A2 A( )
M+ 1y)
rzzz (ly+ py)) + —————— A, - ——— Ny + (1 + 1)1 1, (4.25)
(44, + 1) R

Using (4.13) the second term of (4.21) is
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A +
( J—(”l ”ZJrzz o (4.26)
lul + luv :ul + :uv
Substituting (4.25) and (4.26) in (4.21), we get

A’ A
__MM_[M

3
r222 (4 + p,) + J N + (s + 1)1 1,
(4, + 1) Myt

A M+ U
( )—[1 ZJ% a—(A+ B+ +u)r,+4=0
lu1+:uv Iul+luv

r222 - A1r22 - Blrll + 10, + Cl =0 (4.27)

yl yl A A 2 1
where,Alz[ e ]+£ +p +1],Blz£ ]Clz[ ]L {1+a}+1J
Hy Ht Hy+ 4, Hy+ Hy )| H T A,

From equation (4.27), we get

r, = [—r S j (428)
Bl -y
Equation (4.24), when equation (4.28) is substituted, yields the cubic equation with one variable, r,,, as follows:
Qr) +Rr>+Sr,+T =0 (4.29)
Where
Q=A+B-A,

R=A’-A*+3C,+C-B {A+A -C,-2B},
S =AC,-2AC, +B,{A’-2C -BB,|

T =CB/-C,{AB,-C,}.

R
Tosolve (4.29) letr,, =y —| — |,
s, -y 2)

U / \Y; R? 2R® RS T
Where,y:Z——,z=3——J_r«/5,U:— 2+3,V: T SZ+—
3z 2 302 Q 27Q° 3Q° Q

2 3
and D =V—+U—
4 27

Here, D > 0, thus, the equation (4.29) has two complex roots in addition to one real root. Let this true root
ber,,.
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The third degree equation's root formula can be used to generate the explicit expression of r,,. Equation
(4.28) yields 1,4, equation (4.13) yields r;,, and equation (4.14) yields ;.

From equation (4.1), we get

P,=-PB,B,, (4.30)

10 —00

Substituting (4.30) in equation (4.2), we get

-1 -1
P, =P,[BByBy—B,| B, (4.31)
Using the equation (4.31) in equation (4.30), we get
P = P[Bm 00 B '_Bn] BmBmB& (4.32)

Using the equations (4.31) and (4.30) in equation (4.5), we get

PZ:[BM[ ~B,,Byre ][ BBy, B]l+[(I—R)1eﬂ_ (4.33)

5 Performance Indicators
We can calculate certain system performance metrics using the steady state probability vector shown above.
Theorem5.1:

(a) The system's anticipated customer base is indicated by
E(N)=Pe,+Pe{2(1-R) " +R(1-R) "}

-2

(b) The anticipated number of patrons in line is indicated by E(Nq) = Pze(l - R)

Proof:

The system's anticipated customer base is indicated by
E(N):inP(N =n)

n-1
=P(N =1)+2P(N =2)+3P(N =3)+""-
= Pe, +2P,e +3P,eR + 4P,eR* + -
E(N)= Plel+Pze[2{1+R+R2+---}+{1+2R+3R2+---}]
E(N)=PRe,+Pe[2(1-R) " +R(1-R)"|

The anticipated number of consumers standing in line is indicated by

E(N,)= in 1)P(N =n)
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=P(N=2)+2P(N=3)+3P(N =4)+---

= Pe+2RPe+3R’Pe+-

E(N,)=Pe(1-R)"

6 Numerical lllustrations

Table 6.1 and Table 6.2 explain the effect of the arrival rate 4 and the service rate £, in system length and queue

length respectively. Table 6.3 and Table 6.4 explain the effect of the service rates x, and g, in system length

and queue length respectively. Table 6.5 and Table 6.6 explain the effect of « and S in system length and

queue length respectively.

Ay, |5 6 7 8 9 10 15
10 44532 32899 |25682 [21134 [ 18355 | 16854 | 2.2438
15 95870 | 69541 |52544 |41057 |33082 27490 | 1.8689
20 16.7910 |12.1695 |9.1545 |7.0835 |56090 |45332 | 21597
25 26.0597 | 189292 |14.2576 |11.0286 |87088 69941 | 2.8898
30 37.3935 |27.2333 | 205625 |159371 |125997 |10.1186 | 3.9889
Table 6.1
A, |5 6 7 8 9 10 15
10 00575 |0.0829 |01133 |0.1490 |0.1902 |[0.2374 | 05907
15 00511 00761 |0.1068 |0.1433 |0.1857 [0.2343 | 0.5826
20 00432 00660 |0.0945 [0.1291 |0.1698 |[0.2169 | 0.5565
25 00363 00565 |0.083 [0.1140 |0.1519 [0.1962 | 05211
30 00306 00484 |00714 [0.1002 |0.1350 |[0.1760 | 0.4831
Table 6.2
/i, |5 6 7 8 9 10 15
5 19.6660 | 18.8465 | 18.2846 | 17.9080 | 17.6685 | 17.5329 | 17.7836
6 147920 | 14.1790 | 13.7347 | 13.4168 |13.1950 | 13.0478 | 12.9925
7 115863 | 11.1270 |10.7785 | 105172 |10.3245 | 10.1860 | 10.0058
8 9.3443 [ 90004 |87278 [85154 |[83522 |82289 |8.0036
9 77057 | 7.4489 | 7.2363 |7.0646 |6.9280 |6.8210 | 6.5874
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10 6.4097 6.2778 6.1124 5.9739 5.8604 5.7688 5.5438
15 3.2544 3.2210 3.1760 3.1290 3.0842 3.0434 2.9049
Table 6.3
Iul/lu2 5 6 7 8 9 10 15
5 0.0119 0.0101 0.0089 0.0080 0.0074 0.0069 0.0055
6 0.0164 0.0135 0.0117 0.0103 0.0094 0.0086 0.0066
7 0.0217 0.0176 0.0149 0.0130 0.0116 0.0106 0.0077
8 0.0279 0.0222 0.0185 0.0159 0.0141 0.0127 0.0089
9 0.0350 0.0274 0.0225 0.0192 0.0168 0.0150 0.0102
10 0.0555 0.0332 0.0270 0.0228 0.0198 0.0175 0.0116
15 0.0955 0.0710 0.0557 0.0455 0.0383 0.0330 0.0196
Table 6.4
alp |0 1 2 3 4 5 6
0 18.2243 17.8490 17.4883 17.1435 16.8152 16.5034 16.2081
1 17.9067 17.5329 17.1748 16.8332 16.5087 16.2012 15.9106
2 17.6510 17.2864 16.9370 16.6039 16.2873 15.9875 15.7041
3 17.4753 17.1173 16.7744 16.4473 16.1366 15.8422 15.5640
4 17.3501 16.9969 16.6585 16.3358 16.0292 15.7387 15.4642
5 17.2681 16.9074 16.5723 16.2528 15.9492 15.6617 15.3899
Table 6.5
alp |0 1 2 3 4 5 6
0 0.0209 0.0188 0.0170 0.0153 0.0138 0.0125 0.0113
1 0.0075 0.0069 0.0064 0.0058 0.0054 0.0049 0.0045
2 0.0039 0.0036 0.0033 0.0031 0.0029 0.0026 0.0025
3 0.0024 0.0022 0.0021 0.0019 0.0018 0.0017 0.0015
4 0.0016 0.0015 0.0014 0.0013 0.0012 0.0011 0.0011
Table 6.6
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Figure 6.1
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7 Some Observations And Remarks

Fix the values of 4, and g and increasing the values of x, and « sufficiently large one can observe that

both the system and queue length is very small.
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