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Abstract:- In this paper we modeled the system as a Markovian two heterogeneous servers in a queueing 

system, with Server-1 being completely dependable.  Whenever the system, server-1, lacks any users, remains 

idle and gets ready to serve the arriving new customers.  But Server-2 switches over to the working Vacation 

(WV) mode.  Failures occur only when Server-2 is operational. We obtained some performance measures. 
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1. Introduction 

In service systems, computer systems, and telecommunication systems, there are queuing systems with server 

failures and money transitions in Banks. The majority of publications discuss trustworthy service stations' 

queueing methods. However, we frequently encounter situations in practice when service stations may not 

promptly respond to requests.  

Because service station failures and a lack of available repair resources can have a significant impact on system 

performance, queueing systems with unreliable service stations are worthwhile research issues from the 

perspective of performance prediction. A parallel queueing system with server failure and repair was examined 

by Wartenhorst (1995).  

First proposed was an M/M/1 queue with balking by Haight (1957). Haight (1959) also suggested an M/M/1 

queue with reneging customers.In an M/M/1/N queue, the combined effects of balking and reneging have been 

studied by Ancker and Gafarian (1963a), (1963b).In 1968, Mitrany and Avi-Itzhak studied an M/M/N queue 

with plenty of room for server repairs and breakdowns.  

In their work, the transformation method was used to determine the moment generating function of the queue 

size. An M/M/2 queueing system with balking and heterogeneous servers was researched by Singh (1970). In 

which he discovered the mean queue length and stationary queue length distribution and contrasted the model 

with homogenous servers with the model with heterogeneous servers. The same model was taken into account 

by Vinod (1985) utilizing the matrix-geometric solution approach. He put certain limitations on the server 

downtime for N = 1 (either occuring only when the server is active or irrespective of the queue length). 

The many servers queueing system M/M/c/N with balking and reneging was examined by Abou-EI-Ata and 

Hariri in 1992. An optional second channel in a two-phase queueing system was studied by Selvam and 

Srivasankaran in 1994. A single unstable server system with numerous breakdown modes and two potential 

stages of repair was researched by Hsien and Andersland in 1995. A total probability decomposition technique 

was devised by Tang (1997) for obtaining the recursive formulation of the equilibrium system size distribution. 
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This approach could be used to talk about batch arrival discrete-time or continuous-time queueing systems. An 

ideal N-policy model for a single server Markovian queue with breakdown, repair, and state-dependent arrival 

rate was examined by Srivastava and Jain in 1999.  

From the perspective of queueing, Wang and Chang (2002) investigated an M/M/R/N queue with balking, 

reneging, and server breakdowns. This research was expanded upon to examine an M/M/c/N queue with 

balking, reneging, and server failures. They arrived at the steady-state probabilities in matrix form after solving 

the steady-state probability equations iteratively.In 2003, Nakdimon and Yechiali examined numerous polling 

systems that experienced both random failures and fixes.In a two-server queue with Bernoulli schedules and a 

single vacation policy, where the two servers offer consumers heterogeneous exponential service, Madan et al. 

(2003) studied the problem. For various states of the servers, they were able to obtain steady-state probability 

generating functions of the system size.The two phase queueing method with general service periods was taken 

into consideration by Artalejo and Choudhury in 2004. Wang (2004) talked about server failures and an M/G/1 

queue with a second optional service. An M/M/1/N queueing system with balking, reneging, and server 

vacations was taken into consideration by Zhang et al. (2005). A multi-server queue with bulk arrival and two 

types of server breakdowns was examined by Sultan et al. (2005).An N policy M/G/1 queueing system with a 

single detachable, unreliable server, whose arrivals form a Poisson process, is the subject of Wang et al. The 

distribution of service times, repair times, and startup times is considered to be uniform. The probability-

generating function was expressed by Wang et al. (2008) after utilizing LT to study the transient solution of the 

M/G/1 retrial queueing system with server failure. In other words, they investigated if the model's time-

dependent solution existed.Yue et al. (2009) gave the model from Kumar and Madheswari (2005) further 

thought. They were able to show the conclusions of the conditional stochastic decomposition for the stationary 

queue length and waiting time. They also obtained the explicit expression of the rate matrix. 

Vacation models for several servers are more adaptable and practical than those on a single server. When idle, 

certain servers in many realistic multiple server systems do auxiliary tasks or take vacations, while other servers 

are constantly ready to serve incoming clients. "Partial server vacation models" are this class of models.  

       The remaining chapters are structured as follows. The proposed model description and a QBD model 

formulation are provided in Section 6.2. The stationary condition is derived in Section 6.3. In 6.4, the explicit 

matrice form expressions of the steady-state probabilities are obtained. Some performance measures are 

provided in Section 6.5. There are numerical examples in section 6.6, and there are some observations and 

thoughts in part 6.7. 

2 Proposed Model  

      A Markovian queueing system with two heterogeneous servers that is totally dependable is how the 

researcher modeled the system. Server-1 sits idle whenever there are no users in the system and prepares to 

service any incoming new users.  However, Server-2 changes to the WV mode.  Failures only happen while 

Server-2 is operational.  

2.1 Assumptions Of The Proposed Model 

The assumptions of the system model are given as follows: 

          (i) The system consists of two servers. While Server-2 is vulnerable to WV and failures, Server-1 is 

completely reliable. When the system is completely empty, server-2 enters a WV. This WV's duration has a 

parameter   and follows an exponential distribution. Customers are serviced at a mean rate     that follows an 

exponential distribution during this WV. 

(ii) Server-2 failures only happen at busy times. Server-2's lifespan and repair times are exponentially 

distributed with respect to a parameter  .  

(iii) A Poisson process with an arrival rate λ governs consumer arrivals. Depending on how they arrive, clients 

create a single queue that can hold an endless number of people. 
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(iv) A new customer always chooses server-1 if server-1 is idle and server-2 is in a WV mode.  

(v) If a brand-new client arrives and discovers that both servers are occupied, he joins either server in the 

system.  

(vi) If server-1 is occupied and server-2 is down, customers who are already waiting or who have just arrived 

must wait in line until server-2's services are resumed or server-1 becomes idle.  

(vii) On an FCFS basis, the two servers offer heterogeneous exponential service to users at service rates of    

and  , respectively, for Server 1 and Server 2. 

2.2 Qbd Process Infinitesimal Generator 

          Let X (t) represent the status of the servers at time t, and let N (t) be the number of customers in the 

system at time t. 

  ( )  {

                                                       
                                                                                            
                                                                   

 

 The SP defines the state space as {N(t), X(t)}, a CTMC on the state space.                          E={(0,j)∪ (1, j), j = 

0,1,2}∪{(i, k), i ≥ 2, k = 1,2}. 
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(1,2)}, and i = {(i,1), (i,2)} if i ≥ 2. The components of the sets are sorted in lexicographical order. The 
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3 The System's Stationary State 

The stability requirement for the model is stated in the following theorem. 

Theorem 6.3.1: 

The system's necessary and sufficient condition is   
 (   )

(   )      
   

Proof  

Define matrix A as         . Matrix A can therefore be expressed as 

  [
      
     ]      (3.1) 

It is obvious that A is an irreducible MP generator. Let   (     ) be a stationary likelihood vector for this 

MP. The linear equations (     )    and        are then satisfied. 

 That is,                     

           and 

          Solving these equations, we have 

    
 

   
    

 

   
     (3.2)   The essential and sufficient factor for the QBD process's 

stability is  

               (3.3) 

Where e is an ordered 2-column vector whose members are all equal to one. Substituting the value of   ,   and 

e in (3.3), we get 

 (      )     (     )    (  ) 

Using (3.2), we get the stationary condition      which becomes 

  
 (   )

(   )      
       (3.4) 

4 Steady State Probabilities 

Assume N and X are the stationary random variables that represent the system's customer and server counts, 

respectively. A symbol for the stationary probability is 

       *       + 

    
   

 * ( )     ( )   +    (   )    

Where j = 0, 1, 2,... and i = 1, 2,... The stationary probability vector P of the generator Q exists under the 

stationary condition ρ < 1. Whereas, and for, this stationary probability vector P is divided 

as   (        )                (           )          (           )                 (       )       

   Using Neuts's (1981) matrix-geometric solution approach the stationary probability vector P is given by 

                (4.1) 

                      (4.2) 

        (      )      (4.3) 

       
              (4.4) 

and the restoring circumstance 

            (   )
        (4.5) 
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Where I is an identity matrix of order two,   is a column vector of order three with a value of one for each 

element and R, also known as the rate matrix, is the smallest non-negative solution with a spectral radius of less 

than one to the matrix quadratic equation 

                 (4.6) 

Theorem 4.1 

If 1  , the smallest non-negative answer to matrix equation (4.6) is as follows: 

  [
      
      

]  (4.7) 

and using the following relation, 
2 0

  RA e A e (4.8) 
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          (4.10) 

Using (4.9) and (4.10) in (4.8), we get   
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( ) ( )

v
r r              (4.11) 

21 1 22 1 2
( ) ( )

v
r r               (4.12) 

From (4.11), we get 
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1
v

r r  
 
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   (4.13) 

From (4.12), we get 

  21 1 2 22

1

1

v

r r  
 
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and 

2
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  (4.16) 
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Substituting (4.15), (4.16) and A0 in (4.6), we get  

 2
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( ) ( ) 0

v v
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   12 11 22 1 2 11 1 2 12
( ) 0r r r r r                  (4.19) 
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Using (4.15) the first term of (4.18) is 
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That is, 
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Using (4.13) the third term of (4.18) becomes  
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Substituting (4.13), (4.14), (4.22) and (4.23) in (4.18), we get  
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Using (4.15) the first term of (4.21) is 
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Using (4.13) the second term of (4.21) is  
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1 2
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Substituting (4.25) and (4.26) in (4.21), we get  
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From equation (4.27), we get 

2

22 1 22 1

11

1 22

r A r C
r

B r

  
  

 
           (4.28) 

Equation (4.24), when equation (4.28) is substituted, yields the cubic equation with one variable,    , as follows: 

3 2

22 22 22
0Qr Rr Sr T        (4.29) 

Where 

1
A B-A ,Q    

 2 2

1 1 1 1 1
3 2 ,R A A C C B A A C B         

 2

1 1 1 1 1
2 2S AC A C B A C BB      

 2

1 1 1 1
.T CB C AB C    

To solve (4.29) let
22

3

R
r y

Q

 
   

 
,  

where, 
3

U
y z

z
  , 3

2

V
z D   , 

2

2
3

R S
U

Q Q
   ,

3

3 2

2

27 3

R RS T
V

Q Q Q
    

and 

2 3

4 27

V U
D    

Here, 0D  , thus, the equation (4.29) has two complex roots in addition to one real root. Let this true root 

be   . 
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            The third degree equation's root formula can be used to generate the explicit expression of    . Equation 

(4.28) yields    , equation (4.13) yields    , and equation (4.14) yields    . 

From equation (4.1), we get 

1

0 1 10 00
P PB B


           (4.30) 

 

Substituting (4.30) in equation (4.2), we get 

1
1

1 2 10 00 01 11 21
P P B B B B B


           (4.31) 

Using the equation (4.31) in equation (4.30), we get  

1
1 1

0 2 10 00 01 11 21 10 00
P P B B B B B B B


            (4.32) 

Using the equations (4.31) and (4.30) in equation (4.5), we get 

 
1

1 11 1

2 21 1 10 00 10 00 01 11
P B e B B e B B B B I R e


                 

     (4.33) 

5 Performance Indicators 

We can calculate certain system performance metrics using the steady state probability vector shown above. 

Theorem5.1: 

(a) The system's anticipated customer base is indicated by   

    
1 2

1 1 2
( ) 2E N Pe P e I R R I R

 

      

(b) The anticipated number of patrons in line is indicated by  
2

2
( )

q
E N P e I R



   

Proof: 

The system's anticipated customer base is indicated by   

1

( ) ( )
n

E N nP N n




   

( 1) 2 ( 2) 3 ( 3)P N P N P N        

2

1 1 2 2 2
2 3 4Pe P e P eR P eR      

 E(N)    2 2

1 1 2
2 1 1 2 3Pe P e R R R R         
 

 

   
1 2

1 1 2
( ) 2E N Pe P e I R R I R

      
 

 

The anticipated number of consumers standing in line is indicated by 

   
1

1 ( )
q

n

E N n P N n




    
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( 2) 2 ( 3) 3 ( 4)P N P N P N        

2

2 2 2
2 3P e RP e R P e     

   
2

2q
E N P e I R



   

6 Numerical Illustrations  

Table 6.1 and Table 6.2 explain the effect of the arrival rate  and the service rate 1
 in system length and queue 

length respectively. Table 6.3 and Table 6.4 explain the effect of the service rates 1
 and 

2
  in system length 

and queue length respectively. Table 6.5 and Table 6.6 explain the effect of  and   in system length and 

queue length respectively.  

 \ 1
  5 6 7 8 9 10 15 

10 4.4532 3.2899 2.5682 2.1134 1.8355 1.6854 2.2438 

15 9.5870 6.9541 5.2544 4.1057 3.3082 2.7490 1.8689 

20 16.7910 12.1695 9.1545 7.0835 5.6090 4.5332 2.1597 

25 26.0597 18.9292 14.2576 11.0286 8.7088 6.9941 2.8898 

30 37.3935 27.2333 20.5625 15.9371 12.5997 10.1186 3.9889 

Table 6.1 

 

 \ 1
  5 6 7 8 9 10 15 

10 0.0575 0.0829 0.1133 0.1490 0.1902 0.2374 0.5907 

15 0.0511 0.0761 0.1068 0.1433 0.1857 0.2343 0.5826 

20 0.0432 0.0660 0.0945 0.1291 0.1698 0.2169 0.5565 

25 0.0363 0.0565 0.0823 0.1140 0.1519 0.1962 0.5211 

30 0.0306 0.0484 0.0714 0.1002 0.1350 0.1760 0.4831 

 

Table 6.2 

1 2
   5 6 7 8 9 10 15 

5 19.6660 18.8465 18.2846 17.9080 17.6685 17.5329 17.7836 

6 14.7920 14.1790 13.7347 13.4168 13.1950 13.0478 12.9925 

7 11.5863 11.1270 10.7785 10.5172 10.3245 10.1860 10.0058 

8 9.3443 9.0004 8.7278 8.5154 8.3522 8.2289 8.0036 

9 7.7057 7.4489 7.2363 7.0646 6.9280 6.8210 6.5874 
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10 6.4097 6.2778 6.1124 5.9739 5.8604 5.7688 5.5438 

15 3.2544 3.2210 3.1760 3.1290 3.0842 3.0434 2.9049 

 

Table 6.3 

1 2
   5 6 7 8 9 10 15 

5 0.0119 0.0101 0.0089 0.0080 0.0074 0.0069 0.0055 

6 0.0164 0.0135 0.0117 0.0103 0.0094 0.0086 0.0066 

7 0.0217 0.0176 0.0149 0.0130 0.0116 0.0106 0.0077 

8 0.0279 0.0222 0.0185 0.0159 0.0141 0.0127 0.0089 

9 0.0350 0.0274 0.0225 0.0192 0.0168 0.0150 0.0102 

10 0.0555 0.0332 0.0270 0.0228 0.0198 0.0175 0.0116 

15 0.0955 0.0710 0.0557 0.0455 0.0383 0.0330 0.0196 

 

Table 6.4 

   0 1 2 3 4 5 6 

0 18.2243 17.8490 17.4883 17.1435 16.8152 16.5034 16.2081 

1 17.9067 17.5329 17.1748 16.8332 16.5087 16.2012 15.9106 

2 17.6510 17.2864 16.9370 16.6039 16.2873 15.9875 15.7041 

3 17.4753 17.1173 16.7744 16.4473 16.1366 15.8422 15.5640 

4 17.3501 16.9969 16.6585 16.3358 16.0292 15.7387 15.4642 

5 17.2681 16.9074 16.5723 16.2528 15.9492 15.6617 15.3899 

 

Table 6.5 

   0 1 2 3 4 5 6 

0 0.0209 0.0188 0.0170 0.0153 0.0138 0.0125 0.0113 

1 0.0075 0.0069 0.0064 0.0058 0.0054 0.0049 0.0045 

2 0.0039 0.0036 0.0033 0.0031 0.0029 0.0026 0.0025 

3 0.0024 0.0022 0.0021 0.0019 0.0018 0.0017 0.0015 

4 0.0016 0.0015 0.0014 0.0013 0.0012 0.0011 0.0011 

Table 6.6 
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Figure 6.1 

 

 

Figure 6.2 

 

Figure 6.3 
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Figure 6.4 

 

Figure 6.5 

7 Some Observations And Remarks 

Fix the values of 
2

  and   and increasing the values of 1
  and  sufficiently large one can observe that 

both the system and queue length is very small. 
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