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Abstract: - The current study Arrhenius activation energy effect on 3D porous Casson nanofluid (NFs) motion 

via stretching sheet (SS) is explored in this study using numerical process based on Runge Kutta Fehlberg (R-K-

F). To provide useful visions into the physical and dynamic examinations of this study, convective heat and mass 

boundary conditions are used. The established of nonlinear partial differential equations (PDEs) has been 

transported into ordinary differential equations (ODEs) by helping suitable similarity transformations. The 

translated ODEs are computed by help of shooting iterative approach. The outcomes of this study are validated 

with previous investigations, and get excellent agreements. The behaviour of different physical parameters is 

analysed. It is observed that, the heat transfer rate is high in presence of Activation energy for large values Prandtl 

number and mass transfer rate decline low in presence of Activation energy for numerical values of Lewis number.  

Keywords: Arrhenius Activation Energy, Casson nanaofluid, Heat Source. 

 

1. Introduction 

The study of nanofluids has drawn a lot of interest in the field of fluid mechanics and heat transfer, primarily 

owing to their unique thermal characteristics and potential usage in various engineering and industrial processes. 

Alwawi et al. [1] exhibited steady laminar two-dimensional incompressible MHD Casson nanofluid motion via 

solid sphere. Archana et al. [2] presented Casson nanofluid motion between two parallel plates. Shah et al. [3] 

developed entropy optimization on Casson nanofluid flowing via stretchable nonlinear surface. Jamshed et al. [4] 

examined the Casson nanofluid motion with convection slip conditions in presence of thermal transformation. 

Akaje and Olajuwon [5] presented the impact of nonlinear radiative on species heat transfer while taking 

Thompson and Troian boundary conditions. Obalalu et al. [6] concentrated the second-order velocity slip and heat 

transfer caused by nanofluid along with non-Darcian Casson flow via permeable stretching surface. Satya 

Narayana et al. [7] investigated the couple stress Casson fluid flow via internally heated and horizontally stretched 

surface. Dahab et al. [8] studied the viscoelastic fluid flow via nonlinearly stretched surface. Sahoo and 

Nandkeolyar [9] examined the entropy production in a three-dimensional Casson nanofluid motion. Akinshilo et 

al. [10] exhibited non-Newtonian Casson nanofluid motion around a small needle. Mahanta et al. [11] focused on 

the real-world uses of nanoparticles in non-Newtonian base fluids with energy conversion and heat generation.  

Casson nanofluid is a novel and fascinating class of complex fluids that has attracted considerable interest recently 

due to its exceptional rheological characteristics and potential use in a wide range of engineering and scientific 

fields. This special nanofluid combines the properties of yield stress-behaving Casson fluids with the improved 

heat transfer capabilities provided by the incorporation of nanoparticles. Wang et al. [12] examined the three-

dimensional motion of couple stress Casson liquid. Tarakaramu et al. [13] analyzed the 3D nanofluid motion with 

convective conditions via stretching sheet. Waqas et al. [14] presented the Falkner-Skan bioconvection flow of a 
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cross nanofluid motion via moving wedge. Khan et al. [15] studied the movement of heat and mass in an Oldroyd-

B fluid motion via rotating disk. Shankar Goud et al. [16] focused MHD Casson fluid flow via non-linear inclined 

stretching surface with velocity slip. Riaz Khan et al. [17] concentred the stagnation point motion of a time-

dependent Casson fluid via permeable stretching/shrinking surface. Jalili et al. [18] have studied the effect of 

nonlinear thermal radiation on non-Newtonian fluids motion various flow geometries. Abbas et al. [19] focused 

unsteady compressible Casson hybrid nanofluid motion via vertically stretching sheet. Rana et al. [20] examined 

heat transport and nonlinear thermal buoyancy-driven flow in a hybrid nanofluid (MWCNT-MgO/EG) at a 

rotating sphere's stagnation point. Bhagya Lakshmi et al. [21] Investigated the convective heat and mass transfer 

in the context of magnetohydrodynamic flow of a Casson fluid over a curved surface. Narsu Sivakumar et al. [22] 

revealed that the Casson fluid's rate of heat transfer increases as the magnetic field intensity increases, but beyond 

a certain threshold, this relationship changes, resulting in a drop in the heat transfer rate. Asifa et al. [23] Examined 

the non-uniform velocity, magnetohydrodynamics, and Newtonian heating-influenced unsteady flow of a rate-

type fluid close to a vertical plate. Using the fractional operators, three distinct fractional models for the fluid's 

behaviour are investigated. Tarakaramu et al [24] Investigated heat and mass transfer in a three-dimensional 

couple stress Casson fluid flow with nonlinear thermal radiation and heat source effects. Some of authors [25-27] 

developed three dimensional nanofluid motion via stretching sheet. 

2. Mathematical Analysis: 

Consider 3D magnetohydrodynamic flow of a non-Newtonian nanofluid over a stretching sheet * 0z =  along 

* *x y -plane while fluid is located along with 
*z -direction. The fluid flow region is taken as 0z  . The velocity 

components 
* *

1u a x= and * *

2u b y=  along 
* *x y - directions respectively as shown in Fig. 1. Moreover, it has 

taken that the constant Magnetic field is applied normal to the fluid flow direction and it is assumed that induced 

magnetic field is negligible. We considered that the rheological equation of extra stress tensor  for an isotropic 

and incompressible flow of a Casson fluid can be written as. Usually, Casson model is used as a constitutive 

equation of blood. But in this study, viscosity model is used as a constitute equation of blood. This model is written 

as: 
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Based on above construction we have to formulate the governing equations in the present flow analysis as: 
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The relevant boundary conditions of the present model as 
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The radiative heat flux rq which is given by Quinn Brewster [28] is given by 
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Differentiate above heat flux equation, we get 
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Substituting Eq. (8) in Eq. (4), we get below Expression 
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The similarity transformations as below 
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Using above Eq. (10), we are converting Eq. (2)-(4) and Eq. (9) into below format 
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Corresponding boundary conditions as below 
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Moreover, the skin-friction coefficient and Nusselt number are below  
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3. Results and Discussion 

The characteristics of   (Casson parameter) on g'( ) (“Transverse Direction) as shown in Fig. 2. The velocity 

of Casson nanofluid motion decrease on g'( )  (“Transverse Direction”). Physically, the Casson parameter is 

proportional to dynamic viscosity, due to this the low viscosity in Casson liquid motion reduces velocity of liquid 

at stretching surface. 
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The most significant effects Pr  (Prandtl Number), H (Heat Generation Parameter), dR  (nonlinear thermal 

radiation) on 1( )  with the cases of presence and absence of Casson fluid as presented in Figs. 3(a)-3(b), 

respectively. It is perceived that the fluid temperature declined more in presence of Casson liquid while compared 

with absence of Casson liquid with distinct numerical values of Pr, H  while opposite direction of liquid 

temperature moves for large numerical values of dR . Physically, the Prandtl number is relation between to 

thermal conductivity and thermal diffusivity, due to this the high thermal diffusivity of Casson nanofluid released 

low temperature and also low absorption of liquid motion produces high temperature.  

The most significant effects Pr  (Prandtl Number) on 
0.5Rex xNu −

with the cases of presence and absence of 

Activation energy as shown in Figs. 4. It is perceived that the heat transfer enhanced in more when presence of 

activation energy while compared with absence of activation energy with distinct numerical values of Pr . We 

conclude that, the present study developed more heat transfer when presence of Activation energy in Casson 

nanofluid motion at stretching surface. 

The variation of w  (Temperature Ratio Parameter), bN  (Brownian Motion Parameter) and tN  

(Thermophoresis Parameter) on 1( )  with the cases of Presence and absence of Casson liquid and heat 

generation effect as predicted  in Figs. 5(a)-5(c). It is perceived that the temperature of Casson nanofluid motion 

for the presence of activation energy when compared to absence of activation energy. Physically, the Brownian 

diffusivity and thermal diffusivity applied into Casson nanofluid motion, in that the base fluid particles crashed 

between each other and then produces more temperature at stretching surface.  

The variation of Le  (Lewies number) on 
1.5Rex xSh −

 with the cases of presence and absence of activation energy 

liquid has displayed in Fig. 6. It is noticed that the mass transfer rate reduction low for presence of activation 

energy while compared to absence of activation energy with raising values of Le . Physically, Brownian 

diffusivity reduces mass transfer of Casson nanofluid motion at surface area. 

4. Conclusion  

The main outcomes of current study as presented in below: 

➢ The temperature of Casson nanofluid is high in presence of Activation energy and heat generation effects 

for enhanced numerical values of , ,d b tR N N . 

➢ The heat transfer rate is high in presence of Activation energy for large numerical values of Prandtl 

number. 

➢ The mass transfer rate if very low in presence of Activation energy while compared with absence f 

activation energy for large numerical values of Lewis number.  
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Fig. 1 Physical Geometry of the Model 

  

                      Fig.  2 Impact of   on 1'( )g                                         Fig.  3(a) Impact of Pr  on 1( )   

  

                        Fig.  3(b) Impact of H  on 1( )                                 Fig.  3(c) Impact of dR  on 1( )   
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                     Fig.  4 Impact of Pr  on 
0.5Rex xNu −

                              Fig.  5(a) Impact of w  on 1( )   

  

                         Fig.  5(b) Impact of bN  on 1( )                          Fig.  5(c) Impact of tN  on 1( )   

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023) 

421 

Fig.  6 Impact of Le  on 
1.5RexSh −

 

Table. 1 Evaluation of Skin friction coefficient ( )11 ''(0)f −+  , ( )11 g''(0) −+ for various values . 

  Wang [29] 

( )'' 0f−  

Thamman

na et al. 

[30] 

Present 

study 

( )'' 0f−  

Wang [29] 

( )'' 0g−  

Thamman

na et al. 

[30] 

Present 

study 

( )'' 0g−  

0.00 1.000000 1.000000 1.0000000 0.000000 1.000000 0.0000000 

0.20   1.0394984   0.1487378 

0.25 1.048813 1.04881 1.0488134 0.194564 1.04881 0.1945649 

0.40   1.0757886   0.3492102 

0.50 1.093097 1.09309 1.0930971 0.465205 1.09309 0.4652066 

0.60   1.1099465   0.5905307 

0.75 1.134485 1.13450 1.1344852 0.794622 1.13450 0.7946279 

0.80   1.1424882   0.8666843 

1.00 1.173720 1.17372 1.1737212 1.173720 1.17372 1.1737209 

 

Table. 2 Comparison of Skin friction coefficient for  →  and various values of   

  Wang [29] 

( )f   

Present study 

( )f   

Wang [29] 

( )g   

Present study 

( )g   

0.00 1.000000 1.0000000 0.000000 0.0000000000 

0.20  0.9226531  0.2323612 

0.25 0.907075 0.9070753 0.257986 0.2579868 

0.40  0.8660339  0.3792267 

0.50 0.842360 0.8423606 0.451671 0.4516711 

0.60  0.8209620  0.5189601 

0.75 0.792308 0.7923087 0.612049 0.6121264 

0.80  0.7835000  0.6414335 

1.00 0.751527 0.7515275 0.751527 0.7514855 

 


