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Abstract: With the increasing complexity of Distributed Denial of Service (DDOS) attacks in Wireless
Sensor Networks (WSNSs), the accurate detection of these threats has become imperative. This research
presents a robust preprocessing technique for DDOS attack detection, focusing on data normalization through
the integration of topological nonlinear dimensionality reduction via manifold learning (TNDRM). Our
methodology revolves around transforming the intricate high-dimensional feature space of WSN data into a
lower-dimensional representation, all while preserving the intrinsic topology and geometry of the original
data. Achieved through manifold learning techniques, this process enables a more meaningful understanding
of complex data structures, essential for effective analysis. A pivotal step in our approach involves the
normalization of the data within the reduced dimensional space. Leveraging statistical techniques,
specifically z-score normalization and min-max scaling, we mitigate the impact of varying scales and outliers
in the data. The accuracy of machine learning algorithms is improved with normalization because it
guarantees uniformity and consistency by removing aberrations.
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1. Introduction

In today's Wireless Sensor Networks (WSNSs) scenario, protecting the security and integrity of data
transmission is critical [1]. With the proliferation of sophisticated cyber threats, notably Distributed Denial of
Service (DDOS) attacks, protecting these networks from malicious infiltration has become an ongoing issue [2-
3]. DDOS attacks, which are distinguished by their capacity to overload network resources and interrupt
services, demand sophisticated detection techniques capable of navigating the complicated patterns within
network traffic data [4-6]. When dealing with the large dimensionality and complicated structures inherent in
network data, traditional techniques of DDOS detection in WSNs often confront problems [7-8]. Thus, there is a
pressing want for cutting-edge methods that may reduce the dimensionality of this data while yet retaining its
essential topology and geometry [9]. Furthermore, successful identification necessitates resolving the data's
changing scales and outliers, ensuring that machine learning algorithms can function on a consistent and
trustworthy input space [10-12].
This study tackles these issues by presenting a unique method for combining the strength of topological
nonlinear dimensionality reduction via manifold learning with rigorous data normalization procedures [13-14].
We want to identify the complex and hidden structures inside the high-dime4421
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While preserving the data's essential characteristics, we transform it into a lower-dimensional space [15, 16].
Following that, the modified data is subjected to a thorough normalization procedure that employs statistical
approaches such as z-score normalization and min-max scaling [17-18]. This phase is critical for removing the
influence of various scales and outliers and guaranteeing consistent and uniform input for machine learning
algorithms [19-20]. The fundamental goal of this study is to improve the detection of DDOS attacks in WSNs by
establishing a robust preprocessing framework [21-22]. Our method not only advances anomaly detection
techniques, but it also lays the door for enhanced network security tactics in the context of wireless sensor
networks [23-24].

The primary contributions and objectives of this manuscript may be summarized as follows.

e Statistical Normalization using z-score normalization and min-max scaling

e Dataset preprocessing using topological nonlinear dimensionality reduction using manifold learning

From here on out, the structure of this article will look like this. In Section 2, multiple authors address
various methods of data normalization. In Section 3, we show the suggested model. We provide our research
results in Section 4. Our results are summed up and recommendations for further study are offered in the last
section.

1.1 Motivation of the paper

Because the complexity of DDOS attacks in WSN is increasing, accurate detection techniques are
required. Topological nonlinear dimensionality reduction via manifold learning is combined with data
normalization approaches in this study. Our technique enables precise DDOS attack detection by retaining key
data structures. The objective is to improve WSN security by resolving extensive data nuances, maintaining
consistency via normalization, and exceeding conventional approaches' constraints. The validation of the
research on the WS-NDS dataset demonstrates its superiority, providing a substantial development in Intrusion
Detection Systems (IDS) for WSNs.

2. Background Study

Abidoye, A. P., & Obagbuwa, I. C. [1] Because of their versatility, WSNs have been gaining in
popularity in recent years. The communication styles and methods of deploying sensor networks make them
vulnerable to many different kinds of attacks. Using the pre-shared keys, the MAS encrypts the message before
sending it to the recipient node, ensuring the authenticity and integrity of the data being sent over the network.
For data packet authentication, MAS uses a nonce and a hash value. The MAS has been shown to be able to
identify and fight against DDoS attacks in WSNSs in simulations. To determine whether the suggested method
satisfies the resource limitations of WSNs, it will be implemented in a real test bed in a subsequent research.

Edlund, A. et al. [5] The sequencing of 16S rRNA genes and other metagenomic methods have
provided the bulk of these authors present understanding of the intricate human microbiome by revealing both
the presence and absence of microorganisms and the relative abundance of genes. In this work, the author used a
metatranscriptomic technique to learn more about how bacteria behave and how an oral biofilm community
develops and grows by analyzing the mRNA produced by active bacterial genes and genomes.

Guo, W., & Banerjee, A. G. [9] the author apply a powerful TDA instrument, the Mapper algo-rithm,
to estimate yield and find errors in data sets from the chemical manufacturing process and the semiconductor
etch process. The author demonstrate that the Mapper algorithm provides additional insights into the
complicated data beyond the standard methods of feature selection. To better comprehend the tangential
connections between the features and manufacturing system outputs, the author use direct visualisation to build
an abstract representation of the data.

Islam, M. T., & Xing, L. [11] For this reason, the author suggest a three-stage technique, GSE, for
nonlinear dimensionality reduction, with the first stage being concerned with maintaining the scalability and
integrity of the data geometry. To correct the first short-circuiting issue, the second stage integrates

4423



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)

neighborhood-specific data. The third phase of GSE keeps the data's statistics intact. Multiple instances have
shown that GSE performs better than other dimensionality reduction methods at simultaneously retaining the
data's geometric and statistical features while shrinking their size.

Puschmann, D. et al. [17] the author provides a new method for discovering patterns and connections
across disparate datasets. By taking an unsupervised approach, these authors solution was able to examine
multiple streams of sensor data, extract patterns therein, and then translate those patterns into higher-level
abstractions that can be understood by both humans and machines. Any kind of Internet of Things (loT) data
stream may benefit from the suggested approach.

Ramesh, S. et al. [19] the aforementioned deep neural network-based DoS detection approach has been
shown to be effective in all tests. The suggested method's detection accuracy and low time investment result
from the use of a neural network with several layers of neurons. The experimental findings were predicated on
the idea that optimization methods may boost learning efficiency. In addition, it has been shown that feature
selection decreases the dataset's dimensionality.

2.1 Problem definition

The increasing complexity of DDOS attacks on WSNs offers a significant challenge to network
security. Due to the complicated and high-dimensional structure of WSN data, traditional approaches fail to
identify these sophisticated threats correctly. The problem is in converting this complicated data into a format
that can be effectively analyzed. The data's varied sizes and outliers impede the efficiency of machine learning
algorithms, lowering the accuracy of DDOS attack detection. In order to address these difficulties, we are
developing a robust preprocessing approach that combines topological nonlinear dimensionality reduction via
manifold learning and data normalization.

3. Materials and methods

In this part, we describe the materials utilized and the methods employed in our study to create a robust
preprocessing mechanism to improve the detection accuracy of DDOS attacks in WSNs. Our method combines
topological nonlinear dimensionality reduction with rigorous data normalization approaches. The data
normalization using uncovering complex data structures with topological nonlinear dimensionality reduction
using manifold learning model flowchart has represented at figure 1.
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3.1 Dataset collection

https://www.kaggle.com/datasets/bassamkasasbehl/wsnds, The WS-NDS dataset, available on
Kaggle, is a collection of network traffic data for intrusion detection system (IDS) evaluation. The dataset
contains a total of 56,422 network traffic instances, which are labeled as either normal or attack traffic.

3.2 Statistical Normalization using z-score normalization and min-max scaling
3.2.1 Z-score normalization

Z-score normalization, also known as standardization, is a common statistical procedure for cleaning
and organizing data. From the above information, a normal distribution is derived, with mean 0 and standard
deviation 1. This technique is very helpful for standardizing a dataset containing characteristics that utilize a
variety of units and scales. To calculate a z-score, we first remove the dataset's mean from each data point and
then divide that number by its standard deviation. The mathematical formula for determining the z-score (Z) for
a set of features XX is as follows:

7=8K 1)

(22

e Xs the feature’s starting point value.

e urepresents an average of all feature values.

e o represents the dispersion of feature values as a whole.

In the preprocessing phase, normalization decomposes data with numerical properties so that the values
in the data may be transformed into a specified range. Min-max normalization, z-score normalization, and
decimal scaling are the most prevalent approaches to normalizing data. Z-score normalization, as shown by
Equation 1, assigns an attribute E value to a new range.

—VizEi
~ std(E) (2)

Description:

v = value obtained after normalization.

v; = the property value that has to be normalized
E; = mean attribute value

std(E) = the E-attribute of the standard deviation.

3.2.2. Min-max scaling

To normalize characteristics to a specified range, often [0, 1], min-max scaling is a preprocessing
method used in data analysis. When working with data that fluctuates greatly in size, it shines. This technique
uses a linear transformation to scale the data such that the feature's lowest and maximum values are represented
by 0 and 1, respectively. For a given feature XX, the min-max scaling formula is:

X—Xmi
Xscatea = ——min_ . (3)

Xmax~—Xmin
Where:
e X is the original worth of the component.
® Xqin IS the lowest value of this attribute that appears in the data set.
® Xnax 1S the highest possible value of the characteristic found in the data set.

3.3 Dataset preprocessing using topological nonlinear dimensionality reduction using manifold learning
During the preprocessing phase, our method uses topological nonlinear dimensionality reduction
techniques like t-Distributed Stochastic Neighbor Embedding (t-SNE) and Isometric Mapping (Isomap) to
transform raw network traffic data from Wireless Sensor Networks (WSNSs) into a lower-dimensional space
while preserving the underlying topology and geometry of the original data. These techniques, which are
especially useful in high-dimensional environments, provide a more accurate representation of the data essential
for in-depth analysis by capturing intricate patterns and nonlinear interactions. In addition to preserving essential
topological and geometric information, this converted, lower-dimensional data makes it possible for future
machine learning algorithms to work on a more relevant and intelligible input space. The effectiveness of DDOS
attack detection models in WSNs may be greatly improved with the help of this preprocessing phase, which
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ensures that the detection system can accurately identify even the most subtle patterns and abnormalities in the
network data.

X1
V=Rl ={x=|(: |:ix;€Rp - ()
Xp
Supposing V is a vector space, we may define WT as a subspace of V with a finite basis.
WT ={x e RP: < x,w >= 0V, € W} --------- (5)

The RD subspace whose orthogonal counterpart is RD is denoted as WT. W is a subspace of RD iff and
only iff RD, hence W is a subspace of RD.
dim(WT) = D — dim(w) ------- 6)

From the example, it's easy to see that picking neighbors based on distance alone would result in x3
being selected as one of x0's neighbors. First, we'll pretend that the two vectors that connect x0 to its immediate
neighbors both independently go via WT. The W may then be calculated using the vectors that form its basis.
The angle between WT and x3 is less than 90 degrees if x3 is not on the same surface as x1 and x2.

Incorrectly establishing neighboring relationships is a major cause of topological instability. The
suggested approach is utilized to create the neighborhood link between the data points and then build the
weighted graph G over the data. Our manifold reconstruction is significantly easier to compute than Freedman's,
which requires an expensive optimization for convex hulls.

When working with an unstructured data set as a starting point, the reconstruction difficulty boils down
to reestablishing local edge connections. The set of K points in M that surround a single point p is referred to as
its neighborhood, abbreviated NBD (p).

EP(p) ={q e NBD(p)|<p—71,q—1r>=0,anyr € NBD (p)} ------- @)

Acute or right angles may be shown to exist between any two adjacent edges, but obtuse angles cannot.
This characteristic enables the production of well-shaped simplices, which are fundamental for erecting the
desired simplicial complex. It's often held that (b)'s 1D reconstruction is superior than (c)'s 2D version.

Algorithm 1: TNDRM

Input:
X: the input data matrix with shape (n,d), where n is the number of data points, and d is the number of
features.
Neomponents - count of low-dimensional spatial dimensions
Perplexity: The degree to which local and global structure are maintained may be adjusted by adjusting this
hyperparameter.
Steps:
Compute pairwise similarities (similarity matrix)
Gaussian kernel distances are used to calculate pairwise similarities between data points in the high-
dimensional space.
Construct a similarity matrix P where P;; represents the conditional probability that point I would pick point j
as its neighbor if neighbors were picked proportionally to their similarity.
Compute perplexity-Adjusted probabilities
Adjust the conditional probability in the similarity matrix P to achieve the target perplexity.
Perplexity is a measure of the effective number of neighbors for each data points. The algorithm aims to
match the desired perplexity value specified as input.
Initialize Low-Dimensional embedding
Initialize the low-dimensional representation Y randomly or with PCA (Principal component analysis)
Define similarity distributions in low-dimensional Space
Compute pairwise similarities in the low-dimensional space using the students t-distribution with one degree
of freedom (Cauchy distribution).
Construct a similarity matrix Q for the low-dimensional representation.
Minimize the kullback-leibler divergence
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Reduce the p-Q Kullback-Leibler divergence by shifting data points around in the low-dimensional space.
Gradient descent

Optimize data-point locations in the low-dimensional space by gradient descent.

Update the positions iteratively until convergence

Output low-dimensional representation

Return the low-dimensional representation Y.

Output

Y:the low-dimensional representation of the input data with shape (N,components)

4. Results and discussion

In this part, we provide the results of our studies and talk in length about what these results mean. Our
findings demonstrate that combining topological nonlinear dimensionality reduction via manifold learning with
meticulous data normalization techniques can significantly enhance the precision with which Wireless Sensor
Networks (WSNs) can detect Distributed Denial of Service (DDOS) attacks.

Table 1: Data frame

Non-Null count Data type

Id 374661 Int64
Time 374661 Int64
Is_ CH 374661 Int64
Who CH 374661 Int64
DIST_TO_CH 374661 Float64
ADV_S 374661 Int64
ADV_R 374661 Int64
JOIN_S 374661 Int64
JOIN_R 374661 Int64
SCH_S 374661 Int64
SCH_R 374661 Int64
Rank 374661 Int64
DATA_S 374661 Int64
DATA_R 374661 Int64
DATA_SENT_TO_BS 374661 Int64
DIST_CH_TO_BS 374661 Float64
SEND_CODE 374661 Int64
Expaned Energy 374661 Float64
Attack type 374661 Object

The table 1 shows the dataset comprises 374,661 entries with multiple attributes. 'ld' represents a
unique identifier, Time' indicates a timestamp, and 'Is_CH' and 'Who CH' are binary indicators denoting
specific network configurations. 'Dist_to_CH' is a numerical value capturing distances. Additionally, the dataset
includes various counts related to network activities: 'ADV_S' and 'ADV_R' denote advertisement activities,
while 'JOIN_S' and 'JOIN_R' represent joining activities. 'SCH_S' signifies scheduling activities. These
attributes, ranging from binary flags to numerical distances and activity counts, provide a diverse dataset for
analysis. The 'ld' column serves as a primary identifier, 'Time' offers temporal context, and the other attributes
indicate network states and activities, forming a comprehensive dataset for detailed exploration and analysis in
the context of Wireless Sensor Networks (WSNS).
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Table 2: Statistical calculation

Mean STD Min
Id 274969.325879 389898.554898 101000.0
Time 1064.748712 899.646164 50.0
Is_CH 0.115766 0.319945 0.0
Who CH 274980.411108 389911.221734 101000.0
Dist_to_CH 22.599380 21.955794 0.0
ADV_S 0.267698 2.061148 0.0
ADV_R 6.940562 7.044319 0.0
JOIN_S 0.779905 0.414311 0.0
JOIN_R 0.737493 4.691498 0.0
SCH_S 0.288984 2.754746 0.0
SCH_R 0.747452 0.434475 0.0
Rank 9.687104 14.681901 0.0
DATA_S 44.857925 42574464 0.0
DATA R 73.890045 230.246335 0.0
Data_Sent_To_BS 4.569448 19.679195 0.0
Dist_CH_To_BS 22.562735 50.261604 0.0
Send_Code 2.497957 2.407337 0.0
Expaned Energy 0.305661 0.669462 0.0

The table 2 provided statistics offer valuable insights into the dataset attributes. The 'Mean' values
provide an average measure across the dataset: notably, the average 'ld' and 'Who CH' values indicate mid-range
identifiers, while 'Time" averages around 1065, suggesting a moderate timestamp value. Binary features such as
'Is_CH' demonstrate a low average, around 0.12, indicating infrequent occurrences. 'Dist_ to CH' averages at
approximately 22.6, suggesting a moderate distance metric. Activity counts like 'ADV_S,' 'ADV_R," JOIN_S;'
'JOIN_R," and 'SCH_S' have relatively low averages, highlighting limited activities in general. 'DATA_S;'
'DATA R, and 'Data_Sent_To_BS' indicate moderate data transmission values, with 'DATA_R' displaying a
notably higher mean due to potential outliers. Distance-related features like '‘Dist CH_To_BS' average around
22.56, indicating a moderate distance between nodes and base stations. 'Send_Code' suggests an average value
of 2.5, pointing to moderate coding activities. 'Rank’ displays an average of approximately 9.7, reflecting a
moderate rank level. Energy-related feature 'Expanded Energy' averages at 0.31, indicating relatively low energy
expansion. The 'STD' values highlight the data dispersion around the mean, and the 'Min' values indicate the
minimum observed values for each attribute. These statistics provide a comprehensive overview of the dataset,
aiding in understanding the distribution and variability of the features in the context of Wireless Sensor
Networks analysis.
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Table 3: Unique data

Data
Id 11120
Time 196
Is_CH 2
Who CH 7088
Dist_to_CH 13956
ADV_S 85
ADV_R 31
JOIN_S 2
JOIN_R 101
SCH_S 95
SCH_R 2
Rank 100
DATA S 192
DATA R 1345
Data_Sent_To_BS 237
Dist CH_To_BS 305
Send_Code 16
Expaned Energy 69352

The table 3 shows specific attributes within the dataset. 'Id" with a value of 11120 indicates a unique
identifier for the data entry, while 'Time' at 196 represents the corresponding timestamp. 'Is_CH' and 'Who CH'
with values 2 and 7088 respectively denote specific network configurations. 'Dist_to_CH' stands at 13956,
indicating a considerable distance metric. Activity counts include '"ADV_S" at 85, 'ADV_R'at 31, 'JOIN_S' at 2,
'JOIN_R'at 101, 'SCH_S' at 95, and 'SCH_R" at 2, showcasing varied activities within the network. 'Rank’ is at
its maximum value of 100, suggesting a high ranking level. Data transmission metrics include 'DATA_S'at 192,
'DATA_R' at 1345, and 'Data_Sent_To_BS' at 237, reflecting substantial data exchange. Distance-related
features include 'Dist CH_To_BS' at 305, indicating the distance between nodes and base stations. 'Send_Code'
at 16 denotes specific coding activities. 'Expaned Energy' stands significantly high at 69352, suggesting an
extensive energy expansion. These values offer a glimpse into the diverse and dynamic nature of the data,
providing a specific instance that contributes to the overall dataset's complexity in the context of Wireless

Sensor Networks analysis.
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Fig 2: Original data
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Figure 3 represents the original dataset in a visual format, providing a graphical overview of the data
attributes and their relationships. Each axis likely represents a specific feature from the dataset, and the points or
patterns on the graph illustrate the data points' distribution and clustering within this multidimensional space.

Reduced Data (t-SNE)
15 1

N

i
1) .
| Bl
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Fig 3: Reduced data (t-SNE)
Figure 4 illustrates the dataset after undergoing dimensionality reduction, likely using techniques such
as topological nonlinear dimensionality reduction via manifold learning. This reduced data representation

condenses the original high-dimensional feature space into a lower-dimensional format while preserving the
essential topological and geometric properties of the data.

Table 4: Preprocessing accuracy comparison table

Algorithm Preprocessing Accuracy
Standard Scalar 33
Existing methods Label Encoding 55

Principal Component Analysis | 56

Linear Discriminant Analysis | 60

Recursive Feature Elimination | 88

Proposed methods | TNDRM 99
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Fig 4: Preprocessing accuracy comparison chart

The table 4 and figure 4 shows, various algorithms were employed for data preprocessing, and their
effectiveness was evaluated based on preprocessing accuracy scores. Among the existing methods, Principal
Component Analysis (PCA) achieved an accuracy of 56%, Linear Discriminant Analysis (LDA) reached 60%,
and Recursive Feature Elimination (RFE) resulted in 88% accuracy. In comparison, a proposed method referred
to as TNDRM (presumably a new technique) demonstrated the highest preprocessing accuracy of 99%. These
accuracy scores indicate the efficacy of each algorithm in transforming and preparing the data for subsequent
analysis or machine learning tasks. A higher accuracy score suggests that the corresponding preprocessing
method was more successful in capturing essential features or reducing the dimensionality of the data while
preserving relevant information. Therefore, TNDRM outperforms the existing methods, showcasing its potential
as a promising technique for data preprocessing.

5. Conclusion

Finally, TNDRM has presented a robust preprocessing approach for improving the accuracy of DDOS
attack detection in Wireless Sensor Networks (WSNs). We tackled the delicate issues provided by the high-
dimensional and complex nature of WSN data by mixing topological nonlinear dimensionality reduction via
manifold learning with painstaking data standardization techniques. We effectively translated the complicated
high-dimensional feature space of WSN data into a lower-dimensional representation while keeping the key
topology and geometry of the original data using a variety of learning approaches. This change allowed for a
deeper comprehension of the various data structures, establishing the groundwork for more effective analysis
and detection. The use of z-score normalization and min-max scaling to normalize data within this reduced
dimensional space was critical. Normalization maintained uniformity and consistency by minimizing the
influence of various scales and outliers, giving a dependable input for machine learning algorithms. This process
removed aberrations that may jeopardize the accuracy of the algorithms, improving the dependability of our
DDOS attack detection system. For Further to improve the classification accuracy using the feature selection
methods.
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