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Abstract: With the increasing complexity of Distributed Denial of Service (DDOS) attacks in Wireless 

Sensor Networks (WSNs), the accurate detection of these threats has become imperative. This research 

presents a robust preprocessing technique for DDOS attack detection, focusing on data normalization through 

the integration of topological nonlinear dimensionality reduction via manifold learning (TNDRM). Our 

methodology revolves around transforming the intricate high-dimensional feature space of WSN data into a 

lower-dimensional representation, all while preserving the intrinsic topology and geometry of the original 

data. Achieved through manifold learning techniques, this process enables a more meaningful understanding 

of complex data structures, essential for effective analysis. A pivotal step in our approach involves the 

normalization of the data within the reduced dimensional space. Leveraging statistical techniques, 

specifically z-score normalization and min-max scaling, we mitigate the impact of varying scales and outliers 

in the data. The accuracy of machine learning algorithms is improved with normalization because it 

guarantees uniformity and consistency by removing aberrations.  

Keywords: Distributed Denial of Service, Intrusion Detection Systems, Preprocessing, wireless sensor 

network 

 

 

1. Introduction  

In today's Wireless Sensor Networks (WSNs) scenario, protecting the security and integrity of data 

transmission is critical [1]. With the proliferation of sophisticated cyber threats, notably Distributed Denial of 

Service (DDOS) attacks, protecting these networks from malicious infiltration has become an ongoing issue [2-

3]. DDOS attacks, which are distinguished by their capacity to overload network resources and interrupt 

services, demand sophisticated detection techniques capable of navigating the complicated patterns within 

network traffic data [4-6]. When dealing with the large dimensionality and complicated structures inherent in 

network data, traditional techniques of DDOS detection in WSNs often confront problems [7-8]. Thus, there is a 

pressing want for cutting-edge methods that may reduce the dimensionality of this data while yet retaining its 

essential topology and geometry [9]. Furthermore, successful identification necessitates resolving the data's 

changing scales and outliers, ensuring that machine learning algorithms can function on a consistent and 

trustworthy input space [10-12]. 

This study tackles these issues by presenting a unique method for combining the strength of topological 
nonlinear dimensionality reduction via manifold learning with rigorous data normalization procedures [13-14]. 

We want to identify the complex and hidden structures inside the high-dime4421  
Bibliography  

[1] P. J. Lucas, J. Baird, L. Arai, C. Law, and H. M. Roberts, “Worked examples of alternative methods for the 

synthesis of qualitative and quantitative research in systematic reviews,” BMC Medical Research Methodology, 

vol. 7, no. 1, p. 4, Jan. 2007, doi: 10.1186/1471-2288-7-4.  
[2] R. G. Vajrapu and S. Kothwar, “Software Requirements Prioritization Practices in Software Start-ups : A 

Qualitative research based on Start-ups in India,” undefined, 2018, Accessed: Dec. 09, 2021. [Online]. 

Available: https://www.semanticscholar.org/paper/Software-Requirements-Prioritization-Practices-in-%3A-

Vajrapu-Kothwar/5605bd2a2dc93a0a997a7c68de30969b01312e5f  



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
__________________________________________________________________________________________ 
 

4423 
 

{3] M. Gutbrod and J. Münch, “Teaching lean startup principles:an empirical study on assumption 

prioritization,” in Software-intensive business: start-ups, ecosystems and platforms : proceedings of the 

International Workshop on Software-intensive Business: Start-ups, Ecosystems and Platforms (SiBW 2018) : 

Espoo, Finland, December 3, 2018. - (CEUR workshop proceedings ; 2305), 2018, pp. 245–253. [Online]. 

Available: http://ceur-ws.org/Vol-2305/ nsional feature space of WSN data by applying manifold learning. 

While preserving the data's essential characteristics, we transform it into a lower-dimensional space [15, 16]. 

Following that, the modified data is subjected to a thorough normalization procedure that employs statistical 

approaches such as z-score normalization and min-max scaling [17-18]. This phase is critical for removing the 

influence of various scales and outliers and guaranteeing consistent and uniform input for machine learning 

algorithms [19-20]. The fundamental goal of this study is to improve the detection of DDOS attacks in WSNs by 

establishing a robust preprocessing framework [21-22]. Our method not only advances anomaly detection 

techniques, but it also lays the door for enhanced network security tactics in the context of wireless sensor 

networks [23-24]. 

The primary contributions and objectives of this manuscript may be summarized as follows. 

• Statistical Normalization using z-score normalization and min-max scaling 

• Dataset preprocessing using topological nonlinear dimensionality reduction using manifold learning 

 From here on out, the structure of this article will look like this. In Section 2, multiple authors address 

various methods of data normalization. In Section 3, we show the suggested model. We provide our research 

results in Section 4. Our results are summed up and recommendations for further study are offered in the last 

section. 

1.1 Motivation of the paper 

 Because the complexity of DDOS attacks in WSN is increasing, accurate detection techniques are 

required. Topological nonlinear dimensionality reduction via manifold learning is combined with data 

normalization approaches in this study. Our technique enables precise DDOS attack detection by retaining key 

data structures. The objective is to improve WSN security by resolving extensive data nuances, maintaining 

consistency via normalization, and exceeding conventional approaches' constraints. The validation of the 

research on the WS-NDS dataset demonstrates its superiority, providing a substantial development in Intrusion 

Detection Systems (IDS) for WSNs. 

 

2. Background Study  

Abidoye, A. P., & Obagbuwa, I. C. [1] Because of their versatility, WSNs have been gaining in 

popularity in recent years. The communication styles and methods of deploying sensor networks make them 

vulnerable to many different kinds of attacks. Using the pre-shared keys, the MAS encrypts the message before 

sending it to the recipient node, ensuring the authenticity and integrity of the data being sent over the network. 

For data packet authentication, MAS uses a nonce and a hash value. The MAS has been shown to be able to 

identify and fight against DDoS attacks in WSNs in simulations. To determine whether the suggested method 

satisfies the resource limitations of WSNs, it will be implemented in a real test bed in a subsequent research. 

 Edlund, A. et al. [5] The sequencing of 16S rRNA genes and other metagenomic methods have 

provided the bulk of these authors present understanding of the intricate human microbiome by revealing both 

the presence and absence of microorganisms and the relative abundance of genes. In this work, the author used a 

metatranscriptomic technique to learn more about how bacteria behave and how an oral biofilm community 

develops and grows by analyzing the mRNA produced by active bacterial genes and genomes.  

 Guo, W., & Banerjee, A. G. [9] the author apply a powerful TDA instrument, the Mapper algo-rithm, 

to estimate yield and find errors in data sets from the chemical manufacturing process and the semiconductor 

etch process. The author demonstrate that the Mapper algorithm provides additional insights into the 

complicated data beyond the standard methods of feature selection. To better comprehend the tangential 

connections between the features and manufacturing system outputs, the author use direct visualisation to build 

an abstract representation of the data. 

Islam, M. T., & Xing, L. [11] For this reason, the author suggest a three-stage technique, GSE, for 

nonlinear dimensionality reduction, with the first stage being concerned with maintaining the scalability and 

integrity of the data geometry. To correct the first short-circuiting issue, the second stage integrates 
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neighborhood-specific data. The third phase of GSE keeps the data's statistics intact. Multiple instances have 

shown that GSE performs better than other dimensionality reduction methods at simultaneously retaining the 

data's geometric and statistical features while shrinking their size. 

 Puschmann, D. et al. [17] the author provides a new method for discovering patterns and connections 

across disparate datasets. By taking an unsupervised approach, these authors solution was able to examine 

multiple streams of sensor data, extract patterns therein, and then translate those patterns into higher-level 

abstractions that can be understood by both humans and machines. Any kind of Internet of Things (IoT) data 

stream may benefit from the suggested approach. 

 Ramesh, S. et al. [19] the aforementioned deep neural network-based DoS detection approach has been 

shown to be effective in all tests. The suggested method's detection accuracy and low time investment result 

from the use of a neural network with several layers of neurons. The experimental findings were predicated on 

the idea that optimization methods may boost learning efficiency. In addition, it has been shown that feature 

selection decreases the dataset's dimensionality. 

2.1 Problem definition 

 The increasing complexity of DDOS attacks on WSNs offers a significant challenge to network 

security. Due to the complicated and high-dimensional structure of WSN data, traditional approaches fail to 

identify these sophisticated threats correctly. The problem is in converting this complicated data into a format 

that can be effectively analyzed. The data's varied sizes and outliers impede the efficiency of machine learning 

algorithms, lowering the accuracy of DDOS attack detection. In order to address these difficulties, we are 

developing a robust preprocessing approach that combines topological nonlinear dimensionality reduction via 

manifold learning and data normalization. 

 

3. Materials and methods 

 In this part, we describe the materials utilized and the methods employed in our study to create a robust 

preprocessing mechanism to improve the detection accuracy of DDOS attacks in WSNs. Our method combines 

topological nonlinear dimensionality reduction with rigorous data normalization approaches. The data 

normalization using uncovering complex data structures with topological nonlinear dimensionality reduction 

using manifold learning model flowchart has represented at figure 1. 

 

 
Fig 1: TNDRM Flow chart 
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3.1 Dataset collection  

 https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds, The WS-NDS dataset, available on 

Kaggle, is a collection of network traffic data for intrusion detection system (IDS) evaluation. The dataset 

contains a total of 56,422 network traffic instances, which are labeled as either normal or attack traffic.  

 

3.2 Statistical Normalization using z-score normalization and min-max scaling 

3.2.1 Z-score normalization 

 Z-score normalization, also known as standardization, is a common statistical procedure for cleaning 

and organizing data. From the above information, a normal distribution is derived, with mean 0 and standard 

deviation 1. This technique is very helpful for standardizing a dataset containing characteristics that utilize a 

variety of units and scales. To calculate a z-score, we first remove the dataset's mean from each data point and 

then divide that number by its standard deviation. The mathematical formula for determining the z-score (Z) for 

a set of features XX is as follows: 

𝑍 =
(𝑋−𝜇)

𝜎
 ------ (1) 

• X is the feature's starting point value. 

• 𝜇 represents an average of all feature values. 

• 𝜎 represents the dispersion of feature values as a whole. 

 In the preprocessing phase, normalization decomposes data with numerical properties so that the values 

in the data may be transformed into a specified range. Min-max normalization, z-score normalization, and 

decimal scaling are the most prevalent approaches to normalizing data. Z-score normalization, as shown by 

Equation 1, assigns an attribute E value to a new range. 

𝑣 , =
𝑣𝑖−𝐸𝑖

𝑠𝑡𝑑(𝐸)
 ------- (2) 

Description:  

𝑣 , = value obtained after normalization.  

𝑣𝑖 = the property value that has to be normalized  

𝐸𝑖 = mean attribute value  

𝑠𝑡𝑑(𝐸) = the E-attribute of the standard deviation. 

 

3.2.2. Min-max scaling 

 To normalize characteristics to a specified range, often [0, 1], min-max scaling is a preprocessing 

method used in data analysis. When working with data that fluctuates greatly in size, it shines. This technique 

uses a linear transformation to scale the data such that the feature's lowest and maximum values are represented 

by 0 and 1, respectively. For a given feature XX, the min-max scaling formula is: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 ------ (3) 

Where: 

• 𝑋 is the original worth of the component. 

• 𝑥𝑚𝑖𝑛 is the lowest value of this attribute that appears in the data set. 

• 𝑥𝑚𝑎𝑥 is the highest possible value of the characteristic found in the data set. 

 

3.3 Dataset preprocessing using topological nonlinear dimensionality reduction using manifold learning  

 During the preprocessing phase, our method uses topological nonlinear dimensionality reduction 

techniques like t-Distributed Stochastic Neighbor Embedding (t-SNE) and Isometric Mapping (Isomap) to 

transform raw network traffic data from Wireless Sensor Networks (WSNs) into a lower-dimensional space 

while preserving the underlying topology and geometry of the original data. These techniques, which are 

especially useful in high-dimensional environments, provide a more accurate representation of the data essential 

for in-depth analysis by capturing intricate patterns and nonlinear interactions. In addition to preserving essential 

topological and geometric information, this converted, lower-dimensional data makes it possible for future 

machine learning algorithms to work on a more relevant and intelligible input space. The effectiveness of DDOS 

attack detection models in WSNs may be greatly improved with the help of this preprocessing phase, which 
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ensures that the detection system can accurately identify even the most subtle patterns and abnormalities in the 

network data. 

𝑉 = 𝑅𝐷 = {𝑥 = (

𝑥1

..
𝑥𝐷

) : 𝑥𝑗 ∈ 𝑅} ------ (4) 

 Supposing V is a vector space, we may define 𝑊𝑇 as a subspace of V with a finite basis. 

𝑊𝑇 = {𝑥 ∈ 𝑅𝐷: < 𝑥, 𝑤 >= 0∀𝑤∈ 𝑊} --------- (5) 

 The RD subspace whose orthogonal counterpart is RD is denoted as 𝑊𝑇. W is a subspace of RD iff and 

only iff RD, hence W is a subspace of RD. 

𝑑𝑖𝑚(𝑊𝑇) = 𝐷 − 𝑑𝑖𝑚(𝑤) ------- (6) 

 From the example, it's easy to see that picking neighbors based on distance alone would result in x3 

being selected as one of x0's neighbors. First, we'll pretend that the two vectors that connect x0 to its immediate 

neighbors both independently go via 𝑊𝑇. The W may then be calculated using the vectors that form its basis. 

The angle between 𝑊𝑇 and x3 is less than 90 degrees if x3 is not on the same surface as x1 and x2. 

 Incorrectly establishing neighboring relationships is a major cause of topological instability. The 

suggested approach is utilized to create the neighborhood link between the data points and then build the 

weighted graph G over the data. Our manifold reconstruction is significantly easier to compute than Freedman's, 

which requires an expensive optimization for convex hulls. 

 When working with an unstructured data set as a starting point, the reconstruction difficulty boils down 

to reestablishing local edge connections. The set of K points in M that surround a single point p is referred to as 

its neighborhood, abbreviated 𝑁𝐵𝐷(𝑝).  

𝐸𝑃(𝑝) = {𝑞 ∈ 𝑁𝐵𝐷(𝑝)| < 𝑝 − 𝑟, 𝑞 − 𝑟 > ≥ 0, 𝑎𝑛𝑦 𝑟 ∈ 𝑁𝐵𝐷 (𝑝)} ------- (7) 

 Acute or right angles may be shown to exist between any two adjacent edges, but obtuse angles cannot. 

This characteristic enables the production of well-shaped simplices, which are fundamental for erecting the 

desired simplicial complex. It's often held that (b)'s 1D reconstruction is superior than (c)'s 2D version.  

 

Algorithm 1: TNDRM 

Input: 

        X: the input data matrix with shape (n,d), where n is the number of data points, and d is the number of 

features.  

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 : count of low-dimensional spatial dimensions  

Perplexity: The degree to which local and global structure are maintained may be adjusted by adjusting this 

hyperparameter. 

Steps: 

Compute pairwise similarities (similarity matrix) 

       Gaussian kernel distances are used to calculate pairwise similarities between data points in the high-

dimensional space. 

Construct a similarity matrix P where 𝑃𝑖𝑗  represents the conditional probability that point 𝐼 would pick point 𝑗 

as its neighbor if neighbors were picked proportionally to their similarity. 

Compute perplexity-Adjusted probabilities 

Adjust the conditional probability in the similarity matrix P to achieve the target perplexity. 

Perplexity is a measure of the effective number of neighbors for each data points. The algorithm aims to 

match the desired perplexity value specified as input. 

Initialize Low-Dimensional embedding  

Initialize the low-dimensional representation Y randomly or with PCA (Principal component analysis) 

Define similarity distributions in low-dimensional Space 

Compute pairwise similarities in the low-dimensional space using the students t-distribution with one degree 

of freedom (Cauchy distribution). 

Construct a similarity matrix Q for the low-dimensional representation. 

 Minimize the kullback-leibler divergence  
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Reduce the p-Q Kullback-Leibler divergence by shifting data points around in the low-dimensional space.  

Gradient descent 

Optimize data-point locations in the low-dimensional space by gradient descent. 

Update the positions iteratively until convergence 

Output low-dimensional representation  

Return the low-dimensional representation Y. 

Output 

Y:the low-dimensional representation of the input data with shape (n,𝒏𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔) 

 

 

4. Results and discussion 

 In this part, we provide the results of our studies and talk in length about what these results mean. Our 

findings demonstrate that combining topological nonlinear dimensionality reduction via manifold learning with 

meticulous data normalization techniques can significantly enhance the precision with which Wireless Sensor 

Networks (WSNs) can detect Distributed Denial of Service (DDOS) attacks. 

 

Table 1: Data frame 

 Non-Null count Data type 

Id 374661 Int64 

Time 374661 Int64 

Is_CH 374661 Int64 

Who CH 374661 Int64 

DIST_TO_CH 374661 Float64 

ADV_S 374661 Int64 

ADV_R 374661 Int64 

JOIN_S 374661 Int64 

JOIN_R 374661 Int64 

SCH_S 374661 Int64 

SCH_R 374661 Int64 

Rank 374661 Int64 

DATA_S 374661 Int64 

DATA_R 374661 Int64 

DATA_SENT_TO_BS 374661 Int64 

DIST_CH_TO_BS 374661 Float64 

SEND_CODE 374661 Int64 

Expaned Energy 374661 Float64 

Attack type 374661 Object  

  

The table 1 shows the dataset comprises 374,661 entries with multiple attributes. 'Id' represents a 

unique identifier, 'Time' indicates a timestamp, and 'Is_CH' and 'Who CH' are binary indicators denoting 

specific network configurations. 'Dist_to_CH' is a numerical value capturing distances. Additionally, the dataset 

includes various counts related to network activities: 'ADV_S' and 'ADV_R' denote advertisement activities, 

while 'JOIN_S' and 'JOIN_R' represent joining activities. 'SCH_S' signifies scheduling activities. These 

attributes, ranging from binary flags to numerical distances and activity counts, provide a diverse dataset for 

analysis. The 'Id' column serves as a primary identifier, 'Time' offers temporal context, and the other attributes 

indicate network states and activities, forming a comprehensive dataset for detailed exploration and analysis in 

the context of Wireless Sensor Networks (WSNs). 
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Table 2: Statistical calculation 

 Mean STD Min 

Id 274969.325879 389898.554898 101000.0 

Time 1064.748712 899.646164 50.0 

Is_CH 0.115766 0.319945 0.0 

Who CH 274980.411108 389911.221734 101000.0 

Dist_to_CH 22.599380 21.955794 0.0 

ADV_S 0.267698 2.061148 0.0 

ADV_R 6.940562 7.044319 0.0 

JOIN_S 0.779905 0.414311 0.0 

JOIN_R 0.737493 4.691498 0.0 

SCH_S 0.288984 2.754746 0.0 

SCH_R 0.747452 0.434475 0.0 

Rank 9.687104 14.681901 0.0 

DATA_S 44.857925 42.574464 0.0 

DATA_R 73.890045 230.246335 0.0 

Data_Sent_To_BS 4.569448 19.679195 0.0 

Dist_CH_To_BS 22.562735 50.261604 0.0 

Send_Code 2.497957 2.407337 0.0 

Expaned Energy 0.305661 0.669462 0.0 

  

The table 2 provided statistics offer valuable insights into the dataset attributes. The 'Mean' values 

provide an average measure across the dataset: notably, the average 'Id' and 'Who CH' values indicate mid-range 

identifiers, while 'Time' averages around 1065, suggesting a moderate timestamp value. Binary features such as 

'Is_CH' demonstrate a low average, around 0.12, indicating infrequent occurrences. 'Dist_to_CH' averages at 

approximately 22.6, suggesting a moderate distance metric. Activity counts like 'ADV_S,' 'ADV_R,' 'JOIN_S,' 

'JOIN_R,' and 'SCH_S' have relatively low averages, highlighting limited activities in general. 'DATA_S,' 

'DATA_R,' and 'Data_Sent_To_BS' indicate moderate data transmission values, with 'DATA_R' displaying a 

notably higher mean due to potential outliers. Distance-related features like 'Dist_CH_To_BS' average around 

22.56, indicating a moderate distance between nodes and base stations. 'Send_Code' suggests an average value 

of 2.5, pointing to moderate coding activities. 'Rank' displays an average of approximately 9.7, reflecting a 

moderate rank level. Energy-related feature 'Expanded Energy' averages at 0.31, indicating relatively low energy 

expansion. The 'STD' values highlight the data dispersion around the mean, and the 'Min' values indicate the 

minimum observed values for each attribute. These statistics provide a comprehensive overview of the dataset, 

aiding in understanding the distribution and variability of the features in the context of Wireless Sensor 

Networks analysis. 
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Table 3: Unique data 

 Data 

Id 11120 

Time 196 

Is_CH 2 

Who CH 7088 

Dist_to_CH 13956 

ADV_S 85 

ADV_R 31 

JOIN_S 2 

JOIN_R 101 

SCH_S 95 

SCH_R 2 

Rank 100 

DATA_S 192 

DATA_R 1345 

Data_Sent_To_BS 237 

Dist_CH_To_BS 305 

Send_Code 16 

Expaned Energy 69352 

  

The table 3 shows specific attributes within the dataset. 'Id' with a value of 11120 indicates a unique 

identifier for the data entry, while 'Time' at 196 represents the corresponding timestamp. 'Is_CH' and 'Who CH' 

with values 2 and 7088 respectively denote specific network configurations. 'Dist_to_CH' stands at 13956, 

indicating a considerable distance metric. Activity counts include 'ADV_S' at 85, 'ADV_R' at 31, 'JOIN_S' at 2, 

'JOIN_R' at 101, 'SCH_S' at 95, and 'SCH_R' at 2, showcasing varied activities within the network. 'Rank' is at 

its maximum value of 100, suggesting a high ranking level. Data transmission metrics include 'DATA_S' at 192, 

'DATA_R' at 1345, and 'Data_Sent_To_BS' at 237, reflecting substantial data exchange. Distance-related 

features include 'Dist_CH_To_BS' at 305, indicating the distance between nodes and base stations. 'Send_Code' 

at 16 denotes specific coding activities. 'Expaned Energy' stands significantly high at 69352, suggesting an 

extensive energy expansion. These values offer a glimpse into the diverse and dynamic nature of the data, 

providing a specific instance that contributes to the overall dataset's complexity in the context of Wireless 

Sensor Networks analysis. 

 

 
Fig 2: Original data 
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 Figure 3 represents the original dataset in a visual format, providing a graphical overview of the data 

attributes and their relationships. Each axis likely represents a specific feature from the dataset, and the points or 

patterns on the graph illustrate the data points' distribution and clustering within this multidimensional space. 

 

 
Fig 3: Reduced data (t-SNE) 

 

 Figure 4 illustrates the dataset after undergoing dimensionality reduction, likely using techniques such 

as topological nonlinear dimensionality reduction via manifold learning. This reduced data representation 

condenses the original high-dimensional feature space into a lower-dimensional format while preserving the 

essential topological and geometric properties of the data. 

 

Table 4: Preprocessing accuracy comparison table 

 Algorithm Preprocessing Accuracy  

 

 

Existing methods  

 

 

Standard Scalar 33 

Label Encoding 55 

Principal Component Analysis 56 

Linear Discriminant Analysis 60 

Recursive Feature Elimination 88 

Proposed methods 

 

TNDRM 99 
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Fig 4: Preprocessing accuracy comparison chart  

 

 The table 4 and figure 4 shows, various algorithms were employed for data preprocessing, and their 

effectiveness was evaluated based on preprocessing accuracy scores. Among the existing methods, Principal 

Component Analysis (PCA) achieved an accuracy of 56%, Linear Discriminant Analysis (LDA) reached 60%, 

and Recursive Feature Elimination (RFE) resulted in 88% accuracy. In comparison, a proposed method referred 

to as TNDRM (presumably a new technique) demonstrated the highest preprocessing accuracy of 99%. These 

accuracy scores indicate the efficacy of each algorithm in transforming and preparing the data for subsequent 

analysis or machine learning tasks. A higher accuracy score suggests that the corresponding preprocessing 

method was more successful in capturing essential features or reducing the dimensionality of the data while 

preserving relevant information. Therefore, TNDRM outperforms the existing methods, showcasing its potential 

as a promising technique for data preprocessing. 

 

5. Conclusion 

 Finally, TNDRM has presented a robust preprocessing approach for improving the accuracy of DDOS 

attack detection in Wireless Sensor Networks (WSNs). We tackled the delicate issues provided by the high-

dimensional and complex nature of WSN data by mixing topological nonlinear dimensionality reduction via 

manifold learning with painstaking data standardization techniques. We effectively translated the complicated 

high-dimensional feature space of WSN data into a lower-dimensional representation while keeping the key 

topology and geometry of the original data using a variety of learning approaches. This change allowed for a 

deeper comprehension of the various data structures, establishing the groundwork for more effective analysis 

and detection. The use of z-score normalization and min-max scaling to normalize data within this reduced 

dimensional space was critical. Normalization maintained uniformity and consistency by minimizing the 

influence of various scales and outliers, giving a dependable input for machine learning algorithms. This process 

removed aberrations that may jeopardize the accuracy of the algorithms, improving the dependability of our 

DDOS attack detection system. For Further to improve the classification accuracy using the feature selection 

methods. 
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