
Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 43 No. 4 (2022)
__

225

Review of Software Architecture and Design

Practices: Current Trends and Future Direction

[1] Kajal Sharma, [2] Naveen Kumar Yadav, [3] Aishwarya Maloo, [4] Shivam Verma

[1] Asst. Professor

Dept. of Management

Arya Institute of Engineering and Technology, Jaipur
 [2] Asst. Professor

Mechanical Engineering

Arya Institute of Engineering Technology & Management, Jaipur
 [3] Science Student

Sampoorna Kendra Vidyalaya, Dibrugarh, Assam.
 [4] Research Scholar

Arya Institute of Engineering and Technology, Jaipur

Abstract: Software structure and design are foundational components of software program engineering,

shaping the shape, capability, and maintainability of software program structures. This evaluates paper

provides a comprehensive exam of the modern-day country of software program architecture and design

practices, tracing their historical evolution, elucidating fundamental standards, and discussing key

components, principles, and styles that underpin effective software design. The paper delves into modern

tendencies, together with micro services, server less computing, and occasion-pushed architectures,

highlighting their advantages and demanding situations. It explores diverse architectural patterns and

processes, presenting insights into their suitability for exclusive mission contexts. Tools, frameworks, and

visualization strategies for software program structure and design also are assessed.

Through this overview, we purpose to offer a comprehensive resource for software engineers, researchers,

and practitioners, supporting them navigate the dynamic panorama of software program structure and

layout, make knowledgeable choices, and envision a future wherein software structures are extra resilient,

scale-able, and adaptable to evolving technological demands.

Keywords: Modularity, performance, software architecture, software design, scalability, modularity.

1. Introduction

Software has come to be a critical a part of current existence, powering everything from smartphones to

commercial machinery, from monetary systems to healthcare solutions. Behind every piece of software lies a

complicated net of architectural choices and design choices that determine its functionality, maintainability, and

adaptable-ness. Software architecture and layout, essential pillars of software program engineering, have

evolved appreciably over the years, shaping the manner software systems are conceived, structured, and

advanced. The importance of software program architecture and design can't be overstated. Effective

architectural selections can lead to structures that scale gracefully, are tremendously maintainable, and provide

strong overall performance. Thoughtful layout selections can decorate software program's usability,

extensibility, and security. However, the panorama of software architecture and layout isn't static; it constantly

evolves in response to emerging technology, changing user expectations, and new paradigms of software

program improvement. This research paper embarks on a journey into software architecture design, providing a

comprehensive understanding of the current state of practice and trends shaping the field We explore the

historical roots of software architecture and design, tracing their evolution background, from the early days of

computers to gifts. We delve into the key concepts that underpin effective architectural design decisions, from

modularity and scalability to maintainability and security. The paper also shines some light on modern trends

that are reshaping the software landscape. Micro-service architecture, server low compute, and event-driven

systems have emerged as powerful paradigms, offering new ways to design and design software solutions We

examine the benefits and challenges associated with each of these elements, helping professionals to they make

the right choices in their software business. Real-world case studies show how architectural choices influence

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 43 No. 4 (2022)
__

226

the outcomes of software projects, providing valuable lessons from successful implementations. Finally, we cast

our gaze toward the future, speculating on the evolution of software architecture and design in the face of

emerging technologies like artificial intelligence and the Internet of Things (IoT). We identify areas ripe for

future research and innovation, envisioning a landscape where software systems are more resilient, scale-able,

and adaptable than ever before. In essence, this review paper serves as a comprehensive resource for software

engineers, researchers, and practitioners, guiding them through the ever-evolving landscape of software

architecture and design. It equips them with the knowledge needed to make informed decisions, embrace current

best practices, and prepare for the exciting challenges and opportunities that lie ahead in the field of software

engineering.

2. Literature Review

Fundamental Concepts in Software Architecture and Design:

1. Modularity: Modularity is the exercise of breaking down a software gadget into smaller, self-

contained modules or components. These modules can be evolved, tested, and maintained

independently, making the gadget extra potential and scalable.

2. Scalability: Scalability refers to a system's capability to address elevated workloads and develop in

potential without compromising performance. Architectural choices, such as load balancing and

distributed computing, play a critical position in achieving scalability.

3. Security: Security is a paramount issue in software program design. It involves protecting software

program systems from unauthorized get right of entry to, information breaches, and vulnerabilities.

Security measures need to be included into the architecture from the floor up.

4. Performance: Performance issues involve optimizing a software program system to fulfill particular

speed and performance necessities. This consists of optimizing algorithms, records systems, and aid

utilization.

Key Components of Software Architecture:

1. Modules/Components: Modules are the constructing blocks of a software gadget, representing

discrete, functional gadgets of code. They may be organized hierarchically and speak with each

different via defined interfaces.

2. Layers: Layered structure separates a device into horizontal layers, with each layer answerable for a

specific set of functions. Common layers include presentation, enterprise common sense, and

information get right of entry to layers.

3. Architectural Patterns: Architectural styles provide high-level templates for fixing recurring layout

issues. Examples encompass Model-View-Controller (MVC), Micro services, and Event-Driven

Architecture.

4. Interfaces: Interfaces outline the contracts and communication factors between additives, permitting

them to interact without exposing their inner information.

5. Data Storage: Architectural choices concerning statistics storage, consisting of databases, caching

mechanisms, and statistics warehouses, are vital for records-pushed applications.

Modern Software Architecture Trends:

1. Micro services: Micro offerings architecture decomposes a software program system into small,

impartial offerings that may be developed, deployed, and scaled in my view. It promotes flexibility

and allows for faster improvement cycles.

2. Server much less Computing: Server less architecture abstracts away server management, enabling

developers to cognizance on writing code (features) without disturbing about infrastructure. It

scales routinely and is price-effective.

3. Event-Driven Architecture: Event-pushed architecture is based on occasions and messages to cause

actions and conversation between components. It's well-proper for real-time and reactive systems,

like IoT applications.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 43 No. 4 (2022)
__

227

4. Containerization: Containers, such as Docker, package deal programs and their dependencies into

an unmarried unit, making deployment and scaling greener. Kubernetes is a famous box

orchestration tool.

5. Edge Computing: Edge computing brings computing resources towards the statistics source or quit-

customers, reducing latency and allowing actual-time processing. It's essential for applications like

IoT and autonomous motors.

6. Block chain and Distributed Ledgers: Block chain technology is used to create decentralized and

tamper-resistant structures. It's gaining traction in industries which includes finance, supply chain,

and healthcare.

7. Understanding those essential concepts, key components, and current tendencies in software

program structure is essential for making knowledgeable architectural decisions and preserving

software program systems applicable and competitive in state-of-the-art fast-paced technological

landscape.

Tools and Technologies:

1. Modelling and Design Tools:

• Unified Modelling Language (UML): UML is a standardized modelling language used for

visualizing, specifying, constructing, and documenting software program structures. Tools like

IBM Rational Rose, Enterprise Architect, and Visual Paradigm provide UML help.

• Lucid chart: Lucid chart is a cloud-based diagramming tool that gives UML diagram templates

and collaboration functions for designing software architectures.

• Draw. Io: An open-supply diagramming device that helps various diagram kinds, together with

UML, flowcharts, and network diagrams.

2. Version Control Systems:

• Git: Git is a distributed version manipulate machine extensively used for handling supply code,

branching, and collaboration among developers. Platforms like GitHub, Git Lab, and Bit bucket

offer Git repository website hosting offerings.

3. Integrated Development Environments (IDEs):

• Eclipse: Eclipse is an open-source IDE that helps multiple programming languages and offers

tools for software development, which include code modifying, debugging, and modelling.

• Visual Studio: Microsoft's Visual Studio is a powerful IDE that supports various programming

languages and provides features for constructing, debugging, and profiling applications.

4. Future Scope

1. Human-Computer Interaction (HCI) and UserCentric Design: Software architects will need to

collaborate closely with HCI specialists to layout architectures that provide first rate person

experiences, thinking about elements together with accessibility, usability, and user remarks.

2. Evolutionary Architectures: Architectures that can adapt and evolve over time may be in call for.

This consists of dynamic reconfiguration, self-recovery systems, and architectures that may

accommodate converting commercial enterprise needs.

3. Ethical Software Design: There will be an increased consciousness on ethical considerations in

software program structure and design, which includes addressing biases in algorithms, making sure

data privates, and adhering to moral ideas in AI and automation.

4. Quantum Computing and Software Design: With the improvement of quantum computing, software

program architects will face new demanding situations and opportunities in designing algorithms

and structures which can harness the power of quantum computer systems for complicated problem-

solving.AI-Driven Architectural Decision Support: Artificial intelligence and device getting to

know will increasingly be used to research and optimize software program architectures. AI can

assist architects in making statistics-pushed choices, predicting potential issues, and recommending

architectural patterns and solutions.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 43 No. 4 (2022)
__

228

5. Sustainable Software Architecture: Sustainable layout standards will be implemented to software

structure, considering energy performance and decreasing the environmental effect of software

program structures. This includes designing for low energy intake and optimizing useful resource

usage.

5. Conclusions

The subject of software program structure and layout is at the forefront of innovation and

transformation inside the ever-evolving panorama of technology. In this evaluate, we've journeyed via its

historical roots, essential concepts, key additives, and cutting-edge tendencies, losing light on the dynamic

nature of this crucial subject. Fundamental ideas, inclusive of modularity, scalability, maintainability, security,

and performance, continue to be the guiding concepts for architects and architects. These principles function the

bedrock upon which resilient and adaptable software program systems are constructed. Key components, such

as modules/components, layers, architectural patterns, interfaces, facts garage, and communique protocols,

provide the tools and frameworks vital for architects to craft state-of-the-art and green architectures. These

components empower them to deal with complex design challenges and meet the various needs of modern

software program packages. Modern software structure trends have emerged as answers to current demands.

Micro services, server much less computing, occasion-pushed architectures, and containerization have redefined

how software program structures are conceived and orchestrated. These trends offer flexibility, scalability, and

agility, permitting businesses to respond to unexpectedly converting technological landscapes and consumer

expectations. In this ever-evolving discipline, architects will include automated structure generation,

evolutionary architectures, and the non-stop quest for innovation. The position of software architects will remain

pivotal in crafting software program structures that now not best meet purposeful requirements but additionally

address moral, environmental, and person-centric issues. In conclusion, software structure and design stand as

cornerstones inside the realm of software program engineering. They navigate the tricky interplay of

technology, user needs, and moral concerns, shaping a future wherein software structures are not just green and

scalable however additionally moral, sustainable, and person-centric.

References

[1] Babar, M.A., Dingsøyr, T., Lago, P., Vliet, H.v. (Eds.), 2009, Software Architecture Knowledge

Management: Theory and Practice. Springer-Verlag, Berlin, Heidelberg.

[2] Babar, M.A., Boer, R.C.d., Dingsøyr, T., Farenhorst, R., 2007. Architectural knowledge management

strategies: approaches in research and industry. In: Proceedings of Second Workshop on SHAring and

Reusing architectural Knowledge - Architecture, Rationale, and Design Intent (SHARK/ADI 2007).

[3] Babar, M.A., Gorton, I., 2007. A tool for managing software architecture knowledge. In: Proceedings

of the 2nd Workshop on Sharing and Reusing Architectural Knowledge (ICSE Workshops).

[4] Babar, M.A., Gorton, I., Kitchenham, B., 2006. A framework for supporting architecture knowledge

and rationale management. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (Eds.), Rationale

Management in Software Engineering.

[5] Springer, pp. 237– 254. Baldwin, C.Y., 2010. When Open Architecture Beats Closed: The

Entrepreneurial Use of Architectural Knowledge. Harvard Business School, Massachusetts. Becker, C.,

2014.

[6] Sustainability and longevity: two sides of the same quality? Mental vol. 20, 21. Berg, M.v.d., Tang, A.,

Farenhorst, R., 2009. A constraint-oriented approach to software architecture design. In: Proceedings

Of the Quality Software International Conference (QSIC 2009), pp. 396–405.

[7] Bonnema, G.M., 2014. Communication in multidisciplinary systems architecting. Procedia CIRP 21,

27–33. Borches, P.D., Bonnema, G.M., 2010. A3 architecture overviews: focusing architectural

knowledge to support evolution of complex systems.

[8] 20th Annual International Symposium of INCOSE, Chicago (USA), July 12–15. Bosch, J., 2004.

Software architecture: the next step. In: Proceedings of Software Architecture: First European

Workshop, EWSA 2004.

[9] St Andrews, UK, pp. 194–199. Burge, J., 2005. Software Engineering Using Design RATionale.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 43 No. 4 (2022)
__

229

Doctor of Philosophy, Computer Science, Worcester Polytechnic Institute.

[10] Burge, J.E., Brown, D.C., 2008. SEURAT: integrated rationale management. In: Proceedings of the

30th International Conference on Software Engineering, pp. 835–838. Capilla, R., 2009. Embedded

design rationale in software architecture.

[11] In: Proceedings of Joint Working IEEE/IFIP Conference on presented at the Software Architecture,

2009 & European Conference on Software Architecture. WICSA/ECSA 2009. Capilla, R., Nava, F.,

Carrillo, C., 2008. Effort estimation in capturing architectural knowledge.

[12] Proceedings of the Automated Software Engineering (ASE’08), pp. 208–217. Capilla, R., Nava, F.,

Pérez, S., Dueñas, J.C., 2006. A web-based tool for managing architectural design decisions.

[13] In: Proceedings of the 1st Workshop on Sharing and Reusing Architectural Knowledge. Capilla, R.,

Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M., 2011. An enhanced architectural knowledge

metamodel linking architectural design decisions to other artifacts in the software engineering lifecycle.

Software Architecture.

[14] Springer, pp. 303–318. Chen, L., Babar, M.A., Liang, H., 2010. Model-centered customizable

architectural design decisions management. In: Proceedings of 21st Australian Software Engineering

Conference (ASWEC), 2010, pp. 23–32.

[15] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., et al., 2011. Documenting

Software Architectures: Views and beyond, 2nd ed. Addison Wesley. Clements, P., Shaw, M., 2009.

“The golden age of software architecture” revisited.

[16] Sharma, R., Kaushik, M. and Kumar, G. (2015) “Reliability analysis of an embedded system with

multiple vacations and standby”, International Journal of Reliability and Applications, Vol. 16, No. 1,

pp. 35-53.

[17] Kaushik, M. and Kumar, G. (2015) “Markovian Reliability Analysis for Software using Error

Generation and Imperfect Debugging” , International Multi Conference of Engineers and Computer

Scientists 2015, vol. 1, pp. 507-510.

[18] Jain, B.B., Upadhyay, H. and Kaushik, R., 2021. Identification and Classification of Symmetrical and

Unsymmetrical Faults using Stockwell Transform. Design Engineering, pp.8600-8609.

[19] T. Manglani, A. Vaishnav, A. S. Solanki and R. Kaushik, "Smart Agriculture Monitoring System Using

Internet of Things (IoT)," 2022 International Conference on Electronics and Renewable Systems

(ICEARS), Tuticorin, India, 2022, pp. 501-505.

[20] R. Kaushik et al., "Recognition of Islanding and Operational Events in Power System With Renewable

Energy Penetration Using a Stockwell Transform-Based Method," in IEEE Systems Journal, vol. 16,

no. 1, pp. 166-175, March 2022.

