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Abstract: The fatigue and wear analysis of femur implant in hip hemiarthroplasty plays substantial role in 

estimating the life of implant and in selection of idea material. This study comprises modeling and finite 

element analysis of femur head, which is utilized in hip hemiarthroplasty. The materials utilized in analysis are 

polyether-ether-ketone (PEEK), carbon-fiber-reinforced polyether-ether-ketone (CFR-PEEK) and titanium 

alloy (Ti-6Al-4V), the dynamic loading under the human activities as walking barefoot, stumbling. The FEA 

was performed in ANSYS Workbench 19.2 and modeling was carried out on SolidWorks 2021. The S-N 

curves were utilized for the fatigue life estimation and modified Archard’s law was utilized for accounting the 

wear depth per year. The result obtained from FEA were equivalent stress, contact pressure and sliding 

distance for all materials and activities. After observing the results, it is concluded that the CFR PEEK is ideal 

for the femur head under all activities and the higher stresses and contact pressures were generated under 

stumbling activity. The approximated life of the CFR PEEK material femur head was 10 years, after that it is 

required to be changed or replaced for smooth functionality.  

Keywords: Hemiarthroplasty, Femur Implant, Fatigue Analysis, Wear Analysis.      

 

 

1. Introduction 

Extensive research is being performed on the application of the cobalt chromium molybdenum 

(CoCrMo) and ultra-high molecular weight polyethylene (UHMWPE) materials in the hip arthroplasty for 

enhancing the fatigue life and reducing the wear. Researchers have investigated the biocompatibility of the 

surface engineered Ti6Al4V material femoral heads utilized as hip implants. It is discovered that the femoral 

heads have lower life and changing them overtime is traumatizing for the patients (specifically patients with old 

age). There biocompatibility is investigated with respect to wear, corrosion and fatigue resistance. The effect of 

the surface treatment on the fatigue life and wear resistance is also investigated. It was concluded that the 

surface treatment substantially improved the wear, corrosion and fatigue resistance of the femoral heads [1]–[6]. 

In a study, the assessment of fatigue life of cemented hip prosthesis is carried out through finite element 

approach based on three-dimensional scanned data. The three-dimensional scanned data was utilized of the 

modelling of the hip prosthesis. The fatigue life of the hip implant components till crack initiation and loosening 

were studied through finite element analysis. The concentration of high tensile stresses was discovered in the 

region of crack initiation. This can also be employed by other researchers for assessing the fatigue life of the 

femoral head and hip prosthesis components [7]–[12].In a study, hip joint implant consisting CoCr alloy 
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backing and UHMWPE acetabular cup is analyzed for estimating the wear through utilizing modified Archard’s 

law. The finite element analysis was carried out in ANSYS 18.0. the body weights were varied for the analysis, 

which results in to varying loads. After analyzing different combinations of materials for backing and acetabular 

cup, it was discovered that the high stresses were found in CoCr alloy backing and UHMWPE acetabular cup 

[13]–[18]. The hip hemiarthroplastycomprises the femur head as implant material and acetabulum cup is the 

original cortical bone. In case of  total hip arthroplasty the acetabulum cup also comprises different implant 

material and sometime need liner between the femur head and acetabulum cup [19]–[25].The difference 

between the hemiarthroplasty and total arthroplastyis shown in Figure 1. 

 

 
Fig 1:Hemiarthroplasty and total arthroplastywith femur prothesis. 

 
The polyether-ether-ketone (PEEK) is polymer material, which comprises substantia biocompatibility 

and is lighter in weight. It is extensively applied as dental, hip or other prothesis implants. In a study, a review is 

carried out on the biocompatibility and utilization of PEEK in removable or fixed prothesis. It was discovered 

that the PEEK comprises mechanical properties nearer to bone and comprises significant biocompatibility. They 

were found to be better material for dental implant as comparable to titanium alloys [26]–[32]. Researchers have 

examined the properties of the cortical bone through ultrasound assessment. The outcomes comprise better 

understanding of the bone fragility and assessing its properties. It was discovered the recent technologies 

utilized for assessing the cortical bone properties are lacking accuracy and can just measure the thickness and 

bulk wave velocities of bone [33]–[39]. In a study, the utilization of the PEEK and CFR PEEK material as 

replacement to UHMWPE in case of total knee replacement is examined experimentally. The wear in the PEEK 

and CFR PEEK material is investigated with respect to knee replacement and compared with UHMWPE. The 

wear rates obtained in the PEEK and CFR PEEK materials were higher than UHMWPE under same operation. 

The experimentation simulation was carried out through pin-on-plate method or experiment. It was discovered 

that the PEEK and CFR PEEK materials comprises lower life as comparable to UHMWPE, but can be applied 

as replacement in high-conformity designs [40]–[45]. In a study, the Ti-6Al-4V extra low interstitials alloy 

utilized as total hip replacement implant is examined for the fatigue and fracture strength through FEM. The 

stem neck was concentrated in this study, as the lesser the thickness, the lower structural integrity. The five 

different model with different neck thickness were utilized for performing the FEM. The stress-strain and 

fatigue crack growth were assessed through finite element method (FEM) and extended (XFEM). It was 

discovered that the stress intensity was higher at the neck region and the model with 9 mm more thickness with 
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respect to original one has higher fatigue strength. It was also discovered that the reverse engineered 3D model 

was more efficient in modelling the implant [46]–[52]. 

 

2. Finite Element Analysis (FEA) 

The hip joint is simulated in ANSYS Workbench 19.2 commercial package and the FEA is performed. 

The modeling of the 3D model is carried out in SolidWorks 2021, which is shown in Figure2. The material 

properties along with the S-N curve data is utilized for the dynamic fatigue analysis. The loads for the activities 

walking, stumbling, is utilized as dynamic loading for replicating the loading during these activities on the 

femur head. Further, the boundary conditions are applied for constraining the mathematical model. The meshing 

is applied with respect to element size for optimum aspect ratio. The Von Mises (Equivalent) stress, total 

deformation, contact pressure and sliding distances are evaluated for each material and each activity through the 

FEA. The time required for the solution was 35 min with 16Gb ram and 2.3 GHz processer. 

 

 
Fig 2: Hip hemiarthroplasty implant 3D model. 

 

3. Material Properties 

The materials utilized for the femur head prothesis in this study are polyether ether ketone (PEEK), 

carbon-fiber-reinforced polyether ether ketone (CFR-PEEK) and Ti-6Al-4V titanium alloy. The acetabulum is 

the cortical bone of the hip, as the arthroplasty is considered in this study is hip hemiarthroplasty. The properties 

of all the materials utilized in this study are given in Table1. The properties of the cortical bone are adopted 

from the studies comprises the assessment of properties of the bone in healthy and deceased condition [33], [53]. 

The PEEK and CFR PEEK materials have similar properties with a significant difference, there properties are 

adopted form the studies comprising there applications and experimentation evaluation for biocompatibility 

[26], [40], [54]. The properties of titanium alloy are referred form the studies comprising its fatigue, wear and 

tribological properties assessment for hip implant [46], [55]–[57]. 
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Table 1: PEEK, CFR PEEK and titanium alloy properties. 

Property Value Unit 

Cortical Bone 

Density 2 g/cm3 

Isotropic Elasticity 

Young’s Modulus 14000 MPa 

Poisson’s Ratio 0.4  

Bulk Modulus 2.3333E+04 MPa 

Shear Modulus 5E+03 MPa 

Tensile Yield Strength 104 MPa 

Tensile Ultimate Strength 150 MPa 

PEEK 

Density 1.3 g/cm3 

Isotropic Elasticity 

Young’s Modulus 4000 MPa 

Poisson’s Ratio 0.32  

Bulk Modulus 3.7037E+03 MPa 

Shear Modulus 1.5152E+03 MPa 

Tensile Yield Strength 80 MPa 

Tensile Ultimate Strength 120 MPa 

CFR PEEK 

Density 1.4 Kg/m3 

Isotropic Elasticity 

Young’s Modulus 18000 MPa 

Poisson’s Ratio 0.32  

Bulk Modulus 1.6667E+04 MPa 

Shear Modulus 6.8182E+03 MPa 

Tensile Yield Strength 120 MPa 

Tensile Ultimate Strength 160 MPa 

Ti-6Al-4V 

Density 4.512 g/cm3 

Isotropic Elasticity 

Young’s Modulus 1.1E+05 MPa 

Poisson’s Ratio 0.32  

Bulk Modulus 1.0185E+05 MPa 

Shear Modulus 4.1667E+04 MPa 

Tensile Yield Strength 800 MPa 

Tensile Ultimate Strength 800 MPa 

 

The Wohler S-N diagram comprises the graph of stress versus number of cycles to failure, this diagram 

is tested through several methods and is dissimilar with respect to materials. This graph is a log-log plot of the 

stresses with respect to number of cycles. The S-N curve comprises an event where the curve gets flatten, that 

stress is known as endurance limit. Endurance limit means under this stress the life of the component is infinite. 

The S-N data for the cortical bone is adopted from the study comprising the fatigue analysis of human cortical 

bone through rotating cantilever fatigue tests [58].The S-N graph of the cortical bone material is shown in 

Figure3. The S-N data for the PEEK and CFR PEEK is adopted from the study comprising the fatigue analysis 

of notched samples of PEEK and CFR PEEK under tension loading through fractographic analysis [59]. The S-

N graph of the PEEK and CFR PEEK material is shown in Figure4.The S-N data for the titanium alloy (Ti-6Al-

4V) is adopted from the study comprising the fatigue analysis of hip transplant stem with Ti-6Al-4V and cobalt-

chromium alloy materials [60]. The S-N graph of the titanium alloy (Ti-6Al-4V) material is shown in Figure5. 
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Fig 3: Alternating Stress Vs number of cycles graph of cortical bone.[59] 

 
Fig 4: Alternating Stress Vs number of cycles graph of PEEK and CFR PEEK.[59] 
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Fig 5: Alternating Stress Vs number of cycles graph of titanium alloy.[60] 

 

4. Loads and Boundary Conditions 

The activities considered for dynamic analysis in this study are walking bare foot, stumbling. The loads 

acting on the femur head during these activities are adopted form the study comprising the load analysis of 

weight and different activities on the hip joint and femur head [61]–[65]. The dynamic force applied on the 

femur head X, Y and Z direction with respect to time during walking activity is shown in Figure6. The dynamic 

force applied on the femur head X, Y and Z direction with respect to time during stumbling activity is shown in 

Figure7. 

 

 
Fig 6: Dynamic force in X, Y and Z directions with respect to time for walking barefoot activity.[63] 
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Fig 7: Dynamic force in X, Y and Z directions with respect to time for stumbling activity.[63] 

 

The boundary conditions applied for the FEA are fixed acetabulum and force is applied on the femur 

head, where the stem is connected to it. The material assignment for the acetabulum is kept constant as cortical 

bone material and the femur head material assignments is change with PEEK, CFR PEEK and titanium alloy. 

The boundary conditions are shown in Figure8. The contact surface between the acetabulum and the femur head 

is hemispherical and assigned with friction coefficient as 0.1, as the friction between them is minimal due 

lubricant in vivo operation. The contact surface assignment as frictional contact is shown in Figure 9. 

 

 
Fig 8: Boundary conditions (a) Fixed support, and (b) Dynamic force application. 

(a) (b) 
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Fig 9: Frictional contact between femur head and acetabulum. 

 

5. FEA Results 

5.1. Equivalent Stress 

The results obtained from the FEA comprise the equivalent stress, the maximum equivalent stress 

obtained for walking activity at 1.6 s time for material PEEK. CFR PEEK and Ti-6Al-4V are 11.502, 13.188 

and 11.329 MPa respectively, which is shown in Figure10. The maximum equivalent stress obtained during the 

walking activity for PEEK, CFR PEEK and Ti-6Al-4V are 13.216, 14.839 and 12.922 MPa respectively, which 

is shown in Figure 11. The maximum equivalent stress occurred during the walking activity for PEEK, CFR 

PEEK and Ti-6Al-4V were at time 1.05, 1 and 1 s respectively. Similarly, the minimum equivalent stress 

obtained during the walking activity for PEEK, CFR PEEK and Ti-6Al-4V are 1.6747, 3.7543 and 

4.6244MParespectively, and were occurred at time 0.35, 0.3 and 0.5 s respectively. 
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Fig 10: Equivalent stress during walking activity for (a) PEEK, (b) CFR PEEK and (c) Ti-6Al-4V. 

 

 
Fig 11: Equivalent stress with respect to time during walking activity for PEEK, CFR PEEK and Ti-6Al-4V. 

 

The maximum equivalent stress obtained for stumbling activity at 6s time for material PEEK. CFR 

PEEK and Ti-6Al-4V are 250.83, 92 and 243.09 MPa respectively, which is shown in Figure 12. The maximum 

equivalent stress obtained during the stumbling activity for PEEK, CFR PEEK and Ti-6Al-4V are 257.5, 104.95 

and 85.693 MPa respectively, which is shown in Figure 13. The maximum equivalent stress occurred during the 

stumbling activity for PEEK, CFR PEEK and Ti-6Al-4V were at time 3.2 s. Similarly, the minimum equivalent 

(a) (b) 

(c) 
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stress obtained during the stumbling activity for PEEK, CFR PEEK and Ti-6Al-4V are 3.2954, 2.4563 and 

1.7914 MPa respectively, and were occurred at time 0.4 s.   

 

 
Fig 82: Equivalent stress during stumbling activity for (a) PEEK, (b) CFR PEEK and (c) Ti-6Al-4V. 

 

 
Fig 93: Equivalent stress with respect to time during stumbling activity for PEEK, CFR PEEK and Ti-6Al-4V. 

 

(a) (b) 

(c) 
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6. Fatigue Analysis 

The fatigue analysis comprises utilization of the S-N curves for the calculation of the life of the femur 

head in cycles with respect to different material assignment. The estimation of the fatigue life consists the 

calculation of mean stress (σm) and alternating stress (σa), which are calculated through following formula: 

 

σm = 0.5(σmax + σmin) 

σa = 0.5(σmax − σmin) 

Where, σm is mean stress, 

σais alternating stress,  

σmaxis maximum stress  

andσmin is minimum stress. 

 

Table 2: The mean and alternating stress with respect to activities and materials. 

Activity Material Mean Stress (MPa) Alternating Stress (Mpa) 

Walking 

PEEK 7.44535 5.77065 

CFR PEEK 9.29665 5.54235 

Ti-6Al-4V 8.7732 4.1488 

Stumbling 

PEEK 129.646 127.854 

CFR PEEK 53.7032 51.2469 

Ti-6Al-4V 44.4942 41.1988 

 
Fig 14: Alternating and mean stress with respect to activities and materials. 

 

7. Wear Analysis 

The undesirable material loss from the surface of any body is known as wear. The wear in case of 

prosthesis is affected through several parameters, such as contact status, contact pressure, sliding distance and 

surface or tribological properties of the body. The wear behavior in case of plastic sliding on metal, this type of 
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wear comprises three stages namely wear-in period, steady state period and severe wear period. The wear-in 

period consists shearing of plastic material and production of wear debris. In steady state period, this wear 

debris forms layer between the interface of contact and wear is in form of adhesion in the surfaces. The severe 

wear is also known as fatigue wear, which causes when the contact stress is higher than the yield strength of the 

material [66]–[76]. For the purpose of estimation, the wear rate many models were developed, but the Archard’s 

law is utilized in this study for the estimation wear behavior and mechanism [77]–[79]. The following equation 

is utilized for estimating the wear [80]: 

 

V = KwSPn  

Where, the V is total volume of wear generated,  

Kwis wear coefficient,  

Sis sliding distance  

andPn is normal pressure. 

The above equation clearly defines that the wear is corelated to the material properties and the motion. The wear 

depth and contact surface vary with the motion in case of femoral head and acetabular, the Archard’s equation is 

required to be modified in incremental form: 

 

dV = ∆Adh = Kw × σ × ∆A × ds 

dh = Kw × σ × ds 

 

Where, dV is increment of wear volume, 

∆Ais infinitesimal contact area,  

Kwis wear coefficient,  

dhis infinitesimal wear depth,  

dsis infinitesimal sliding distance  

andσ is normal contact stresses.  

 

The Kw is wear coefficient, which is function of material properties and counter face roughness and can 

be calculated through experimentation. The value of the wear coefficient is adopted form pin on disk experiment 

[81]-[82] and it is 3.5E-07 mm3/Nm.Further the sliding distance is estimated through utilizing the walking cycle 

analysis. The walking cycle comprises the motion like the hip flexion, extension, adduction, abduction and 

rotation internally or externally. The highest contribution of the motion in the walking cycle is of flexion and 

extension motion as comparable to other motions. The reduction in the angle of the anterior surfaces of bones is 

caused by the flexion and it also known as folding crusade. The straightening involved in the flexion is known 

as extension. The angle of flexion and extension the half walking cycle are 23° and 17° respectively and in case 

of full walking cycle the joint has rotation of total 80°. In this study, the radius of femur head is considered to be 

32 mm. 

 

Total hip rotation in single cycle = 80° = 1.396  radians 

Sliding Distance (ds) = Head Radius × Rotation Angle 

 = 32 × 1.396 = 44.672 mm 

 = 44.672 E-03 m 

Through utilizing the Archard’s law, the wear depth is calculated as: 

 

Wear Depth (dh) = Kw × σ × ds 

 = 3.5E − 07 × σ × 44.672E − 03 
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Table 3: Wear depth and life in years with respect to activities and materials. 

Activity Material Maximum 

Contact Pressure 

(MPa) 

Wear Depth 

(mm/year) 

 

Life in 

year 

 

Walking 

PEEK 12.5136 0.195653 10.2 

CFR PEEK 14.355 0.224443 9 

Ti-6Al-4V 12.4803 0.195132 10.2 

Stumbling 

PEEK 261.306 4.085572 0.5 

CFR PEEK 99.513 1.555906 1.2 

Ti-6Al-4V 79.743 1.246798 1.6 

 

The wear depths for each activity with respect to material is calculated through wear depth equation, 

these obtained values are presented in Table. 3.If the average walking cycle considered as 1000000 (one 

million) steps (cycles) are taken by a human. The obtained wear depths are converted in mm per year and 

presented in Table. 3.The maximum allowable wear in this study is considered as 2 mm, as more than this can 

affect the functionality of the transplant causing noises while walking. Finally, through wear depth and 

allowable wear the life of the respective materials assigned and activities, the life in years is calculated and 

presented in Table. 3. 

 

8. Discussions 

The results obtained from the FEA are tabulated in Table. 4, where the maximum equivalent stress, 

sliding distance, contact pressure and minimum equivalent stress with respect to activities and materials is 

observed. It is discovered that in walking activity the maximum equivalent stress, minimum equivalent stress 

and maximum contact pressure for CFR PEEK is higher than other materials, but the maximum sliding distance 

for PEEK is higher than others. In case of stumbling activity, it is observed that the maximum equivalent stress 

for PEEK, minimum equivalent stress for Ti-6Al-4V, maximum contact pressure for PEEK and maximum 

sliding distance for PEEK is higher as compared with other materials. The highest stress and contact pressure is 

obtained in stumbling activity for PEEK material as comparable to other materials, which can be seen in 

Figure15. 

 

Table 4: The maximum equivalent stress, sliding distance, contact pressure and minimum equivalent stress with 

respect to activities and materials. 

Activity Material Maximum 

Equivalent 

Stress (MPa) 

Minimum 

Equivalent 

Stress (MPa) 

Maximum 

Contact 

Pressure 

(MPa) 

Maximum 

Sliding 

Distance 

(mm) 

Walking 

PEEK 13.216 1.6747 12.5136 78.271 

CFR PEEK 14.839 3.7543 14.355 20.024 

Ti-6Al-4V 12.922 4.6244 12.4803 13.712 

Stumbling 

PEEK 257.5 1.7914 261.306 505.25 

CFR PEEK 104.95 2.4563 99.513 161.45 

Ti-6Al-4V 85.693 3.2954 79.743 122.64 
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Fig 15: The maximum equivalent stress and contact pressure with respect to activities and materials. 

 

9. Conclusion 

In this study the wear and fatigue analysis are performed on the femur head with respect to three 

materials and four activities. Initially the femur head with 32 mm diameter is modeled and analyzed 

dynamically with respect to S-N curve, material data and dynamic loads. The numerical analysis is carried for 

the wear and fatigue life estimation. Some of the key observations are listed below:  

• It is discovered that the CFR PEEK material comprises lower life with wear analysis and higher 

with respect fatigue analysis.  

• The highest total deformation is obtained for PEEK material under stumbling activity loading. 

• The highest equivalent stress and contact pressure is obtained for PEEK material under stumbling 

activity loading. 

• The equivalent stress and contact pressure were moderate for CFR PEEK material under all 

activities.  

• The equivalent stress and contact pressure were lower for Ti-6Al-4V material under all activities. 

• The life obtained with respect to allowable wear depth is higher for Ti-6Al-4V material under all 

activities. 

• The life obtained with respect to allowable wear depth is lower for CFR PEEK material under all 

activities. 

• The life obtained with respect to allowable wear depth is moderate for PEEK material under all 

activities. 

 

After observing all the outcomes some conclusions are obtained, which are listed below: 

• The material ideal for femur head is CFR PEEK, after considering the fatigue and wear depth life, 

and also the weight to strength ratio. 

• The stress and contact pressure are higher under the stumbling activity loading. 

• The average life for the femur head with CFR PEEK material, after observing all the outcomes 

under all activities is approximately 10 years. 

The method performed in this study can further utilized for estimating the significant and most ideal 

material for the femur head implant or other prothesis.   
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