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Abstract: This research explores the application of Machine Learning (ML) techniques for anomaly detection 

in containerized applications. The proposed approach utilizes by applying machine learning techniques for 

anomaly detection in containerized applications. The proposed methodology integrates container runtime 

metrics, system call analysis, and network traffic patterns to build a predictive model capable of identifying 

abnormal behavior within containers. To evaluate the effectiveness of this approach, extensive experiments 

were conducted using real-world containerized applications and datasets. The experiment focused on 

assessing the accuracy of anomaly detection and the computational efficiency of the proposed model. The 

results demonstrated that this approach achieved a remarkable accuracy rate of 95% in detecting anomalies, 

while maintaining high computational efficiency, with minimal overhead on the container runtime 

environment. This research contributes valuable insights into bolstering the security of containerized 

applications, offering practical solutions for real-world deployment scenarios. The research also evaluates the 

accuracy and efficiency of the proposed approach and discusses its potential impact on enhancing container 

security in real-world scenarios. 

Keywords: Container, Container security, Machine Learning (ML), Anomaly detection. 

 

 

1. Introduction 

A container is an abstract software unit which is a standalone, executable entity that contains all of the 

components required to execute an application, including the code, runtime, system tools, and system libraries. 

Containers can execute a programme, a workload, or a particular task using parameters that are specified. System 

administrators can increase the capacity of their design by using containers. For improved efficiency, it is feasible 

to establish and operate many containers, each tailored to a particular task. Containers are limited to the software 

you actually need, preventing them from becoming bloated and wasting computational resources on unnecessary 

background activities. Since containers are lightweight, uniform, and easy to utilize, organizations are realizing 

their immense worth. With container flexibility and automation, IT organizations may offer Continuous 

Integration/Continuous Delivery (CI/CD) [24]. Additionally, containers support workload isolation, which 

strengthens data security regulations. 

The market for Containers as a Service (CaaS) is anticipated to increase from USD 2.0 billion in 2022 to 

USD 5.6 billion by 2027, with a Compound Annual Growth Rate (CAGR) of 22.7% over the course of the 

projection period [1]. Due to their adaptability and lower infrastructure costs, containers are increasingly being 
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used by application development teams. Security of containers is still a major worry, though quite similar to 

security for any active process. Before deploying and running the container, the layers of the application stack 

must be secured. The OS that runs the container environment is the layer of the stack that needs to be secured the 

most since a breach in the host environment could provide attackers access to the stack's other layers. 

Since, SMEs typically operate on a small expense and have few options for marketing and accessibility, 

cost-effectiveness is a crucial consideration. In order to reach their chosen target audience, SMEs are investing in 

CaaS because of the very competitive market environment. In the UK, small firms are lagging behind in the use 

of modern technology. The BFSI industry sector manages the sensitive information of clients, such as transaction 

passwords, bank account numbers, and credit card information, which requires the highest level of security. For 

regulatory purposes, keeping customer data accessible and secure is just as crucial as keeping it for longer lengths 

of time. Traditional businesses in the BFSI vertical must adapt with cutting-edge technologies to keep up with the 

financial industry's growing regulatory requirements. As a result, the BFSI sector is expected to adhere to strict 

security standards to protect sensitive data and is moving more quickly towards the use of cloud-based container 

services. 

Virtualization technologies like Virtual Machines (VM) and containers are frequently adopted in 

distributed system architectures by current prominent cloud service suppliers for autonomous application 

implementation, especially Amazon Web Services (AWS), Google, and Alibaba [2]-[5]. Their architecture has 

recently shifted from being VM-centric to becoming container-centric. A logical packaging approach used by 

containers ties together software and dependencies enabling application virtualization [6]. Contrary to VMs, 

which offer resource virtualization at the hardware level and require every VM to keep running an independent 

Operating System (OS), containers simulate resources at the OS level, in which every container can share a single 

OS with reduced complexity. As a result, containers provide a higher application flexibility, resource 

effectiveness, and environmental stability than other types of technology. Regarding the deployment of 

applications within a standalone runtime system, this establish a standard unit. These attributes have allowed us 

to see the widespread use of container techniques for automatic application deployment across a range of cloud 

settings. 

The use of ML techniques towards container security is crucial and expanding. In numerous research and 

application domains, they have been looked into. As an illustration, [7] comprehensive review of machine learning 

algorithms for anomaly detection. They examined ML models from four angles, including the use of anomaly 

detection, the kind of ML approach, the evaluation of the correctness of the ML model, and the form of anomaly 

detection, including supervised, semi-supervised, and unsupervised detection. A thorough study of containers was 

done by [8] in order to offer data on the container landscape. This review covered vulnerabilities, threats, and 

existing mitigation measures. The papers used ML methods to enhance container security, and the authors also 

covered several machine learning techniques. The present poll differs in a number of ways from those previously 

mentioned, including: Artificial intelligence solutions like ML, Deep Learning (DL), and Artificial Neural 

Networks (ANN). Experimental datasets and supervised, semi-supervised, and unsupervised detection models are 

presented. Focusing on container safety measures, including inter-container security, detection of intrusions, 

detection of malware, detection of attacks, and detection of anomalies. 

The management of containerized apps is being suggested as a result of the current containers 

development. Resource allocation, installation, autoscaling, health surveillance, migration, load balancing, 

security, and network setup are all part of the automated management process known as container orchestration. 

In order to manage overall resource utilization, energy consumption, and application performance for cloud 

service providers who must manage hundreds or thousands of containers concurrently, a sophisticated and reliable 

container orchestration system is essential. 

The primary contributions of this paper are as follows: 

● The paper presents a complete system for anomaly detection that smoothly integrates machine 

learning methods into containerized environments. This framework includes feature extraction 

techniques that are cutting-edge, data gathering techniques, and sophisticated machine learning 

algorithms designed specifically for container behavior patterns. 
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● It illustrates the framework's applicability in actual container installations via empirical assessments. 

The suggested method delivers strong real-time anomaly detection, warning administrators regarding 

possible security flaws or vulnerabilities and starting automated reactions to reduce hazards. 

● Enhanced container security intelligence is the result of the contributions. The paper improves 

comprehension of anomalous behavior within containers by bridging the machine learning and 

container technology gaps. The end result is an adaptable approach that can change with the 

environment and successfully defend containerized apps from new dangers. 

The remaining portions of the article are divided into the following sections: In Section II, literature 

survey related to the state of the technologies related to the current research perspectives are discussed. In Section 

III, the proposed container anomaly detection technique as a framework is discussed. Section IV exhibits the 

experimental evaluation of the container security while adopting the proposed methodology. Section V, discussed 

the result and discussion of the proposed work. Finally Section VI concludes the paper. 

 

2. Literature Review 

Making use of random forest learning approach applications are identified [9]. The decision tree with the 

highest votes is chosen by the random forest classifier, which employs many decision trees. The random forest 

model thus produces the anticipated application detection result. The framework creates a system call data 

collection that adds the frequency vector traces of various containers after this procedure succeeded in recognizing 

the containers of the entire application. It then uses these traces to train models and detect attacks. Finally, the 

unsupervised model employs autoencoder neural networks for anomaly detection. The outcomes of the authors' 

investigation into 33 actual vulnerabilities listed in the Common Vulnerabilities and Exposures (CVE) database 

demonstrate that CDL can identify 31 of 33 assaults. Additionally, they looked at how the system executed, and 

the data shows that CDL is small and appropriate for spotting threats in real time underneath actual conditions.  

The authors used the DBSCAN clustering method to obtain the RPC chains, which they then used to 

learn about routine RPC traffic and forecast aberrant RPC traffic [10]. After that, the authors trained a DCRNN 

model to forecast traffic based on previously recorded RPC traffic. In their investigation, which was conducted 

on a cluster of Kubernetes servers with "billions of daily active users'' and RPC traffic that spans a period of two 

weeks, they were able to classify anomalous traffic when observed RPC chains varied from the predicted traffic 

through the utilization of average absolute errors and variations. 

Various supervised machine learning methods were utilized by [11] to identify and analyze abnormalities 

in container-based micro services. Through examining real-time performance metrics for anomaly identification 

and diagnostics, they presented an Anomaly Detection System (ADS). The monitoring module, the data 

processing module, and the error injection module make up the three modules that make up the recommended 

ADS. The monitoring module is used to first gather data on the target system's real-time performance monitoring. 

The authors acquire and analyze performance data for each container to assess how well it operates, exactly as 

they do for each connected container to establish if a micro service is anomalous. The ADS identifies the 

anomalous container after determining whether a micro service has had an anomaly. Researchers employ 

supervised machine-learning techniques like Support Vector Machines (SVM), Random Forest (RF), Naive Bayes 

(NB), and Nearest Neighbours (NN) to find abnormalities. Additionally, they conducted time-series analysis to 

identify the container that resulted in an abnormality. 

 In order to identify security vulnerabilities for containers, [12].  Introduced an amalgamation of static 

and dynamic anomaly detection algorithms. They used 28 typical real-world security flaws found in Docker Hub 

images to conduct an investigation involving static and dynamic vulnerability detection methods. They started by 

utilizing CoreOS Clair, a freely available static analysis engine which examines containers layer by layer for 

identified flaws utilizing Common Vulnerabilities and Exposures (CVE) repositories. Then, they examine various 

unsupervised machine learning techniques for dynamic detection methods. Several particular issues with container 

security are addressed using the machine learning algorithms. 

[13] suggested KubAnomaly, a system that provides surveillance features for identifying anomalies 

within the Kubernetes orchestration platform [13]. With Kubernetes compatibility, the system's goal is to increase 

Docker security. By using private rules in Sysdig, KubAnomaly offers a security-monitoring module that keeps 

track of network connections, system calls, I/O operations, and container internal activity. Additionally, it uses 
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machine learning classification to do anomaly detection in order to find hacker and insider intrusion events. To 

categorize various forms of anomalous behavior, including injection assaults and Denial-of-Service (DoS) attacks, 

a neural network model was developed. Three distinct data sets were utilized to train this machine learning model, 

which uses supervised learning. Private data, public data known as CERT, and experimental real-world data are 

the three different datasets used to assess the system's efficiency and reliability. 

A deep learning-based technique is presented by [14] for identifying harmful patterns in specific 

container instantiation. Every container platform that follows the Open Container Initiative (OCI) specification 

can use the algorithm with ease. A Gaussian-Bernoulli restricted boltzmann machine is used by the algorithm. 

Gaussian-Bernoulli RBMs are a subset of RBMs which, in the visible layer, support continuous-valued data in 

addition to binary data. Utilizing RBM, they build a container profile depending on the container's configuration 

and extract behavioral data in real time. The method then employs an algorithm based on machine learning to 

create a full security profile for the container, using autonomous NIST container security standards to identify any 

security breaches for the container during the test. 

Neural networks were used by [15]. to examine the behavior of containers and find anomalies. Two 

methods for anomaly identification using system call traces are presented by the authors. System call patterns are 

utilized to find anomalies initially. To anticipate the system call distribution at time t+1 using the distribution at 

time t, a one layered Long Short Term Memory (LSTM) network is trained. The subsequent method is a neural 

network that detects anomalies using le/directory paths. In accordance with the most recent le system path taken 

by a system call, they train a neural network to anticipate the next le system path. The suggested neural network 

is made up of a Word Embedding Layer, then LSTM layers that are created to learn to foresee the next file system 

path according to the vector illustration of the present one. This neural network created a forecast, and then the 

actual flight route and anticipated flight path were evaluated to look for abnormalities. 

A new dataset collected from the Linux Auditing System is presented by [16]. and includes instances of 

container activity that are both harmful and helpful. This dataset is the first of its type to concentrate on kernel-

based container escapes which includes threats like denial of service and privilege exploitation. The data was 

created employing the autoCES framework with partial labels distinguishing good and bad system calls over 

specific time intervals. The collection does, however, have several drawbacks, including inadequate annotations 

and a dearth of container escape cases. Additionally, it's possible that not all instances of innocuous background 

activity were included in the dataset. This dataset is intended for use in a semi-supervised machine learning setting. 

 System calls and machine learning can work together, according to a theory put out by [17]. They made 

use of many cryptocurrency miner pictures, including those for Bitcoin, Bytecoin, Vertcoin, Dashcoin, and 

Litecoin. Additionally, healthy pods such as MySQL, Cassandra, Hadoop, Graph, Analytics, and Deep Learning 

were provided. For each pod, they recorded system calls for a duration of one minute. N-grams were then used to 

extract characteristics. Because of its strong recall rate, they chose to fix n as 35 after conducting multiple studies. 

Following feature extraction, four Machine Learning (ML) models have been chosen to train on the data: decision 

trees, ensemble learning, feed-forward vanilla artificial neural networks, and feedback recurrent neural networks. 

For the training and validation sets, the accuracy of the ensemble learning model derived from the Python-

XgBoost package was 89.3% and 89.4%, correspondingly. Researchers combined Keras with Tensorflow for 

feed-forward Vanilla ANN, tuning hyperparameters using the autokeras tool. Performance overall was 81.1% on 

the training set and 79.7% on the validation set. It is appropriate to use it as time-series data because of the way 

that system calls are made. They consequently used LSTM RNN. The accuracy on the training set was 79.99, 

while on the validation set, it was 789.0%. Utilizing default parameter values and the SKLearn package in Python, 

a decision tree implementation outperformed all other models with accuracy levels of 99.6% during training and 

97.1% during evaluation. 

A strategy for leveraging system calls to find anomalies in containerized systems is presented by [18]. 

The authors use a sliding window technique to concentrate on how the window's size affects the outcomes. In 

order to maintain security and stability, the authors of the paper first go over the difficulties in tracking containers 

and the significance of spotting irregularities. During their implementation, they ran strace on the host computer, 

outside the container, to gather a dataset of system calls from various containerized apps. They then used machine 

learning techniques to develop a model to categorize regular and abnormal system calls using this dataset. 
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The primary concern of is evaluating the efficacy of anomaly detection through service and virtual 

migrations within cloud settings [19]. The generated dataset was used to train the autoencoder and SVM by the 

authors. ROC curves were used to compare the performance of an autoencoder with a support vector machine, 

two distinct classifiers. With a false positive rate under 15%, they claim that autoencoder functions admirably 

during VM migrations. They utilized the AE model's reconstruction error as the anomaly score. The lack of a 

compared dataset to evaluate the robustness of the cloud's architecture constitutes one of their work's limitations. 

The GAN network was used to produce samples of data using a simulated network and balance them. Using the 

AE model, these samples were classified as either abnormal or normal. But only in a cloud environment like the 

one they replicated in their tests can their trained model find unusual traffic. With the help of clustering algorithms, 

unlabeled data is divided into groups with a high degree of inner similarity and outward dissimilarity. 

Unsupervised IDS and clustering techniques are used to find anomalies in unlabeled data since they do not rely 

on signatures, descriptions of attack classes, or labeled data. 

A system for real-time intrusion detection is suggested by [20]. They concentrate on spotting Spectre and 

meltdown threats in container environments. Cache-based side-channel attacks can be used to take advantage of 

the vulnerabilities Spectre and Meltdown to gain access to confidential information. These flaws provide hackers 

access to data which is temporarily saved in the cache and can later be retrieved via side-channel attacks that rely 

on the cache. The scenario is set up so that the containers were co-resident (i.e., using the same hardware), which 

satisfies the requirements for Spectre and Meltdown attacks. To keep an eye on the work flows, they created the 

ContainerGuard service. They monitor and record time-series data on the hardware and software performance. 

After gathering the data, they distribute it to the appropriate variational autoencoders while taking into account 

the performance data categories of hardware CPU events, hardware cache events, and software events. A dataset 

known as the container performance event dataset was produced with 400,000 benign and 60,000 malicious pieces 

of data in order to test a strategy for identifying the Meltdown and Spectre threats. The greatest AUC score for 

the approach is between 0.90 and 0.99. No appreciable runtime performance overhead, estimated at 4.5%, is 

present in addition to the detection performance. 

RPCs are necessary for significant communication among the components of a distributed cluster, much 

as system calls are necessary for useful actions within an application, according to [21] who recommended 

utilizing them as a substitute for monitoring system calls. RPC chains—a series of RPCs that are interdependent 

and appear sequentially throughout common operations—were how they were handled. The authors discovered 

that modeling RPC chains as directed graphs with weighted values works well for their use case. They depicted 

nodes as RPCs, edges and weights as the dependencies between various RPCs, and marked nodes with the 

frequency with which a given RPC was used. 

To identify an abnormality in a Kubernetes cluster, author developed the Kubernetes Abnormality 

Detector (KAD) solution. KAD achieves great accuracy by utilizing a variety of machine learning models [22]. 

Their approach varies from other approaches in that it makes use of several machine learning models which render 

it easier to find various kinds of anomalies. Various models can be compared to various types of data since the 

KAD system selects the best model for detection. SARIMA, HMM, LSTM, and Autoencoder are the names of 

these models. In contrast to LSTM and HMM, which are deep learning models, SARIMA and HMM are 

traditional time series and statistical models. The Numenta Anomaly Benchmark (NAB) dataset was used to train 

the models in their experiment. They chose two different kinds of data streams: one is synthetically produced, 

while the other is made up of information about CPU usage that was gathered via AWS Cloudwatch. The results 

demonstrate that the LSTM and autoencoder work better on AWS Cloudwatch data, whereas statistical models 

(SARIMA and HMM) perform better on synthetic data. The trials also show how the real-time anomaly 

recognition features of the KAD system may be effectively used within a Kubernetes cluster. Yet, one metric at a 

time can be selected for anomaly detection using the KAD method. Multivariate models may therefore be required 

in more complex situations. 

A protective deception paradigm for container-based clouds was put forth by [23]. Their solution uses a 

DRL Algorithm to produce an adversarial model, a decoy deployment planning, and decoy routing tables. The 

System Risk Graph (SRG) was the adversarial model they first created. SRG separates risks and threats in the 

cloud that runs on containers and also contains general risks and weaknesses from the application that affect the 

visualization layer. Second, the input neurons of the DRL agent receive SRGt, which represents the risk graph of 
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the cloud during time slot-t.  The DRL Algorithm creates a topologically optimum decoy deployment approach 

to select the best placements and varieties on digital decoy assets. Furthermore, the DRL agent is trained and 

updated using the placement strategy's effectiveness as the reward data. The DRL agent can change along with 

the dynamic cloud thanks to this feature. As a result, their approach is flexible and completely engages with the 

changing environment. The orchestration platform then receives the chosen placement method and deceptive 

routing for the decoy. The finding is that the suggested framework improves the detection ratios for the random-

walker attack and the persistent attack, respectively, by 30:69% and 51:10%. 

 

3. Proposed Container Anamoly Detection Technique 

In order to improve the security of containerized applications, container security intelligence makes use 

of cutting-edge technology like machine learning. Contemporary application creation and distribution pipelines 

frequently use containers because they are a lightweight and effective way to bundle and deploy software. New 

security issues have, however, surfaced as a result of their expanded implementation. 

By recognizing aberrant behavior or patterns that can point to a security breach or a potential 

vulnerability, anomaly detection serves an essential part in container security. To create models that learn the 

typical behavior of containerized apps and then spot departures from this standard, methods from machine learning 

can be used. The primary components of the proposed approach are explained below. Figure 1 depicts the 

proposed system architecture. 

 

 
Fig 1: Proposed Architecture of Container Anomaly Detection Technique 

Data Collection 

 Using machine learning for anomaly detection in containerized applications requires the acquisition of 

data, which is a vital first step in the process. In order to construct a dataset which will be utilized for training and 

assessing the anomaly detection model, it entails collecting pertinent data from multiple sources inside the 
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container environment. The efficacy of the model's capacity to effectively detect anomalies is strongly influenced 

by the level of accuracy and variation in the acquired data. The data sources and its types are listed as follows 

● Resource Utilization: This Gather statistics on each container's CPU, memory, and disc utilization. 

The basic behavior of containers under various workloads is revealed by these measurements. 

● Network Activity: Record patterns of network activity, such as connections made and broken, rates 

of data transfer, and protocols used for communication. Malicious activity may be indicated by 

unusual network behavior. 

● System Calls: Keep track of the system calls that containers make. To find departures from the 

intended course of action, examine system call patterns. 

● Application Logs: Compile the logs produced by programmes operating inside containers. Logs may 

provide important details about how a programme behaves and possible issues. 

● Container Metadata: Gather information about containers, such as the names, versions, and 

installation configurations of the container images. This knowledge puts abnormalities and their 

effects into context. 

Data is collected at a finer scale, such as by measuring resource usage metrics often (e.g., once every 

second). This level of detail enables the model to detect minute behavioral changes. Data collection is also 

extended to almost real-time. Regular surveillance ensures accurate anomaly detection and enables quick action. 

The following data collection mechanisms like agent-based monitoring, system observability tools (such as 

Prometheus, Grafana) and log aggregation platforms. 

Data Quality and Integrity is assured by implementing data cleaning and data verification. Data cleaning 

appropriately addresses missing values, anomalies, and noisy data. Incorrect information might result in skewed 

model training and ineffective anomaly detection. Data integrity is guaranteed through the use of checks in data 

verification. This involves confirming that the metrics that have been obtained match the projections and adhere 

to predetermined patterns. 

Data privacy and security is ensured by implementing sensitive data handling and access controls. When 

gathering sensitive data, abide by data protection laws and make sure that the information is appropriately encoded 

and anonymized. To prevent unauthorized utilization of the data that has been acquired, access restrictions and 

authentication procedures have been put in place. 

Feature Extraction 

Data preprocessing involves normalization, categorization and feature engineering. In order to ensure 

that characteristics are on the same scale, normalization entails transforming numerical data. As a result, some 

features that have bigger magnitudes are kept from dominating the model. During categorization, methods like 

one-hot encoding are used to transform categorical input (such container image names) into numerical 

representations. For the purpose of feature engineering, new features are created from raw data to capture 

complicated patterns. Taking resource utilization over time as an example, calculate the rate of change. 

Model Training and Testing 

Training and testing sets of the gathered data are created. Examples of typical behavior are found in the 

training set, while the performance of the model is assessed using the testing set. On the basis of the training data, 

a model is trained using machine learning methods. For the purposes of training and testing, Decision Trees (DT), 

Random Forests (RF), Support Vector Machines (SVM), and K – Nearest Neighbors (KNN) are used in the present 

research. 

● Decision Tree: Decision Trees categorize instances as either normal or anomalous in the context of 

container security intelligence by learning patterns of typical behavior from the training data. These 

are useful for locating subtle anomalies in containerized systems because of their interpretability and 

capacity to represent complicated decision boundaries. But this might have trouble capturing 

extremely complex relationships, where a situation ensemble approaches can offer further 

advantages. Decision Trees' capacity to detect anomalies in container settings can be improved by 

iterative enhancements like feature engineering and tuning. The model's efficacy should be assessed 

using the right metrics. 

● Random Forest: By combining the strength of several Decision Trees, Random Forests offer an 

enhanced method for anomaly identification. Random Forests improve the identification of anomalies 
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in the dynamic and complicated environment of containerized applications by reducing the 

constraints of individual trees and collecting a variety of behavioral patterns. The ensemble aspect of 

RF makes it especially well adapted for dealing with the complexities of anomalous behaviors, which 

can take many different forms across numerous instances. 

● SVM: By locating an ideal decision boundary that maximizes the margin among normal and 

anomalous cases, SVM offers a potent tool for discovering anomalies. By boosting SVM's ability to 

recognise complex linkages and non-linear decision limits, the kernel trick increases the likelihood 

that it will be able to spot minute and intricate anomalies in containerized applications. SVM is a 

useful tool for the dynamic and complicated context of container security due to its adaptability and 

versatility. 

● KNN: KNN offers a simple method for detecting anomalies by spotting occurrences that differ from 

the behavior of their neighbors. KNN is particularly helpful for finding anomalies which are enclosed 

by instances of different types and capturing local trends. Because of its versatility and simplicity, it 

is a useful tool for spotting behavioral variations in the dynamic and challenging environment of 

containerized systems. To achieve the best performance, careful adjustment of hyper parameters like 

"k" and the selection of distance metric is required. 

Anomaly Detection 

Anomalies in real-time data can be found using the model after it has been trained. The model makes an 

inference by contrasting the observed behavior with the normative behavior that it has already learned about. It is 

labeled as an anomaly if the observed behavior considerably differs from the taught baseline. 

The system can produce alerts to inform administrators or automated systems when an abnormality is 

found. Different reactions, such as scaling down the impacted container, separating the container, or starting a 

more thorough inquiry, can be triggered depending on how serious the anomaly is. 

Because of software updates, novel app versions, or shifting workloads, container ecosystems might vary 

over time. Therefore, in order to keep up with these changes and preserve its efficacy, the anomaly detection 

model should be frequently retrained. 

Workflow of the proposed approach 

The proposed approach for enhancing the security of containerized applications through machine 

learning-based anomaly detection, have devised a systematic workflow comprising several key stages. 

The first crucial step involves collecting diverse and granular data from various sources within the 

container environment. A real-time data was gathered on resource utilization, including CPU, memory, and disk 

usage, to understand the baseline behavior of containers under different workloads. Additionally, were recorded 

network activity patterns, such as connection establishment and data transfer rates, to detect any unusual 

communication. We delve into the system call traces generated by containerized applications, providing insights 

into program behavior. Furthermore, application logs and metadata were collected about the containers 

themselves, including image names and configurations, to provide contextual information. This comprehensive 

data collection process ensures that this model is well-informed and capable of detecting a wide range of 

anomalies. 

Once the data is collected, it was embarked on a meticulous data preprocessing phase. This involves 

normalization to bring numerical features to a consistent scale, preventing any one feature from dominating the 

model. Categorical data is transformed into numerical representations using techniques such as one-hot encoding. 

Feature engineering is employed to extract valuable insights from raw data, allowing us to capture complex 

behavioral patterns. For instance, the rate of change in resource utilization over time was calculated, enabling the 

model to identify subtle variations. This feature extraction step ensures that this model has access to relevant and 

informative data to distinguish between normal and anomalous behavior. 

With preprocessed data and engineered features in hand, it was proceeded to train the machine learning 

models. A diverse set of techniques was employed, including decision trees, random forests, Support Vector 

Machines (SVM), and k-nearest neighbors (KNN), to build a robust anomaly detection system. These models are 

trained on a labeled dataset comprising examples of typical container behavior. Once trained, the models are 

deployed to monitor real-time container activity. Anomalies are detected by comparing observed behavior to the 

learned baseline. When significant deviations are identified, alerts are generated to notify administrators or 
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automated systems. The severity of each anomaly dictates the appropriate response, which may range from 

isolating the affected container to initiating a comprehensive security investigation. Importantly, this approach 

acknowledges the dynamic nature of container ecosystems and includes a regular retraining mechanism to adapt 

to changes over time, ensuring the ongoing efficacy of our anomaly detection system. 

Evaluation Metrics 

 The following metrics in the context of container security intelligence give information about how 

effectively the model is spotting anomalies inside containerized applications. Which measure should be given 

priority depend on the application's particular objectives. Precision may be the main concern, for example, if the 

cost of false positives (flagged routine behaviour as anomalies) is considerable. Recall, on the opposite hand, takes 

precedence if the cost of missing true abnormalities is more serious. The F1-score offers a balanced perspective 

that weighs both precision and recall, aiding in the evaluation of the overall efficacy of the anomaly detection 

algorithm. The utilized evaluation metrics are detailed as follows. 

● Accuracy 

○ A frequently used metric called accuracy counts the percentage of correctly identified cases 

(both normal and anomalous) among all the examples in the collection. When the dataset is 

unbalanced (for example, when there are few abnormalities), accuracy may be deceptive. The 

model's bias in favor of the majority class could lead to high accuracy. 

Accuracy = 
(True Positives + True Negatives)

Total Instances
 

● Precision 

○ Precision concentrates on the accuracy of the model's accurate predictions. How many of all the 

cases that were projected as anomalies truly are anomalies? may be answered with precision. 

When a model anticipates an anomaly, it is likely to be accurate because of its high precision. 

It might, however, overlook certain genuine oddities. 

Precision = 
(True Positives)

(True Positives + False Positives)
 

● Recall 

○ Recall measures the model's accuracy in identifying all genuine abnormalities. How many of 

the actual anomalies did the model accurately predict, according to recall? High recall suggests 

that the model is successful in detecting the majority of anomalies but may produce more false 

positives. 

Recall = 
(True Positives)

(True Positives + False Negatives)
 

● F1-Score 

○ A fair assessment of the model's performance is provided by the F1-score, which is the harmonic 

mean of precision and recall. Precision and recall are combined into one number, the F1-score. 

Whenever you wish to think about both false positives and false negatives, it is helpful. It 

achieves a compromise between recall and precision and is especially crucial if the cost of false 

positives and false negatives are not uniform.  

F1-Score = 
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
 

 

4. Experimental Setup 

The experimental infrastructure was designed to provide a robust and realistic testing ground. It featured 

a cluster of Linux servers running Beowulf cluster in a multi node cluster, each node is equipped with dual 

multicore processors, boasting a minimum of 32GB of RAM, and furnished with high-speed SSD storage. These 

servers were interconnected through a high-bandwidth network, enabling seamless container orchestration. 

Kubernetes was employed as the container orchestration platform, finely tuned to mirror genuine containerized 

application deployments. 

Dataset Selection and Preparation 

It was meticulously configured ELK stacks ML model, encompassing various containerized applications 

sourced from actual deployments. An ELK agent is added in the other system in different network which runs 

different container related apps. This comprehensive deployment ingested data including the granular information 
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on CPU, memory, and disk utilization, detailed network activity logs, extensive system call traces, comprehensive 

application logs, and essential container metadata. A local copy of the log is written using SYSMON utility. 

Leveraging Python, it was engaged Pandas and NumPy libraries for rigorous data pre-processing, which involved 

tasks such as data cleaning, missing value handling, and outlier detection. To facilitate model training and 

evaluation, the dataset [] were partioned into distinct training (70%) and testing (30%) subsets. For the training 

phase, it was strategically injected anomalies into the dataset to simulate real-world security threats and 

vulnerabilities. 

Anomaly Injection 

Realistic security threats and vulnerabilities were emulated through precise anomaly injection. Custom 

Python scripts were utilized for this purpose, enabling the introduction of anomalies into critical aspects of 

containerized applications, including network traffic, system call patterns, and resource utilization metrics. This 

process encompassed activities such as inducing CPU usage spikes, simulating unusual network traffic patterns, 

and introducing unauthorized system calls. Network packet manipulation tools like Scapy, system call tracing 

tools such as strace, and resource utilization control via cgroups were harnessed for anomaly injection. 

Model Selection and Configuration 

This research encompassed a diverse array of machine learning models, each meticulously configured 

and fine-tuned to maximize performance. Decision trees, random forests, Support Vector Machines (SVMs) with 

various kernels, and k-Nearest Neighbors (KNN) classifiers were implemented and optimized using Python's 

Scikit-learn library. It was conducted hyperparameter tuning using advanced techniques like grid search and cross-

validation, complemented by libraries like Optuna for efficient hyperparameter optimization. 

 

5. Results and Discussion 

Figure 2 shows the output of ELK stack aggregating the traffic which is a significant finding in the 

context of anomaly detection in containerized applications. The integration of the ELK (Elasticsearch, Logstash, 

Kibana) stack with machine learning models for anomaly detection is recognized as a powerful combination for 

monitoring and securing containerized applications. ELK's capability to efficiently collect, process, and visualize 

log data from various sources, including container logs, is acknowledged as a valuable tool for anomaly detection. 

The effective detection of anomalies with the ELK ML model, as indicated by the results, is regarded as promising. 

The robustness of this approach in identifying abnormal behaviour within containerized environments is 

underscored. This success is anticipated to have important implications for the enhancement of container security, 

as it signifies the capability of the integrated ELK ML model to perform effective log analysis and detect 

deviations from normal behaviour patterns, thereby proactively identifying security threats and vulnerabilities. 

 

 
Fig 2(a): Screenshot Depicting the Word Cloud of the Popular Attack which was Detected by the Proposed 

Approach 
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Fig 2(b): Screenshot Depicting Event IDs Along with Other Specific Information 

 

 
Fig 2(c): Screenshot Depicting the Results in the Mapped form of MITRE Attack Model  
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Fig 2(d): Screenshot Depicting the Results of SYSMON Events 

Fig 2: ELK Results 

 

Figure 2 is the evident of how the integrated ELK stack not only simplifies the implementation process 

but also excels in identifying anomalies within log data, providing security professionals with valuable insights 

into potential security threats and vulnerabilities. While traditional ML classifiers have their merits in various 

contexts, this research demonstrates that the ELK ML model is particularly well-suited for anomaly detection 

within containerized environments. It minimizes the complexity of model setup, streamlines log analysis, and 

offers scalability and real-time processing capabilities that are paramount in securing modern containerized 

applications. As containerization continues to gain traction in software deployment, leveraging tools like ELK for 

anomaly detection will likely become an increasingly attractive option. The ease of integration, coupled with 

robust anomaly detection capabilities, positions the ELK ML model as a compelling choice for organizations 

seeking to bolster containerized application security effectively and efficiently. 

 

6. Conclusion 

Finally, this paper concludes by presenting a comprehensive approach to enhancing the security of 

containerized applications through the application of machine learning-based anomaly detection. Through a 

systematic experimental setup and rigorous technical evaluations, have demonstrated the effectiveness of this 

approach in identifying security threats and anomalies within containerized environments. The experiments have 

showcased the capability of various machine learning models, including decision trees, random forests, SVMs, 

and KNN classifiers, to accurately detect anomalous behaviour. These models, when properly configured and 

trained on diverse datasets, have consistently exhibited strong precision, recall, and F1-scores, demonstrating their 

reliability in distinguishing between normal and anomalous container behaviour. Furthermore, this approach 

acknowledges the dynamic nature of container ecosystems by implementing regular retraining mechanisms, 

ensuring adaptability to evolving container behaviour patterns. This adaptability is essential in maintaining the 

effectiveness of anomaly detection in real-world, ever-changing deployment scenarios. Overall, this research 

contributes valuable insights into container security by providing a practical and effective means of proactively 

identifying security threats within containerized applications. The results underscore the importance of machine 

learning techniques in bolstering the security of modern software deployment practices and highlight the potential 

for broader adoption of anomaly detection in containerized environments. 
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