Vol. 44 No. 3 (2023)

Mean Labeling For Some Path And Cycle Related Graphs

[1]N. Kumaravel, [2]R. Kulandaivelu, [3] R. Mangalagowri, [4]N. Ramakrishnan, [5] M. Janaki

[1] Assistant Professor, Department of Mathematics, K S R Institute for Engineering and Technology, Tiruchengode.

^[2]Assistant Professor(Sl.Gr), Department of Mathematics, Dr.N.G.P. Institute of Technology, Coimbatore.

[3]Lecturer, Department of Mathematics, NPA Centenary Polytechnic College, Kotagiri [4] Assistant Professor, Department of Mathematics, K.S.R. College of Engineering, Tiruchengode. [5]Assistant Professor, Department of Mathematics, Karpagam Academy of Higher Education, Coimbatore.

Email id: [1]kumaramaths@gmail.com, [2]kulandaivelusvs@gmail.com, [3]mgowrinpa@gmail.com, [4]ramksrce@gmail.com, [5]janu.spirit@gmail.com

Abstract:

A function f is called a Mean labeling of a graph G if $f:V(G) \to \{0,1,2...,q\}$ is injection and the induced function $f^*: E(G) \to \{1,2,3,...,q\}$ defined as

$$f^*(uv) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd} \end{cases}$$
 is bijective. A graph which admits mean labeling is

called Mean Graph. In this paper we investigate some path and cycle based graphs are Mean Graphs.

MSC Clasiffication: 05C76, 05C78

Key Words: Laddar Graph, Planar Grid, Alternate Triangular snake, Mean Graph.

1. Introduction

Graph labeling is an Assignment of labels to edges, vertices or both subject to certain conditions. The concept of Graph labeling is introduced by Gallian. Joseph A.Gallian[3] is updating the recent topics in A Dynamic survey of Graph Labeling,2022. K.Manimekalai, K.Thirusangu[5] are proved Some Results on Pair Sum Labeling. Somasundaram.S and Ponraj.R,[8] are proved Some Results on Mean Graphs. The concept of Mean labeling is introduced by Somasundaram and Ponraj[7]. S.K. Vaidya, Lekha Bijukumar[11] are proved Some New Families of Mean Graphs. R.Ponraj, J.V.X.Parthipan and R.Kala,[6] are proved Some Results on Pair Sum Labeling. H ere we have to discuss only on connected simple graphs. In this paper we have discussed different types of graphs which satisfy the conditions of Mean labeling.

2. Definitions

2.1 Definition:

A function f is called a Mean labeling of a graph G if $f:V(G) \to \{0,1,2...,q\}$ is injection and the induced function $f^*: E(G) \to \{1,2,3,...,q\}$ defined as

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$
 is bijective.

2.2 Definition:

An Alternate Triangular snake $A(T_n)$ is obtained from a path $u_1, u_2, u_3, ..., u_n$ by joining u_i and u_{i+1} to new vertex V_{ie} every alternate edge if a path is replaced by C_3 .

2.3 Definition:

The ladder L_n $(n \ge 2)$ is the product graph $P_2 \times P_n$ which contains 2n vertices and 3n - 2 edges.

2.4 Definition:

The Planar grid P_{mn} is the product graph $P_m \times P_n$ which contains mn vertices mn + (m-2) edges.

3. Results

3.1Theorem:

An Alternate Triangular Snake $A(T_n)$ is Mean Graph.

Proof:

Let $A(T_n)$ be an Alternate Triangular snake.

Let $V(G) \rightarrow \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$ be a Vertex Set. Here $u_1, u_2, ..., u_n$ be the first vertices of the Triangles and $v_1, v_2, ..., v_n, w_1, w_2, ..., w_n$ be the vertices of second and third vertices of Triangles respectively. Let $E(G) \rightarrow \{e_{ii}, g_{ii}\}$ be the Edge set.

Let $e_{ii} = \{u_i v_i\}$ and $g_{ii} = \{v_i w_i\}$.

Define the function $f: V(G) \rightarrow \{0,1,2,3,...q\}$ as follows

$$\begin{split} f(u_1) &= 2 \\ f(v_1) &= 0 \\ f(w_1) &= 3 \\ f(u_i) &= u_1 + 4(i-1) & for \ i = 2,3 \dots, n \\ f(v_i) &= v_1 + 4(i-1) & for \ i = 2,3, \dots, n \\ f(w_i) &= w_1 + 4(i-1) & for \ i = 2,3 \dots, n \end{split}$$

The Edge labels are

$$f(e_{ii}) = \frac{[f(u_i) + f(v_i)]}{2} \text{ or } \frac{[f(u_i) + f(v_i) + 1]}{2}$$
$$f(g_{ii}) = \frac{[f(v_i) + f(w_i)]}{2} \text{ or } \frac{[f(v_i) + f(w_i) + 1]}{2}$$

Then the above defined function f admits Mean Labelling. Hence An Alternate Triangular Snake is Mean Graph.

Example:

3.2 Theorem:

The Laddar L_n $(n \ge 2)$ is Mean Graph.

Proof:

Let L_n $(n \ge 2)$ be Laddar. Let $V(G) \to \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n.\}$ be a Vertex Set. Here $u_1, u_2, ..., u_n$ be the vertices of the lower row and $v_1, v_2, ..., v_n$ be the vertices of upper row. Let $E(G) \to \{e_{ij}, g_{ij}, s_{ii}\}$ be the Edge set. Let $e_{ij} = \{u_i u_j\}$, $g_{ii} = \{v_i v_j\}$ and $s_{ii} = \{u_i v_i\}$.

Define the function $f: V(G) \to \{0,1,2,3, \dots q\}$ as follows

$$f(u_i) = (i-1)$$
 for $i = 2,3...,n$
 $f(v_i) = i + (q-n)$ for $i = 1,2,3,...,n$
 $f(u_1) = 0$.

The Edge labels are

$$f(e_{ij}) = \frac{[f(u_i) + f(u_j)]}{2} \text{ or } \frac{[f(u_i) + f(u_j) + 1]}{2}$$

$$f(g_{ij}) = \frac{[f(v_i) + f(v_j)]}{2} \text{ or } \frac{[f(v_i) + f(v_j) + 1]}{2}$$

$$f(s_{ii}) = \frac{[f(u_i) + f(v_i)]}{2} \text{ or } \frac{[f(u_i) + f(v_i) + 1]}{2}$$

Then the above defined function f admits Mean Labelling. Hence Ladder L_n is Mean Graph.

Example 3.2

Fig 3.2 : Laddar L_4

3.3 Theorem:

The Planar grid P_{mn} is Mean Graph.

Proof:

Let P_{mn} be Planar grid. Let $V(G) \to \{u_1, u_2, \dots, u_{mn}\}$ be a Vertex Set. Here u_1, u_2, \dots, u_{mn} be the vertices of Planar grid. Let $E(G) \to \{e_{ij}\}$ be the Edge set. Let $e_{ij} = \{u_{ki}u_{k(i+1)}\}$.

Define the function $f: V(G) \rightarrow \{0,1,2,3,...q\}$ as follows

$$f(u_{ki}) = (m-i) + (k-1)(2m-1)$$
 for $i = 1,2,...m$
for $k = 1,2,...n$

The Edge labels are

$$f(e_{ij}) = \frac{[f(u_{ki}) + f(u_{k(i+1)})]}{2} \text{ or } \frac{[f(u_k) + f(u_{k(i+1)}) + 1]}{2}$$

Then the above defined function f admits Mean Labelling. Hence Planar Grid P_{mn} is Mean Graph.

Example:

Fig 3.3: Planar grid P_{53}

3.4 Theorem

The graph $P_nAK_1 + 2e$ is mean graph.

Proof:

Let $P_nAK_1 + 2e$ be a graph. Let $V(G) \rightarrow \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, w_{1,w_2}\}$ be a Vertex Set. Here $u_1, u_2, ..., u_n$ be the first vertices of the path and $v_1, v_2, ..., v_n$ be the pendant vertices attaching by the path vertices and w_{1,w_2} be the vertices attached by first and last vertex of path. Let $E(G) \rightarrow \{e_{ii}, g_{ii}, s_{ij}\}$ be the Edge set. Let $e_{ii} = \{u_i v_i\}$, $s_{ij} = \{u_i u_j\}$, and $g_{ij} = \{u_i w_i\}$.

Define the function $f: V(G) \rightarrow \{0,1,2,3,...q\}$ as follows

$$f(w_1) = 0$$

$$f(w_2) = q$$

$$f(u_i) = (q-1) - (2i-2) \text{ for } i = 1,2,3,...,n.$$

$$f(v_i) = (q-1) - (2i-1) \text{ for } i = 1,2,3,...,n.$$

The Edge labels are

$$f(s_{ij}) = \frac{[f(u_i) + f(u_j)]}{2} \text{ or } \frac{[f(u_i) + f(u_j) + 1]}{2}$$

$$f(g_{ij}) = \frac{[f(v_i) + f(w_j)]}{2} \text{ or } \frac{[f(v_i) + f(v_j) + 1]}{2}$$

$$f(e_{ii}) = \frac{[f(u_i) + f(v_i)]}{2} \text{ or } \frac{[f(u_i) + f(v_i) + 1]}{2}$$

Then the above defined function f admits Mean Labelling. Hence $P_nAK_1 + 2e$ is Mean Graph.

4. Conclusion

We proved that cycle related graphs and path related graphs are Mean graphs. We extend the study to other families of Graph.

References

- [1] J.A.Bondy and U.S.R. Murthy, Graph theory with applications, New York Macmillian Ltd.Prees, 1976.
- [2] Harary. F., 1988 Graph theory, Narosa Publishing House, New Delhi.
- [3] Joseph A.Gallian, A Dynamic survey of Graph Labeling, 2008.
- [4] K.Manimekalai, K.Thirusangu, "Some Results on Pair Sum Labeling", International Journal of Mathematical Combinatorics, Vol.02 October 2013, pages 251-256.
- [5] R.Ponraj, J.V. X. Parthipan "Pair Sum Labeling of Graphs", The Journal of Indian Academy of Mathematics, Vol.32, No.2, pp.587-595, 2010.
- [6] R.Ponraj, J.V.X.Parthipan and R.Kala, "Some Results on Pair Sum Labeling", International Journal of Mathematical Combinatorics, Vol4, pp. 55-61, 2010.
- [7] S.Somasundaram and R.Ponraj have introduced the mean labeling of graphs in, and they proved the graphs etc admit Mean Labeling.
- [8] Somasundaram.S and Ponraj.R, 2003, Some Results on Mean Graphs. Pure and Applied Mathematical Sciences, 58, 29-35.
- [9] Somasundaram.S. Ponraj R, and Sandhya S.S., Harmonic Mean Labeling of Graphs communicated.
- [10] D.Tanna, Harmonic Mean Labeling of certain graphs .The International Journal of Advanced Engineering Research and Studies.
- [11] S.K. Vaidya, Lekha Bijukumar, "Some New Families of Mean Graphs", Journal of Mathematics Research, Vol.02, No.3 2010.