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1. Introduction 

In Classical Differential Geometry, second identity (1.2) is called the second Bianchi identity proved by Bianchi 

in 1889. Many physicists and mathematician established connections with the Bianchi identities. J. B. Davies [4] 

used the Bianchi identities to find curvature torsion relations and contribution of symmetric curvature to the 

gravitational field. S. M. Bhati, G. Murali, G, Deepa, and Ch. Sanjay [1] obtain connection between continuity 

equations in Fluid Dynamics and Bianchi identities. It is shown that fluid flux across the closed surface S 

bounding volume V is zero. Recently, S. M. Bhati, G. Murali, and Ch. Sanjay [2, 3], obtain the law of electric 

field and magnetic field in the space time system with respect to any frame of reference using Bianchi identities.  

Rowe David [5] has proved the Einstein’s Gravitational Field Equations and energy-momentum conservation 

laws in the space time system. He has shown in his article that how the Gravitational Field Equations are 

significantly related to the Bianchi identities of Riemannian geometry. Einstein found the Gravitational Field 

Equations in differential form and these equations are locally expressed at each point in space. Concurrent 

research avenues explored by the studies which were authored by Murali Etc.al [8]-[25] delved into different 

forms, providing substantial insight into the nature of the work reported.   

Let 𝑀𝑛  be a connected differential manifold of dimension 𝑛 > 2 covered by system of co-ordinate 

neighbourhood  𝑈; 𝑥𝜆 , where 𝑈 is the neighbourhood and 𝑥𝜆  denote the local co-ordinates in 𝑈 and the indices 

𝜆, 𝜇, 𝜈, 𝜅, . . ... taking on the values 1,2,3,… , 𝑛. Let 𝑔 be the Riemannian metric which is the second order tensor 

with covariant components 𝑔𝜆𝜇  and with contravariant components 𝑔𝜆𝜇 . 

Let ∇ be the Riemannian connection with components  𝛤𝜆𝜈
𝜂
 , called Riemann Christoffel symbols. Raising and 

lowering of indices are carried out using 𝑔𝜆𝜈  and 𝑔𝜆𝜈  respectively. Einstein summation conventions are used in 

this paper.Let 𝑅𝜇𝜈𝜅
𝜎

 and 𝑅𝜆𝜈  be the Riemannian Christoffel curvature tensor field of type  1, 3  and Ricci 

curvature tensor of 𝑀𝑛  respectively. Let 𝑟 be the scalar curvature of space time system, that is,  𝑀3, 𝑡 , that is, 

𝑀4. We quote the following two famous identities from the Differential Geometry which are needed in our 

study [7] 

   𝑅𝜅𝜈𝜇
𝜎 = −𝑅𝜈𝜅𝜇

𝜆 ,                                                  (1.1) 
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    ∇𝜎𝑅𝜅𝜈𝜇
𝜆 + ∇𝜅𝑅𝜈𝜎𝜇

𝜆 + ∇𝜈𝑅𝜎𝜅𝜇
𝜆 = 0                     (1.2) 

  

2.Fomulation 

In this section, we consider the 4-dimensional space  𝑀3, 𝑡 = 𝑀4. The indices 𝜆, 𝜇, 𝜈, 𝜂 running over the range 

1, 2, 3, 4. One of the four co-ordinates may be taken as time co-ordinate t. Einstein [6] studied the gravitational 

field equations  with respect to the theory of relativity. David[5] has proved the Einstein’s Gravitational Field 

Equations and energy-momentum conservation laws in the space time system. We study our results in space-

time system. 

Using the Bianchi identities (1.1), (1.2), contracting Bianchi identity (1.2) with respect to 𝜆 and 𝜎, we get 

∇𝜂𝑅𝜅𝜈𝜇
𝜂 − ∇𝜅𝑅𝜈𝜇 + ∇𝜈𝑅𝜅𝜇 = 0 

Now multiplying by 𝑔𝜈𝜇 , we get 

∇𝜎𝑅𝜅
𝜎 =

1

2
∇𝜅𝑅 

Again, multiplying by 𝑔𝜆𝜅 , we have 

∇𝜎 𝑔
𝜆𝜅𝑅𝜅

𝜎 =
1

2
𝑔𝜆𝜅∇𝜅𝑅                                                       (2.1) 

∇𝜎𝑅
𝜆𝜎 =

1

2
∇𝜆𝑅                                                                                 (2.2) 

Where ∇𝜆= 𝑔𝜆𝜅∇𝜅 . einstein’s gravitational tensor field 𝐺𝜆𝜈  of the type  0,2  on 𝑀4 is defined by [5] 

𝐺𝜆𝜈 = 𝑅𝜆𝜇 −
1

2
𝑟𝑔𝜆𝜈  

We quote the Stoke’s Theorem which is needed in this section. 

3. Methods 

Stoke’s Theorem: If 𝐺 be the tensor field of type  2,0  on 𝑀4, then 

 ∇𝜈𝐺
𝜆𝜈𝑑𝑉

𝑀4 =  𝐺𝜆𝜈𝑁𝜈𝑑𝑆𝑆
                                                  (2.3) 

where 𝑁𝜈  is the component of the unit outward normal to the boundary, 𝐺𝜆𝜈  is the contravariant components of 

tensor 𝐺, 𝑑𝑆 is the surface element of 𝑆 and 𝑑𝑉 is the volume element of 𝑀4 

Einstein established that if 𝐺 represents the gravitational field tensor, then the divergence of 𝐺 is zero, that is, 

gravitational field equations in the differential form are given by [6] 

∇𝜆𝐺
𝜈𝜆 = 0 

This is locally expressed at each point in space. 

The main purpose of the paper is to obtain the gravitational field equations globally, that is, in the integral form. 

In this connection, we prove the following Theorem. 

Theorem 2.1.  Gravitational Field Equations in the Integral Form: If 𝐺 be the tensor field of type  2,0  in 𝑀4, 

then the Gravitational Field Equations in the integral form is given by 

 𝐺𝜆𝜈𝑁𝜈𝑑𝑆𝑆
= 0                                                                    (2.4) 

𝑁𝜈  is the component of the unit outward normal to the boundary, 𝐺𝜆𝜈  is the contravariant component of the 

tensor field 𝐺, 𝑑𝑆 is the surface element of 𝑆. 

Proof.    From equation (2.3) 

 𝐺𝜆𝜈𝑁𝜈𝑑𝑆 =  ∇𝜈𝐺
𝜆𝜈𝑑𝑉

𝑀4𝑆
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                                                =  ∇𝜈  𝑅𝜇𝜈 −
1

2
𝑟𝑔𝜇𝜈  𝑑𝑉

𝑀4
 

                                                  =   ∇𝜈𝑅
𝜇𝜈 −

1

2
∇𝜈𝑟𝑔

𝜇𝜈  𝑑𝑉
𝑀4

 

                                          =   
1

2
∇𝜇𝑟 −

1

2
∇𝜇𝑟 𝑑𝑉

𝑀4
 

  = 0, 

Where in we have used (2.1) and (2.2). This proves (2.4). 

4. Results 

Einstein established that if 𝐺 represents the gravitational field tensor, then the divergence of 𝐺 is zero .The 

equation (2.4) simply asserts that the gravitational field across the closed surface S bounding the region V is zero 

in the space time system with respect to any frame of reference. 

5. Conclusions 

The integral form of the Gravitational Field Equations are obtained using bianchi identities .we have also shown 

that the Gravitational Field across the surface S bounding the region V is zero. 
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