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Abstract: The proposed methodology addresses critical challenges in Wireless Sensor Networks (WSN), 

focusing on optimizing cluster head and forwarding node selection. Leveraging an enhanced Particle Swarm 

Algorithm (PSO), the approach prioritizes residual energy and spatial balance in node selection. It efficiently 

assigns cluster head nodes to ordinary nodes and selects forwarding nodes within clusters. The algorithm 

incorporates proximity principles to ensure balanced positioning of nodes. Through iterative iterations, the 

method refines node selections, favoring candidates with higher residual energy and improved spatial 

distribution. This approach optimizes WSN performance, enhancing data transmission efficiency and network 

longevity by minimizing energy consumption. Moreover, it reduces communication overhead through 

piggybacking and ensures dynamic node adaptation for evolving network conditions. 

Keywords - Wireless Sensor Networks, Optimization Algorithm, Genetic Algorithm, Cluster Head Election, 

Particle Swarm Optimization. 

 

 

1. Introduction 

In Wireless Sensor Networks (WSNs), conventional clustering routing protocols aim to reduce network 

traffic and energy consumption by consolidating data through cluster head nodes and transmitting it to the base 

station. However, this approach tends to accelerate the energy depletion of cluster head nodes due to their heavy 

responsibilities, thereby shortening the network's lifespan. To address this challenge and prevent cluster head 

nodes from becoming excessively distant from the base station, leading to increased energy consumption, existing 

clustering routing protocols often opt for selecting forwarding nodes as close as possible to the base station. In 

this approach, the cluster head node forwards the fused data to the selected forwarding node, which subsequently 

relays the data to the base station. Nevertheless, if the number of available forwarding nodes is limited, the 

workload on these nodes becomes burdensome. Alternatively, when employing a single-hop method to transmit 

data to the base station, the communication overhead of nodes surges when the distance between the node and the 

base station exceeds a certain threshold. Thus, the optimization of cluster head node and forwarding node selection 

in WSN routing protocols, along with the enhancement of the transmission path for forwarding nodes, stands as 

a critical task for mitigating network communication overhead, achieving balance, and extending the overall 

network's operational lifespan. 

In response to the above problems faced by WSN routing protocols, Literature [1] uses random clustering 

strategy and periodic cluster head rotation to maintain the energy balance of nodes; Literature [2] uses a 

hierarchical autonomous system based on hop count and energy to achieve reasonable routing selection. ; 

Literature [3] uses relay nodes to share the data transmission tasks of cluster heads to reduce the energy 

consumption of cluster heads; Literature [4] uses a tree routing protocol based on virtual cross areas to reduce 

data transmission delays; Literature [5] uses equal spacing The non-uniform clustering method of ring division 

and equal-angle sector division ensures the shortest communication distance between the source node and the 

base station; Literature [6] uses a cluster head selection method based on the signal strength and residual energy 

of the node receiving base station to avoid frequent replacement of cluster heads; Literature [7] adopted a 

clustering routing protocol based on compressed sensing to determine the communication radius of clusters to 

extend network life. 
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Particle Swarm Optimization (PSO) algorithm is a population-based swarm intelligence optimization 

algorithm. It has the characteristics of simple implementation, fast convergence speed and high search accuracy. 

It has great advantages over other algorithms in solving combinatorial optimization problems [ 8]. Literature [9] 

uses an improved particle swarm algorithm that dynamically adjusts the number of nodes in the cluster to reduce 

cluster head node energy consumption; Literature [10] uses a recoding method based on particle position and 

speed to increase network coverage area; Literature [11] optimizes network coverage However, these three 

algorithms do not consider the impact of relevant factors in the particle swarm algorithm on optimal clustering. 

Literature [12] uses the discrete particle swarm algorithm to select cluster heads and relay nodes to build the 

optimal cluster structure; Literature [13] avoids the algorithm from falling into local optimality by adjusting the 

inertia weight coefficient; Literature [14] uses fuzzy and network coding based improved particle swarm algorithm 

constructs the optimal transmission path from node to base station without considering forwarding 

In summary, current cluster head node selection methods primarily rely on assessing residual energy. 

While some approaches take into account the distance between cluster head nodes and the base station, they often 

overlook the importance of achieving a balanced distribution of cluster head nodes. Having cluster head nodes 

evenly distributed across the network can significantly reduce the total communication distance and minimize 

network communication overhead. Secondly, most existing clustering routing protocols tend to choose a limited 

number of forwarding nodes, which can lead to increased energy consumption among these nodes. Some protocols 

that attempt to increase the number of forwarding nodes typically employ random selection methods, which may 

result in redundancy with cluster head nodes and fail to consider factors like energy levels and node positions. 

Lastly, in current protocols, forwarding nodes utilize a combination of single-hop and multi-hop transmission 

methods. In particular, nodes located closer to the base station often employ a single-hop mode for data 

transmission. When using the multi-hop mode, the distance of adjacent forwarding nodes is mainly considered, 

and the point energy and directionality toward the base station are not considered, resulting in limited energy and 

a reasonable increase in path overhead. The protocol based on the particle swarm algorithm fails to fully utilize 

the advantages of the particle swarm algorithm and optimize the shortcomings of the algorithm. For example, the 

randomness of particle initialization can easily lead to uneven node distribution and fall into local optimality; in 

the speed update calculation, fixed the learning factor and inertia weight cannot balance the ability of local search 

and global search, making the algorithm converge slowly and making it difficult to obtain a high-quality cluster 

head node set, etc. 

The remaining part of the paper is organized as follows, section 1 provides the brief introduction and 

literature survey about the optimization based cluster head election protocols. Section 2 discusses the system 

model of the proposed protocol. Section 3 describes the proposed protocol in details and the simulation results are 

tabulated in section 4 and section 5 concludes the paper with quoted references. 

 

2. System Model 

2.1 Network Model 

First, make the following conventions on the network model. 

1) The shape of the WSN experimental area is a flat regular figure. The sensor nodes are randomly 

distributed and fixed in the monitoring area. Each node is identified by a globally unique ID. 

2) The energy of the base station is not limited, and the energy of all other sensor nodes is limited, but 

the initial energy of each node is the same, and the processing capabilities and communication 

capabilities are equal. 

3) The wireless transmission power of the node can be self-regulated and the transmission power can be 

selected independently. 

 

2.2 Energy Consumption Model 

In wireless sensor networks (WSN), sensor node energy consumption encompasses communication 

energy usage (including data sending and receiving) and data processing energy (like data fusion). Communication 

energy is influenced by factors such as the communication environment, transmission distance, and data packet 

size. This paper employs a low-power adaptive clustering and hierarchical energy consumption model, choosing 

between free space and multi-path attenuation models based on distance (with "d" representing distance and "d0" 
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the threshold). "Efs" and "Emp" are power amplifier factor parameters, "m" stands for data packet size in bits, 

"Eelec" signifies the energy consumption per 1-bit data transmission, and "EDA" indicates the energy consumed 

for each 1-bit data fusion. The paper outlines the computation methods for sending energy consumption 

"ETX(m,d)" and receiving energy consumption "ERX(m,d)" when nodes separated by distance "d" transmit "m" 

bits of data, along with the calculation method for fusion energy consumption "EDA(m,d)" when fusing "m" bits 

of data. 

 

2.3 Cluster Head Election 

• Cluster Head Initialization 

To simplify the energy-intensive calculations associated with particle swarm algorithms, the clustering 

and routing computations based on this algorithm are offloaded to base stations equipped with abundant energy 

resources. During the initialization phase, all nodes transmit their remaining energy, locations, and numerical 

information to the base station, which receives and stores this data. Subsequently, the base station conducts 

clustering calculations using the particle swarm algorithm, and the resulting outcomes are broadcasted. Each 

surviving node, upon receiving this broadcasted information, obtains precise location details of the elected node 

and routing node. This approach enables the base station to perform the computational workload of the particle 

swarm algorithm, thereby optimizing the election and clustering processes. Consequently, individual nodes are 

relieved from performing intricate computations, effectively conserving node energy.The particle swarm 

algorithm relies on random particle selection, similar to many traditional clustering routing protocols that use 

random methods for cluster head selection. However, this randomness can often lead to local optimization issues 

and result in uneven node distribution within clusters. Additionally, if a selected node possesses insufficient 

energy, it may struggle to fulfill the demanding responsibilities of a cluster head node. To mitigate these 

challenges, there are energy limitations imposed on nodes participating in the cluster head node selection process. 

Assume that there are N surviving nodes in the WSN, the energy of node i is E(i), and the base station 

calculates the average remaining energy of all nodes in the WSN as to ensure that the chosen cluster head nodes 

possess adequate energy for data processing within the cluster, the base station initiates the process by forming a 

set, denoted as EA, comprising all nodes with energy levels greater than or equal to Eavg. Subsequently, a random 

selection method is employed to pick K nodes from this set, designating them as candidates for cluster head 

positions. These selected nodes collectively represent one particle. After establishing this initial group of candidate 

cluster head nodes, non-cluster head nodes join the nearest cluster head nodes to create the initial clustering 

structure.The process continues by randomly selecting K nodes from the EA in a total of M iterations. Eventually, 

this results in M sets of initial cluster head nodes, forming M particles, each corresponding to a distinct cluster 

configuration. In essence, M different clusters are generated through this procedure. 

• Fitness Function 

Due to the high energy consumption of cluster head nodes, using node residual energy as an evaluation 

index is conducive to selecting higher energy cluster head nodes; the more balanced the distribution of cluster 

head locations in the network, the closer the cluster head is to non-cluster head nodes and base stations. The 

smaller it is, the smaller the communication overhead will be. In order to select the optimal candidate cluster head 

node set from the M groups of initial cluster head node sets as the cluster head node set, the remaining energy and 

position of the node are used as evaluation indicators, and a fitness function is constructed to evaluate each 

candidate cluster head node set. 

The fitness function needs to comprehensively evaluate all candidate cluster head nodes in the initial cluster head 

node set, which needs to consider the average energy and equilibrium position of all candidate cluster head nodes. 

The larger the fitness function value is, the better the selected cluster head node set is. 

 

1) Energy Factor 

The energy factor, denoted as f1, is determined as the ratio of the average remaining energy among all 

candidate cluster head nodes in the candidate cluster head node set to the average remaining energy among all 

non-cluster head nodes. This factor provides insight into the relative energy levels between candidate cluster head 

nodes and non-cluster head nodes in the Wireless Sensor Network (WSN). 

Here's the formula for calculating the energy factor f1: 
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f1 = (1/K) * Σ [CHer(i)] / [(1/(N-K)) * Σ [NCHEr(j)]] 

Where: 

K represents the number of candidate cluster head nodes in the candidate cluster head node set. N stands for the 

total number of surviving nodes in the WSN. 

CHer(i) signifies the remaining energy of candidate cluster head node CHi in the r-th round. NCHEr(j) 

represents the remaining energy of non-cluster head node NCHj in the r-th round. 

In essence, f1 captures the energy balance between the candidate cluster head nodes and the non- cluster 

head nodes in each round of clustering calculations. 

 

2) Position Balancing Factor 

The location balance factor, denoted as f2, characterizes the distribution of candidate cluster head nodes 

within the Wireless Sensor Network (WSN) based on communication distances. It assesses the relative distances 

between various nodes, including the distances between candidate cluster head nodes and the base station, as 

well as the distances between each candidate cluster head node and the non-cluster head nodes within its cluster. 

The sum of these distances is inversely related to the aggregate distance between all non-cluster head nodes and 

the base station. 

Here's the formula for calculating the location balance factor f2: 

f2 = [(1/ΣΣ d(NCHi, CHj))] / [(Σ d(NCHi, BS) + Σ d(CHj, BS)) * (1/N(N-1)) * ΣΣ d(NCHi, CHj) + ΣΣΣ 

d(NCHi, CHk)] 

Where: 

N represents the total number of surviving nodes in the WSN. K denotes the number of candidate cluster head 

nodes. 

N-K represents the number of non-cluster head nodes. 

d(NCHi, BS) represents the distance between non-cluster head node NCHi and the base station BS. d(CHj, BS) 

represents the distance between cluster head node CHj and the base station BS. 

d(NCHi, CHj) signifies the distance from non-cluster head node NCHi to its corresponding candidate cluster 

head node CHj. 

d(NCHi, CHk) represents the distance between non-cluster head node NCHi and other candidate cluster 

head nodes CHk. 

This formula captures the degree of location balance among candidate cluster head nodes, taking into 

account their distances from both the base station and the non-cluster head nodes within the cluster.Indeed, in the 

context of the formula for the location balance factor f2, when a non-cluster head node NCHi is situated within 

the cluster led by cluster head node CHj, it contributes to a more balanced distribution of candidate cluster head 

node positions in the Wireless Sensor Network (WSN). This is particularly evident when the candidate cluster 

head node set is closer to the base station, as it results in shorter distances between non-cluster head nodes and 

their respective cluster head nodes in each sub-cluster. Consequently, this configuration reduces network 

communication distances and yields larger values for the location balance factor f2, signifying a more evenly 

distributed candidate cluster head node set within the WSN. 

Based on the energy factor and position balance factor, the fitness of the candidate cluster head node set 

is calculated in a weighted manner. The calculation method of the fitness value function F1 is: 

F1 = af1 + (1-a)f2 

In the provided context, the weight coefficient "a," falling within the range (0,1], serves as a weighting 

factor in the fitness function. Depending on the specific requirements of the Wireless Sensor Network (WSN) 

regarding residual energy and position balance, this weight can be adjusted accordingly. 

In the fitness function, a larger residual energy within the candidate cluster head node set corresponds to 

a more balanced position distribution, and consequently, a higher fitness value. This indicates that a candidate 

cluster head node set with greater residual energy and balanced positions is considered better in terms of fitness. 
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To determine the global optimal position, the following steps are taken with M groups of initial cluster 

head node sets: 

1. Calculate the fitness function for each group of candidate cluster head node sets. 

2. Record the position with the maximum fitness within each candidate cluster head node set as the 

position for that group. 

3. Initially, each candidate cluster head node set is considered its own local optimal position. 

4. Among the initial M groups of cluster head node sets, the candidate cluster head node set with the 

maximum fitness function value is designated as the global optimal position. 

This process helps identify the candidate cluster head node set with the best fitness and position 

distribution, ensuring the selection of an optimal configuration for the WSN. 

 

• Speed and Position Update Method 

During the iterative optimization process, which follows the initial fitness calculation and the 

determination of local and global optimal positions, the positions of the candidate cluster head node sets are 

updated, and their fitness is recalculated. To facilitate this position update and achieve optimization results, a 

velocity parameter is introduced to control the rate of change in positions. This velocity is represented as a vector. 

Specifically, the velocity components for each candidate cluster head node in the x and y directions are 

denoted as vxid and vyid, respectively, while the position components are represented by xxid and xyid. Initially, 

the calculation of the two velocity components is random. However, in each subsequent iteration round, these 

velocity components are determined based on the velocity components from the previous iteration round, the local 

optimal position (pxid, pyid), and the global optimal position (pxgd, pygd). 

The specific calculation method for updating the velocity components and positions is defined based on 

the relationships between these parameters and is further elaborated in reference [15]. This method guides the 

iterative adjustments in the positions of candidate cluster head nodes, ultimately leading to optimization results in 

the Wireless Sensor Network (WSN). 

In the iterative optimization process, the positions of candidate cluster head node sets are updated, and 

their fitness is recalculated. A velocity parameter, represented as a vector with components vxid and vyid for the 

x and y directions, controls the rate of position change. Initially random, in subsequent iterations, the velocity 

components are determined based on the previous round's velocity, the local optimal position (pxid, pyid), and 

the global optimal position (pxgd, pygd). These updates are influenced by factors such as the inertia weight (w), 

indicating the impact of the previous round's velocity, cognitive learning factor (c1) and social learning factor 

(c2), representing acceleration based on proximity to local and global optimal positions, and random numbers (r1 

and r2) for introducing variability. The specific calculation method for updating position components is described 

in reference [15] and guides the iterative adjustments, ultimately optimizing the positions of candidate cluster head 

nodes in the Wireless Sensor Network (WSN). 

 

 

• With adaptive Learning Factors and Inertial Weights 

In the above speed update calculation, the learning factors and inertia weights in traditional routing 

protocols based on particle swarm optimization are usually set to fixed values, which cannot balance local search 

capabilities and global search capabilities. The convergence speed of the algorithm is relatively slow, and it is 

difficult to obtain high quality. The set of cluster head nodes. 

In the selection process of the optimal cluster head node set, the early iterations focus on local optimal 

search, and the later iterations focus on global optimal search. If the search range of local optimal search is small, 

the algorithm will easily fall into the local optimal solution. Therefore, it is necessary to expand the local search 

range to find the optimal candidate cluster head node set as much as possible to enhance the diversity of the group; 

global search needs to speed up the algorithm Convergence, maintaining a balance between convergence speed 
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and search effect. In order to achieve this goal, the cognitive learning factor c1 and the social learning factor c2 

are set to change dynamically. In the stepwise iterative process, c1 changes from large to small and c2 changes 

from small to large. 

In order to meet the above changing rules of the two learning factors, a dynamically changing learning 

factor is constructed based on the fixed value setting of the traditional learning factor. The calculation method is: 

 

 

Among them, t is the number of iterations in this round, and tmax is the maximum number of iterations. 

As the number of iterations changes, c1 and c2 dynamically change to meet their changing rules, allowing the 

algorithm to adaptively expand the local search range in the early iterations and accelerate the global convergence 

speed in the later iterations. 

During the iteration process, the inertia weight can affect the search range of this round based on the 

speed of the previous round. At the end of each round of iteration, the fitness function is calculated for the selected 

candidate cluster head node set, and the inertia weight is dynamically adjusted based on the fitness value result, 

so that the cluster head node set selected in this round of iteration has a more balanced position. Here, the nonlinear 

adaptive inertia weight strategy [16] is used to calculate the inertia weight, the method is 

 

 

Among them, wmax and wmin are the maximum and minimum inertia weights set respectively, fi is the 

fitness value of the candidate cluster head node CHi, fmin, fmax and favg respectively represent the minimum, 

maximum and average fitness values of the candidate cluster head node set in this round. When fi>favg, the speed 

of this candidate cluster head node mainly refers to the speed of the previous round, increasing the activity of the 

candidate cluster head node set; conversely, the speed of this candidate cluster head node mainly refers to the local 

optimal position and global optimal position accelerates the candidate cluster head node set to move closer to the 

advantage space. 

 

• Location Mapping Strategy 

Following each iteration, the candidate cluster head node set's positions undergo updates, and it's possible 

that the updated node positions may not correspond to any surviving nodes within the Wireless Sensor Network 

(WSN). In such cases, location mapping processing [11] becomes necessary. The fundamental concept behind 

this process is to apply the proximity principle, mapping the updated locations to the nearest surviving nodes in 

terms of spatial proximity. Utilizing Xxid and Xyid as the updated node coordinates and CMnx and CMny as the 

coordinates of the nearest surviving node CMn within the network, the position mapping process is executed as 

follows: 

 

The location mapping strategy is employed to address discrepancies arising from the discrete distribution 
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of network nodes, which can lead to updated positions not aligning with the actual locations of surviving nodes. 

When multiple nodes share the same updated position coordinates, a flag is utilized during node updates. In 

subsequent updates and mapping procedures, nodes first check if the flag designates them as cluster head nodes. 

If so, they sequentially select the closest node positions for mapping. 

Following position mapping, each candidate cluster head node set, post-update, is treated as an 

optimization outcome, and their fitness values are computed. Based on these calculations, updates are made to the 

local optimal position for each candidate cluster head node set and the global optimal position for the M groups 

of cluster head node sets in this round. If the iteration is ongoing, the process continues with position updates and 

mapping for candidate cluster head nodes. When the iteration concludes, the candidate cluster head node set at 

the global optimal position becomes the optimal cluster head node set, marking the culmination of the cluster head 

election process. 

After the cluster head election, the base station proceeds to calculate the distances from non- cluster head 

nodes to each cluster head node. These nodes are divided into cluster head nodes and ordinary nodes, where 

ordinary nodes exclusively handle data transmission, fuse their own monitored data, and forward it directly to the 

cluster head node. The cluster head node receives data from ordinary nodes, performs data fusion, and 

subsequently transmits it to the appropriate forwarding node. This forwarding node, chosen from among ordinary 

nodes, receives data from the cluster head and determines the best path to the base station, ultimately forwarding 

the data to the base station. 

Throughout the clustering calculations based on the particle swarm algorithm, it is essential to retrieve 

the remaining energy of each node. To minimize communication overhead and facilitate subsequent rounds of 

clustering and node communication interactions, a piggyback technology is implemented. Under this approach, 

each node, after completing data collection and processing, adds its remaining energy to the data and transmits it 

to the cluster head node. The cluster head node performs data fusion and appends its own remaining energy to the 

fused data, sending it to the base station via the forwarding node. In a similar manner, the forwarding node 

incorporates its remaining energy during transmission. Upon receiving the data, the base station records the 

received remaining energy information for each node, alongside the data. This data serves as the basis for a new 

round of cluster elections, where the remaining energy information carried by each node is the current node 

energy minus the energy expended during data transmission. 

 

2.4 Forwarding Node Election and Multi-Hop Transmission 

• Election of Forwarding Nodes 

Following the completion of the cluster head node election, the subsequent step involves selecting the 

appropriate forwarding node for each cluster head node. When the network lacks an adequate number of 

forwarding nodes, multiple cluster head nodes sending data to the base station through a limited number of 

forwarding nodes can lead to increased energy consumption for these forwarding nodes. To address this issue, 

existing Wireless Sensor Network (WSN) routing protocols typically assign one forwarding node per cluster head 

node [11] to augment the number of forwarding nodes. However, these protocols often use a random selection 

approach among all nodes without considering the selected node's remaining energy or spatial balance. 

In this paper, when selecting forwarding nodes, the improved particle swarm algorithm used for cluster 

head node election, as mentioned earlier, is employed to elect a forwarding node for each cluster head node from 

the pool of ordinary nodes within its cluster. This ensures that the selected forwarding node exhibits an optimal 

energy and location relationship, mitigating the problem of having too few forwarding nodes in the WSN and 

preventing accelerated energy consumption. 

In the calculation and evaluation of forwarding nodes, a distinction is made from the cluster head node 

election regarding the energy factor and position balancing factor calculation method. 

Similarly, in this context, "N" represents the count of surviving nodes in the WSN. After electing "K" 

cluster head nodes, the WSN is divided into "K" clusters. During initialization, the higher remaining energy nodes 

in each cluster, as per the cluster head node screening method, are identified. These candidate high-energy nodes 

are grouped to form a candidate forwarding node set, with each candidate set containing "K" nodes.Post-

initialization, the number of ordinary nodes is calculated as "N-2K." Here, "ERN(i)" represents the remaining 

energy of candidate forwarding node "RNi" in the "rth" round, and "ECN(j)" represents the remaining energy of 
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ordinary node "CNj" in the "rth" round. The energy factor, denoted as "fit1," is calculated using the following 

formula: 

 

Certainly, in this context: 

• "d(CNk, CHj)" signifies the distance from the ordinary node "CNk" to the corresponding cluster 

head node "CHj." 

• "d(RNi, BS)" represents the distance between the forwarding node "RNi" and the base station "BS." 

• "d(RNi, CHj)" denotes the distance from the forwarding node "RNi" to the associated cluster head 

node "CHj." 

• "d(RNi, RNm)" represents the distance between forwarding nodes "RNi" and "RNm." 

• The calculation method for the forwarding node position balancing factor, referred to as "fit2," 

is determined as follows: 

 
 

In this context, it's important to note that the ordinary node "CNk" is situated within the cluster led by 

the cluster head node "CHj," and the candidate forwarding node "RNi" corresponds to the cluster head node "CHj." 

The proximity principle is applied, meaning that the closer the candidate forwarding node set is to the base station, 

the shorter the distances between cluster head nodes and their corresponding forwarding nodes within each cluster. 

As a result, the distances between the forwarding nodes in the candidate forwarding node set become smaller, 

leading to a more balanced distribution of positions among the candidate forwarding nodes. Consequently, the 

value of "fit2" increases as the position distribution of the candidate forwarding node set becomes more balanced. 

 

In this context, the parameter "b," falling within the range (0, 1], represents the weight coefficient. The 

fitness value of the candidate forwarding node set is influenced by both the residual energy of the candidate 

forwarding node set and the balance in their positions. Specifically, a higher residual energy and a more balanced 

position distribution contribute to a greater fitness value for the candidate forwarding node set. This increase in 

fitness value signifies that the candidate forwarding node set is more advantageous. 

During multiple iterations of the candidate forwarding node set, the selection of the optimal forwarding 

node set employs a method similar to the cluster head node election, involving speed updates and position mapping 

to determine the most suitable candidates. 

 

• Multi-hop Transmission of Forwarding Nodes 

Based on the LEACH energy consumption model [1], if the base station is far away from the WSN and 

the distance d between the forwarding node and the base station is greater than the threshold distance d0, the 

sending energy consumption level is d4; but if d≤d0, the energy consumption of data transmission between nodes 

is greatly reduced. Its energy consumption level is d2. In practical applications, the base station is usually far away 

from the WSN. In existing WSN routing algorithms, forwarding nodes often use a single-hop method to forward 

data to the base station [13], which consumes too much energy; while algorithms using multi-hop methods mainly 

select multiple hops based on the shortest distance between forwarding nodes [17], without Considering the 

remaining energy of the forwarding node; and without considering the direction of the base station, the multi-hop 

path may not be the shortest distance. 
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After selecting the optimal set of forwarding nodes, this paper will determine whether the forwarding 

node uses a single-hop or multi-hop mode to transmit data to the base station based on the distance d between the 

forwarding node and the base station. If d>d0, then the forwarding node uses a multi-hop mode to transmit data; 

Otherwise, the forwarding node uses single-hop transmission. 

In the multi-hop path selection of forwarding nodes, this paper uses the method of constructing a 

minimum spanning tree to search for the shortest path for multi-hop transmission of forwarding nodes, while 

taking into account the remaining energy of the nodes to maintain the balance of forwarding node consumption 

while reducing network energy consumption. 

The route between forwarding nodes takes the base station as the root of the tree. At the beginning, each 

forwarding node is abstracted as a point, and the forwarding nodes are connected with edges to construct a 

weighted connected graph G=(V,E), where V Including all forwarding nodes, E includes the set of edges between 

any two nodes in V. In order to search for the optimal path from a certain forwarding node to the base station, the 

distance and remaining energy between two adjacent forwarding nodes in each hop need to be comprehensively 

considered. 

Assume that the forwarding node RNi is used as the starting point to search for the next hop node passed 

by the base station; if the forwarding node RNj is a neighbor forwarding node of RNi, it is necessary to evaluate 

whether the node RNj can be used as the next hop node. Here, based on these 2 It is measured by the weight of 

the edge of two nodes. The weight is determined by the distance between the two nodes and the remaining energy, 

and is represented by wi,j. If the distance between node RNj and the base station is greater than or equal to the 

distance between node RNi and the base station, then node RNj cannot be used as the next hop node, and wi,j is 

set to ∞; otherwise, wi,j is calculated based on the distance of two nodes and the remaining energy. The method 

is 

 

 

Among them, di,j represents the distance between the forwarding node RNi and RNj, di,BS represents 

the distance between the forwarding node RNi and the base station, RNEr (i) and RNEr (j) represent the r-th round 

of forwarding nodes RNi and RNj respectively. remaining energy. If the distance between two forwarding nodes 

is larger and the remaining energy is smaller, the weight of the two nodes is larger, and the probability of the 

neighbor forwarding node being selected as the next hop is smaller. If the forwarding node RNi has multiple 

adjacent forwarding nodes, calculate the weights of the forwarding node RNi and other adjacent nodes 

respectively, and select the forwarding node with the smallest weight as its next hop node. 

After each round of forwarding node election, the above-mentioned minimum spanning tree method will 

be used to establish a multi-hop path from the forwarding node to the base station. The specific process of the 

multi-hop path establishment method based on the minimum spanning tree is as follows. In the weighted 

connected graph G=(V, E) constructed above, base station v0 is added to V as the root node of the tree, U records 

the node set of the minimum spanning tree, and W records the distance between the forwarding node to be selected 

and its neighbor nodes. The set of weights that constitute the edge, T records the set of weights of the edges in the 

minimum spanning tree. 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 4 (2023)  
____________________________________________________________________________________________ 

 

5232 

 

 

3. Simulation Results 

WSN is simulated and generated in MATLAB, and the base station is located outside the network. In 

this environment, a routing protocol based on the improved particle swarm algorithm is implemented and tested. 

The test computer configuration is 2.3 GHz Intel Core i5, 8 GB memory, 64- bit Windows 10. The relevant 

experimental environment and parameter settings of WSN initialization, cluster head node and forwarding node 

election, and data processing are shown in Table 1. 

 

Table 1: Simulation Parameters 

Sno Parameter Value 

1 Number of nodes 100 

2 Network size 100m x 100m 

3 Maximum number of rounds 3000 

4 Number of iterations of the algorithm 100 

5 Optimal number of clusters 5 

6 Number of particles 20 

7 Data packet length/bit 4000 

8 Node initial energy (J) 0.5 

 

Considering that WSN is generally relatively stable and the frequency of data collection and data 

processing is not high, a new round of cluster election is mainly started based on the data processing frequency of 

WSN, that is, when the cluster head node completes the fusion and merger of node data in the cluster. Send it to 

the base station. After the base station receives the data, it will start a new round of cluster election. For the case 

of WSN with fast data processing frequency, this article has not considered it yet, but event-triggered transmission 

can be used to determine whether to start a new round of cluster election by judging the remaining energy of the 

cluster head node. 

Step 1: Initially add the root node v0 to the set U, and T and W are empty. 

Step 2: According to the set threshold distance d0, calculate the distance di,0 from a certain node vi 

in V except v0 to v0 in sequence. If di,0≤d0, then vi will transmit data to the base station in a single 

hop mode, and add vi in U, set the weight wi,0=0 of the edge between vi and v0, add wi,0 to T, and 

go to step 5; otherwise, go to step 3 to calculate and establish a multi-hop path from vi to v0. 

Step 3: Calculate the weight of the edge from vi to all other forwarding nodes according to equation 

(13), and add it to W. 

Step 4: Select the smallest weight wi,k in W. At this time, the distance from vi to v0 is di,0, and the 

distance from vk to v0 is dk,0. Calculate the distance di,k from vi to vk. If di,0≤di,k, or ETX(m, 

di,BS)<(ETX(m, di,j)+ETX(m, di,BS)), then the overhead of sending data from vi to v0 via vk is 

larger, at this time, vi will directly send data to v0, add node vi to U, set the weight of the edge 

between vi and v0 wi,0=0, add wi,0 to T, and set W to be empty; Otherwise, add node vi to U, add 

wi,k to T, and set W to be empty. 

Step 5: If U=V, end the search and go to step 6; otherwise, go to step 2. 

Step 6: For the weight in T whose weight is 0 and the next node is v0, the previous node of the 

edge corresponding to the weight is output as a single-hop node; otherwise, the previous node of 

the edge corresponding to the weight is used as the starting point, and then One node serves as the 

next hop node and continues to search for the next hop node until the next hop node is v0, forming 

a multi-hop path output. 
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Based on the simulation environment outlined above, we investigated the impact of varying weights in 

the fitness function on both the network and node energy consumption, as well as the changes in the network's 

life cycle under the CIPSO protocol. We then conducted a comparative analysis with the LEACH [16] and Genetic 

Algorithm [17] protocols. 

The parameters, such as speed and maximum connections, were extracted from the network simulator, 

and these parameters exhibited variations corresponding to the nodes are shown in Table 2. 

 

Table 2: Values Set for Parameters 

Sl.no Variable 

Parameter 

Constant Parameter Values 

1 Pause Time (0-120) Nodes 100 

Max speed 10 

Max Connections 10 

2 Nodes (15-60) Pause Time 0 

Max Speed 10 

Max connection 10 

3 Max Speed (5-

45ms) 

Pause node 0 

Nodes 60 

Max Connections 10 

 

Performance Measures 

Several metrics are employed in this study to assess the performance of clustering protocols. Specifically, 

the following measures are utilized: 

1. Network lifetime: This metric calculates the time span from the initiation of the sensor network until 

the final sensor ceases to function. 

2. Stability Period: This metric determines the duration from the commencement of network operation 

until the first sensor becomes inactive. 

3. Throughput: This measure quantifies the overall data transmission rate within the network, 

encompassing both data sent from Cluster Heads (CHs) to the sink and data transferred from nodes 

to their respective CHs. 

4. Figure 1 illustrates the network lifetime for the proposed protocol as well as for other protocols such 

as LEACH and Genetic Algorithm. 

 

 

Fig 1: Network Lifetime analysis 

 

The analysis of network lifetime is depicted through a count of rounds. Each round commences with a 

setup phase, assuming clusters are established, and transitions into a steady-state phase where data is transmitted 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 4 (2023)  
____________________________________________________________________________________________ 

 

5234 

 

to the base station. A lower ratio of dead nodes in the same round is indicative of superior algorithm performance. 

In this study, the network's life cycle concludes when 80% of nodes have ceased to operate, as observed in the 

experimental results.The network lifetime performance is then compared among LEACH, Genetic Algorithm, 

and CIPSO optimization, and the results are presented in the following performance Table3: 

 

Table 3: Network Life time Analysis 

 

Number of Rounds 

 

LEACH 

Genetic 

Algorith 

m 

Proposed CIPSO 

500 100 100 100 

1000 100 100 100 

1500 90 95 96 

2000 10 85 90 

2500 5 10 30 

3000 0 5 20 

3500 0 0 10 

4000 0 0 5 

 

The total number of packets sent to Cluster Heads and the Base Station differs significantly between 

LEACH, GA, and the proposed GWA protocols, with 1.083x10^5 packets and 5.182x10^4 packets, respectively, 

as indicated in Figure 2. Network throughput, which quantifies how much information a system processes within 

a given timeframe, has widespread applicability in computer and network systems. Response time, on the other 

hand, denotes the duration between a user request and the receipt of a response.Comparisons among the three 

algorithms mentioned in the graph are made. Measuring throughput in networks serves several purposes, primarily 

assessing the maximum data transmission rate in bits per second along a communication link. For instance, one 

common method involves transferring a 'large' file from one system to another and measuring the time it takes to 

complete the file transfer. Throughput is then calculated by dividing the file size by the time elapsed, yielding the 

throughput in megabits, kilobits, or bits per second. 

 

 

Fig 2: Network Throughput 

 

In Figure 3, the number of rounds is illustrated for LEACH, GA, and the proposed GW optimizer. Figures 

4 and 5 highlight that the proposed GW optimizer outperforms other protocols notably in terms of the stability 

period. 

The concept of the First Dead Node (FDN) is significant, as it signifies the number of rounds it takes for 

the first sensor to cease functioning. This value directly influences the stability period; a larger FDN indicates a 
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longer network stability period. Similarly, the Half Dead Node (HDN) metric indicates the number of rounds it 

takes for half of the sensor nodes to become inactive. Lastly, the Last Dead Node (LDN) quantifies the number 

of rounds it takes for all sensor nodes to become inactive. 

 

Table 4: Rounds and Number of Throughput 

Rounds LEACH Genetic 

Algorithm 

Proposed 

CIPSO 

0 0 0 0 

200 1 1.5 2 

400 2.6 3 4 

600 4.6 5 6 

800 6 7 8 

1000 7.5 8 10 

1200 7.5 8 10 

 

Fig 3: Number of rounds at FDN, HDN, LDN 

 

Figure 4 displays the averaged residual energy of all nodes per round, highlighting the higher residual 

energy observed after 500 rounds, as examined in this simulation work. 

For the simulation setup, 100 nodes are randomly distributed within a 100m x 100m sensing field, with 

a base station positioned at the center of each field. The initial node starts with an energy level of E0=1J. During 

this analysis, various parameters such as First Dead Node (FDN), Last Dead Node (LDN), and Half Dead Node 

(HDN) are employed to characterize the network lifetime, following the approach outlined by Mittal et al. (2016). 
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Fig 4: Averaged Residual Energy of all Nodes per Round 

 

Fig 5: Variance of Nodes Residual Energy along Rounds 

 

This paper introduces a distributed energy-efficient algorithm that involves multiple rounds of abstraction 

within sensor networks. Figure 5 offers a detailed description of the residual energy and its variance among the 

nodes, as depicted in the figure. In this process, cluster heads are selected from sensor nodes with higher residual 

energy through local communication. During the cluster head selection phase, certain nodes are elected, and they 

engage in computations among themselves to determine the cluster head. 

In the initialization phase, the base station aids in this process by broadcasting messages to all nodes at a 

specific power level. Upon receiving the message, nodes calculate distances based on received signal strength. 

Table 3 provides a clear view of the optimal cost and energy reduction achieved by each algorithm. The CIPSO 

algorithm enhances the performance of each sensor node and cluster head, respectively. Communication between 

nodes and clusters is facilitated through routing, and the optimization process is conducted using the Improved 

PSO technique within a network simulator, aligning with the specified objectives. 

 

4. Conclusion 

This work considers parameters such as pause time, node speed, and maximum connections, which affect 

node behavior. The results show that the proposed CIPSO protocol outperforms other protocols in terms of 

stability and energy efficiency. Additionally, figures depict the residual energy of nodes over rounds and the 

variance of node residual energy.Concludes that the CIPSO algorithm enhances ensor node and cluster head 

performance and achieves energy-efficient routing in the   The optimization process involves improved particle 

swarm optimization, and communication between nodes and clusters is facilitated through routing. Overall, the 

study presents a comprehensive analysis of the proposed routing protocol's performance in comparison to standard 

protocols. 
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