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Abstract 

Let M(G, i) be the family of monophonic sets of a graph G with cardinality i and let m(G, i)  =  |M(G, i)|. Then 

the monophonic polynomial M(G, x) of G  is defined as M(G, x) =  ∑ m(G, i)xin
i=m(G) , where m(G)  is the 

monophonic number of G. In this paper we have determined the sufficient condition for the monophonic set of 

G □Kn. Also, we have calculated the monophonic polynomial of the cartesian product of some specific graphs 

by generating function method. 
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I. Introduction 

The graph G considered in this paper is finite, simple, undirected and connected with vertex set V (G) and edge 

set E(G) respectively. The order and size of G is denoted by n and m respectively. [1, 2] is referred for basic 

graph theoretic definitions. The distance d(u, v) between two vertices u and v is the length of a shortest u −  v 

path in G. The neighborhood N(v)  of a vertex v is the set of all vertices adjacent to v. For any subset S of V(G), 

the induced subgraph ⟨ S ⟩ is the maximal subgraph of G with the vertex set  S. A clique of G is a complete 

subgraph of G. A clique of G is said to be maximal if it is not properly contained in another clique of G. The order 

of a maximum clique of G is the clique number of G and is denoted by ω(G). A vertex v is said to be an extreme 

vertex if the subgraph ⟨N(v)⟩ is complete. Two vertices (x1, y1) and (x2, y2) in the cartesian product G□H are 

adjacent if and only if either x1 = x2  and y1 is adjacent to y2 or y1 = y2  and x1 is adjacent to x2. The study of 

monophonic number of a graph was initiated by Pelayo et al. in [3]. Any chordless path connecting the vertices 

u and v is called a u −  v monophonic path. The monophonic closure of a subset S of V (G)  is defined by 

JG[S]  =  ⋃ JG[u, v]u,v∈S , where JG[u, v] is the set containing the vertices u,v and all vertices lying on some u − v 

monophonic path. If JG[S]  = V (G), then S is said to be a monophonic set in G. A monophonic set in G of least 

order is called a minimum monophonic set of G . The order of the minimum monophonic set of G  is the 

monophonic number of G and is denoted by m(G). The domination polynomial of a graph was introduced by 

Arocha and Llano in [4] and was later studied by S. Alikhani and Y. H. Peng in [5]. Domination polynomial of 

graph products are studied by Kotek et al. in [6]. We developed an idea to work on the monophonic polynomial 

of graph products after reading this paper. The study of monophonic polynomial of a graph was initiated by Arul 

Paul Sudhahar et al. in [7]. 

II. Preliminary Results 

Theorem 2.1. [8] Let G  and H  be connected graphs such that G  is non complete and m(G)  =  2 . Then 

m(G□H)  =  2. 
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Theorem 2.2. [8] Let G and H be non complete connected graphs. Then m(G□H)  =  2. 

Theorem 2.3. [8] If the graph G is a tree, then m(G□Kn) =  m(G). 

III. Characterisation of monophonic set of cartesian product 

Theorem 3.1. Let G be a graph. If L =  (u1, v1), (u2, v2), … , (uk, vk) is a monophonic path in G□Kn, then the 

following holds 

1. If all ui′s  are distinct and vi′s are equal, then (u1, u2, … , uk) is a monophonic path in G. 

2. If all ui′s are equal and vi′s are distinct, then k =  2. 

Proof. 1. Since all the ui′s are distinct and vi′s are equal, dG□Kn  ((ui, vi), (ui+1, vi+1))  =  1 for all 1 ≤  i ≤

 k − 1 . Therefore, dG(ui, ui+1)  =  1  for all 1 ≤  i ≤  k −  1.  Also, dG□Kn
 ((ui, vi), (uj, vj))  ≥  2  for all j ≠

 i +  1  and 1 ≤  i <  j ≤  k , it follows that dG(ui, uj) ≥  2  for all j ≠  i +  1  and 1 ≤  i <  j ≤  k . Hence 

(u1, u2, … , uk) is a monophonic path in G. 

2. Since all ui′s are equal, all the vertices in the monophonic path L is from the same copy of Kn. Suppose k ≥

 3. Then the subgraph ⟨(ui, vi), (uj, vj), (ul, vl)⟩, i, j, l ∈  {1,2, … , k} and i ≠  j ≠  l form a complete graph K3, a 

contradiction. Hence k ≤  2. Since any monophonic path contains at least two vertices, it can be easily verified 

that k =  2. 

Theorem 3.2. S ⊆  V (Kp□Kq) is a monophonic set of Kp□Kq  if and only if there exist at least one vertex from 

at least two distinct copies of Kp or Kq. 

Proof. Let S ⊆  V (Kp□Kq) be a monophonic set of Kp□Kq. Suppose S contains vertices from a single copy of 

Kq  or Kp . Then JKp□Kq
[S] =  S ≠  V (Kp□Kq) . This implies that  S  is not a monophonic set of Kp□Kq , 

contradiction to our assumption. Hence S contains at least one vertex from at least two distinct copies of Kp or 

Kq. 

Conversely, assume that there exists at least one vertex from at least two distinct copies of Kp. Let S1, S2, … , Sq   

be the q  distinct copies of Kp  in Kp□Kq . Let (x, yi)  ∈  S ∩ Si  and (z, yj)  ∈  S ∩ Sj , where i ≠  j  and xz ∉

 E(Kp) , yiyj ∉  E(Kq) . Let (a, b)  ∈  V (Kp□Kq) . If a =  x , then (x, yi), (a, b), (z, b), (z, yj)  will be a 

monophonic path joining (x, yi) and (z, yj). If b = yi , then (x, yi), (a, b), (a, yj), (z, yj) will be a monophonic 

path joining (x, yi) and (z, yj). Similarly, as above we can able to find a monophonic path joining (x, yi) and 

(z, yj) for the cases a =  z and b =  yj. If a ≠ x, z and b ≠ yi, yj,then (x, yi), (a, yi), (a, b), (z, b), (z, yj) will be 

the monophonic path joining (x, yi)  and  (z, yj) . Thus  (a, b)  ∈  JKpKq
[(x, yi), (z, yj)] . Hence S  forms a 

monophonic set of Kp□Kq. 

Corollary 3.3. For the complete graphs Kp  and Kq, m(Kp□Kq)  =  2. 

Proof. Let S1, S2, … , Sq  be the q distinct copies of Kp  in Kp□Kq. By Theorem 3.2, it follows that the monophonic 

path connecting two non adjacent vertices from two distinct Si′s
 form a monophonic set of Kp□Kq. Therefore, 

m(Kp□Kq)  ≤  2. Since m(G)  ≥  2 for any connected graph G, we get m(Kp□Kq)  =  2.  

Theorem 3.4. Let G be a non complete connected graph of order n. If S ⊆  V (G) is a minimum monophonic set 

of G then S × {vi}, 1 ≤  i ≤  p is a monophonic set of G□Kp for each i. 

Proof. Let G1, G2, … , Gp  be the p  copies of G  and V (Kp)  =  {v1, v2, … , vp} . Let S ⊆  V (G)  be a minimum 

monophonic set of G and (x, y) ∈  V(G□Kp). Suppose x ∈  V (G)\S. Since S is monophonic in G, there exists a 

monophonic path u1, u2, … , uk such that u1, uk  ∈  S, x =  uj for some 1 <  j <  k. 
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Therefore, (u1, vi), (u2, vi), … , (uk, vi) for 1 ≤  i ≤  k will be a monophonic path in G□Kp. If y ∈  Gi, then it 

will be covered by the monophonic path connecting (u1, vi) and (uk, vi). Now, let us consider the case when y ∉

 Gi. Let y ∈  Gl and i ≠  l, 1 ≤  l ≤  p. (u1, vi), (u1, vl), (u2, vl), … , (uk, vl), (uk, vi) will be a monophonic path 

in G□Kp . Hence (x, y)  ∈  JG□H[(u1, vi), (uk, vi)]. Since u1, uk ∈ S is arbitrary, it can be shown that (x, y) ∈

 JG□Kp
 [S × {vi}] for 1 ≤  i ≤  p. Hence S ×  {vi} is a monophonic set of G□Kp for every 1 ≤  i ≤  p.  

Corollary 3.5. For the connected graph G with n ≥  2, m(G□Kp)  ≤  m(G). 

Proof. By Theorem 3.4 we have, m(G□Kp)  ≤  |S|  ≤  m(G). 

Remark 3.6. The converse of Theorem 3.4 is not true. For the graph G given in Figure 3.3, F =

 {(u4, v1), (u5, v1), (u6, v1)} forms the monophonic set of G□K2. But {u4, u5, u6} is not a monophonic set of the 

graph G given in Figure 3.1. 

Remark 3.7. The converse of Theorem 3.4 may not be true even for the cartesian product of two non complete 

graphs G and H. For the graph G□H given in Figure 3.6, K =  {(u1, v1), (u4, v1)} forms the monophonic set of 

G□H. But L =  {u1, u4} is not a monophonic set of the graph G given in Figure 3.4. 

 

Figure 3.1 Graph G 

 

Figure 3.2 Complete graph K2 
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Figure 3.3 G □H 

 

Figure 3.4 Graph G 

 

Figure 3.5:  Path P3 
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Figure 3.6   G □ H 

IV. Monophonic polynomial of the cartesian product of some graphs 

Theorem 4.1. For two complete graphs Kn  and Km, M(Kn□Km, x)  =  [(1 +  x)nm  −  (1 −  nmx)]  −  n[(1 +

 x)m  −  1]  −  m[(1 +  x)n  −  1]. 

Proof. By Corollary 3.3, we have m(Kn□Km)  =  2. Any two non adjacent vertices of Kn □ Km  forms the 

monophonic set of cardinality  2 . The generating function to choose at least two vertices of Kn□Km  is 

[(1 +  x)nm − (1 +  nmx)]. From this generating function we have to neglect the case in which all the vertices 

are from same copy of Kn  or Km. The generating function to choose at least two vertices from a copy of Kn  is 

(1 + x)n  − (1 + nx). Since we have m copies of Kn, the generating function to choose vertices from the m copy 

of Kn  is given by m[(1 +  x)n  −  (1 +  nx)]. Similarly, the generating function for selecting vertices from the 

n copies of Km  is n[(1 + x)m  − (1 + mx)]. Hence the monophonic polynomial of Kn□Km  is given by 

M(Kn□Km, x) = [(1 +  x)nm –  (1 +  nmx)]–  n[(1 +  x)m – (1 +  mx)] 

− m[(1 +  x)n  −  (1 +  nx)]                       

                              = [(1 +  x)nm  −  (1 −  nmx)] −  n[(1 +  x)m  − 1] −                                    m[(1 +  x)n  −

 1].     

Theorem 4.2. For the complete graph Km  and path graph Pn , M(Km□Pn, x) =  [(1 +  x)m  −  1]2[1 +

 x]nm−2m. 

Proof. Let D1, D2, … , Dn    be the n copies of Km. By Theorem 2.3, we have m(Km□Pn)  =  2. Any monophonic 

set of Km□Pn  should contain at least one vertex from both D1 and Dn and the generating function for choosing at 

least one vertex from both D1 and Dn is [(1 +  x)m  −  1]2. The generating function to choose vertices from Di, 

2 ≤  i ≤  n −  1  is [1 +  x]nm−2m . Thus, the monophonic polynomial of Pn□Pm  is given by [(1 + x)m −

1]2[1 + x]nm−2m.  

Theorem 4.3. For the complete graph Km and cycle Cn , M(Km□Cn, x)  =  (1 +  x)nm  −  [1 +  n(mx2  +

 (1 +  x)m  −  1)]. 

Proof. By Theorem 2.1, we have m(Km□Cn)  =  2. Any two non adjacent vertices form the monophonic set of 

cardinality 2. The generating function for selecting at least two vertices of Km□Cn is (1 + x)nm  − (1 + nmx). 

From this generating function we have to subtract the case in which the vertices adjacent to each other is chosen. 

Any collection of vertices from a copy of Km  is adjacent to each other. The generating function for choosing at 

least two vertices from a copy of Km  is (1 +  x)m  −  (1 +  mx). Since there exist n copy of Km, the generating 
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function for selecting vertices which are adjacent to each other is n[(1 +  x)m  −  (1 +  mx)]. Also, there are n 

ways to choose two adjacent vertices from a copy of Cn. Thus, we get nm ways to select two adjacent vertices 

from m copies of Cn. Since ω(Cn)  =  2, it is not possible to get k > 2 vertices which are adjacent to each other 

from a copy of Cn. Hence the function which generates monophonic polynomial of Km□Cn is given by 

M(Km□Pn, x)  =  (1 +  x)nm  −  (1 +  nmx)  −  nmx2  −  n[(1 +  x)m  −  (1 +  mx)]  

                         =  (1 +  x)nm  −  [1 +  n(mx2  +  (1 +  x)m  −  1)]. 

Theorem 4.4. For two path graphs Pn and Pm  with n ≤  m, M(Pn□Pm, x) =  [(1 +  x)n –  1]2[1 +  x]nm−2n +

 [(1 +  x)m –  1]2(1 +  x)nm−(2n+2m−4). 

Proof. Let A1, A2, … , Am  be the m copies of Pn in Pn□Pm respectively. Let B1, B2, … , Bn be the n copies of Pm in 

Pn□Pm. By Theorem 2.2, we have m(Pn□Pm)  =  2. Any monophonic set of Pn□Pm should contain at least one 

vertex from both A1 and Am. Hence the generating function for choosing at least one vertex from both A1 and 

Am  is [(1 +  x)n  −  1]2 . The generating function to choose at least one vertex from both B1  and Bn  is 

[(1 + x)m  − 1]2 . Thus, the monophonic polynomial of Pn□Pm  is [(1 +  x)n  −  1]2[1 +  x]nm−2n +  [(1 +

 x)m  −  1]2(1 +  x)nm−(2n+2m−4).  

Theorem 4.5. For the Cycles Cn and Cm, M(Cn□Cm, x)  =  (1 + x)nm  − (1 +  nmx +  2nmx2). 

Proof. By Theorem 2.2 we have m(Cn□Cm)  =  2. Any two non adjacent vertices form the monophonic set of 

cardinality 2. Now we have to find the number of possible ways to select two non adjacent vertices of cardinality 

2. There exists m ways for a copy of Cm to choose adjacent vertices and n ways for a copy of Cn  to choose 

adjacent vertices. Hence, we have 2nm ways to choose two adjacent vertices in Cn□Cm. These 2nm vertices 

have to be subtracted from the generating function to get the number of monophonic sets of cardinality 2. Since 

ω(Cn□Cm)  =  2, for the monophonic set of cardinality k > 2 we have (nm
k

)  choices. Hence the monophonic 

polynomial M(Cn□Cm, x) is given by (1 +  x)nm  −  (1 +  nmx +  2nmx2).  

Theorem 4.6. For the path graph Pn  and cycle Cm , M(Pn□Cm, x)  =  (1 +  x)nm  −  [1 +  nmx +  (2nm −

 m)x2]. 

Proof. By Theorem 2.2, we have m(Pn□Cm)  =  2. Any two non adjacent vertices may form a monophonic set 

of cardinality 2. There are m ways to choose two adjacent vertices from a copy of Cm and n −  1 ways to choose 

adjacent vertices from a copy of Pn. Hence we have 2nm − m ways to choose two vertices which are adjacent 

in Pn□Cm. Thus, there are(nm
k

) − (2nm − m) ways to choose the monophonic set of cardinality 2. Since the 

induced subgraph of order k >  2 is non complete, the number of monophonic sets of cardinality k > 2 is (nm
k

). 

Hence the monophonic polynomial M(Pn□Cm, x) is (1 +  x)nm  −  [1 +  nmx + (2nm −  m)x2].  

Theorem 4.7. For the star graph K1,n  and complete graph Km, M(K1,n□Km, x)  =  [(1 +  x)m  −  1]n(1 +  x)m. 

Proof. Let {v1, v2, … , vn, vn+1} and {u1, u2, … , um} be the vertices of K1,n and Km  respectively and deg(v1)  =

 n. Let A1, A2, … , An, An+1 be the n + 1 copies of Km  in K1,n□Km  and let A1 be the copy of Km  formed by the 

vertex v1. The monophonic set of K1,n□Km  should contain at least one vertex from each Ai, 2 ≤  i ≤  n + 1 and 

it is generated by [(1 + x)m  − 1]n. This generating function together with the generating function to choose 

vertices of A1 forms the monophonic polynomial of K1,n□Km  and is given by [(1 + x)m  − 1]n(1 +  x)m.  
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