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Abstract:- Cloud computing is an internet-based computing environment where computing resources (hardware, 

software) are managed, pooled, and provided on demand by the cloud service providers to cloud service users. 

Users may rent resources with fixed capacity by considering the application's peak workload, but the application 

workload may vary. The workload variation may depend on many situations like time of the day, day of the week, 

etc., So resources may be underutilized when the workload is lower than the peak workload and overutilized when 

the workload is higher than the peak workload so some strategies are required to manage resources that can add 

or remove resource capacity as per the variation in workload. For managing cloud resource capacity elasticity 

plays a vital role. Elasticity is the dynamic property of the cloud and is used for the provisioning and de-

provisioning of cloud resources to map between workload and cloud resources. This study reviews the elasticity 

for “VM only”, “Container only” and “VM and containers together”. 

 

Keywords: Cloud Computing, Resource Management, Autoscaling, Elasticity, Virtual Machine, Containers 

 

1. Introduction 

Cloud computing can be defined as an Internet-based computing environment where computing resources are 

managed, pooled, and provided to cloud users on-demand basis[1] . Cloud computing environment has at most 

two parties-cloud service user and cloud service provider. The other type of users that accesses an application 

hosted in the cloud are the clients of the cloud service user. In the cloud computing environment, it is considered 

that unlimited resource pool is available, and it is available on-demand and cloud service user has to pay as per 

the resource usage.  

According to the service provided by the cloud. it can be categorized into three service models, Infrastructures as 

a Service (IaaS), Platforms as a Service (PaaS), Software as a Service (SaaS) [2]. Along with the Iaas, Pass, and 

Saas, an earlier new type of service introduced is known as Container as a Service (CaaS).one such example of a 

container management system is Docker. Docker is a tool, and using it developers can define containers for 

applications. The position of CaaS is between Iaas and Paas. IaaS Provides Infrastructure related services, and 

PaaS provides an application development environment, so CaaS layer was basically missing layer previously 

which attaches both Iaas and PaaS [3]. 

Service level agreement (SLA) can be defined as a mutual contract between the service provider and consumer, 

which determines the agreed service level objective (SLO) [4]. Service level agreement is very important to pursue 

a profitable business relationship between the service user and the service provider. Common performance SLOs 

include availability, response time, capacity, etc[1]. 

In the cloud computing environment, a service provider’s goal is to maximize profit and to achieve better resource 

utilization. The service user’s goal is to minimize cost and maximize performance. Elasticity plays an important 

role and helps for better resource utilization, in minimizing the service level agreement (SLA) violations. 

Elasticity is the dynamic property of the cloud which deals with provisioning, de-provisioning of a resource in an 

automatic manner in such a way that it closely matches the resources with the incoming workload in an automatic 

manner [5]. 

This paper discusses the classification of elasticity, work done on elasticity by considering “VM only”, “Container 

only” and “VM and containers together” scenarios. 
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2. Resource Management   

Cloud computing environment is a highly dynamic environment and resource management is a challenging while 

managing SLAs. Elasticity can be used for managing cloud resources to achieve SLA objectives. 

  

Figure 1. Provisioning for peak load[6] 

 

Figure 2. Under provisioning[6] 

Figure 1 and Figure 2 show the scenario of using a static resource capacity when the variable workload is given 

to the server. Figure 1 shows the case when the resource is selected of fixed capacity by considering peak load. In 

this case, resources not fully utilized all the time, and most of the time, it stays underutilized. Underutilization is 

shown with the shaded area in figure. Figure 2 shows the case when resource capacity is selected based on the 

average workload. In this case, resources are over-utilized, and customer demand cannot be served as shown with 

the shaded area in the figure. 

Instead of using static resource capacity, Cloud service providers may offer dynamic scaling mechanism to its 

users, so according to the incoming workload resources capacity can be changed by the scale in or scale out the 

resources [5]. 

Elasticity plays an important role in dynamic resource management. The next section contains a detailed 

discussion of the elasticity. 

3.   Elasticity 

Elasticity is a cloud computing dynamic property. It allows scaling of the system in or out on-demand in an 

operational system. Elasticity is the feature available for clients to quickly demand, receive, and release resources 

as needed [7]. Some other related and similar terms are scalability, efficiency, and auto-scaling. 

Scalability can be defined as the ability to handle the additional load by adding extra capacity using extra 

resources. for elasticity, scalability is the first requirement. Scalability does not consider time parameters like how 

fast and often and at what granularity scaling actions can be taken. So, it can be written that scalability is the way 

of increasing the capacity of the system, and it handles the increase in workload by using additional resources. It 

is not time bounded; hence as elasticity, it does not care about how actual resource demands match with the 

provided resources at a particular point in time [5]. 

Another term efficiency is expressed as the number of resources used for processing a workload. As in the case 

of elasticity, efficiency is the best utilization of resources. Normally better elasticity gains higher efficiency [5].  

Auto-scaling and elasticity used with the same meaning in literature, but there is a Minor difference between them. 

Scalability with automation is known as auto-scaling. Auto-scaling with optimization is known as elasticity. 

Elasticity can be classified from various aspects. A detailed discussion of the classification of cloud elasticity is 

given as below. 

3.0.1   Method 

Elasticity can be classified as vertical, horizontal and hybrid from method point of view. 

• Vertical: Vertical elasticity used to resize instance capacity in terms of CPU, Memory, and Storage or both at 

run time. It provides good flexibility to cloud provider to easily manage the resources. Some hypervisor that 
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supports vertical elasticity is Xen, VMware. Papers like [7],[8],[9],[10] ,[11], [12],[13], [14], [15],[16], [17],[18] 

discussed and applied vertical elasticity. 

• Horizontal: Horizontal elasticity used to add/remove instances as per the change in workload. It is very simple 

approach and so used by many cloud providers. Some time it is inefficient to use as it fails to perfectly fit in 

requirement. In Papers  [19], [20], [21], [22],[23], [24], [25], [26], [27], [28],[29], [30], [31],[32] ,[33],[34], 

[35],[36], [37],[38] discussed and used horizontal elasticity. 

• Hydride: Hybrid elasticity allows both vertical and horizontal scaling together. Few research papers found that 

uses this approach like [5],[7],[23],[39]. It provides much flexibility in resource management compared to vertical 

only or horizontal only approach. 

3.0.2 Policy 

The decision for adding or removing cloud resources can be taken from the current utilization Of resources (like 

CPU, Memory utilization) or based on future resource demand. So reactive and proactive are the two possible 

policies for resource addition or removal. 

• Reactive: In Reactive policy decision for triggering is done based on some threshold or rules and no prediction 

is used. Again, the threshold value can be changed during the operation so it can be further classified as a fixed 

threshold and dynamic threshold. In some papers this policy is used are [8],[10],[12],[18],[26],[31], [35], 

[36],[40],[41],[42],[43],[44]. it can be further detailed as Fixed Threshold and Dynamic Threshold. 

• Proactive: In Proactive policy, forecasting technique is used for getting trends and future resource requirements. 

Scaling decisions are taken accordingly. In some papers used this policy are [27], [28],[29],[45]. some proactive 

techniques can be discussed as below. 

– Time Series Analysis: In cloud computing for auto-scaling purpose time series, analysis-based methods can be 

used. time series analysis contains various prediction methods. It is used to predict the next value in the series. 

Accuracy of the prediction is depended on the kind of pattern for which it is used and also depends heavily on 

associated parameters [46]. It contains several techniques like moving average, autoregression, ARMA, ARIMA, 

Holt Winter etc. In some papers time series analysis used are [7], [19],[28],[45],[29],[47],[48],[49],[50]. 

– Control Theory: Sharing of resources among cloud applications is the aim of the control model. Control systems 

have mainly two groups 1) open-loop 2) closed-loop control systems. In the open-loop control system, the output 

depends on the input, and no feedback loop is used to improve the output. While in closed-loop control system 

feedback loop is used to compare the existing output with the desired output, it manages the set of resources to 

achieve the desired output. In some papers that used control theory are [11],[51],[18]. 

– Queuing Theory: Queueing theory is based on a mathematical model, and it is used to study the queue or waiting 

line. A queueing model is built in order to predict queue lengths and waiting time. It is best suited for the system 

with a stationary nature. In papers that used queuing theory are [20],[37],[52],[53]. 

– Reinforcement Learning: Reinforcement learning is a method of learning, and it develops optimal policies on a 

given state. The reinforcement learning model continuously submits the action in a given environment for better 

results. In this model, agents submit their actions based on the environment status, and agents get rewards from 

the environment. The objective considered for the agent is to maximize reward function value or to minimize the 

risk. In papers that used reinforcement learning are  [34],[54]. 

• Reactive and Proactive Both [31],[33],[55]. 

 

3.0.3   Scope 

Elasticity actions can be taken at the application level or infrastructure level if actions are taken at the application 

level is also known as embedded elasticity. Again, the application can be considered with a single-tier or multi-

tier. The elasticity controller is used for monitoring the system. It takes a decision at the infrastructure level. 
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Infrastructure considered are Virtual Machine (VM), Containers. In a few papers, virtual machines and containers 

considered together. 

• Application  

– Single tier [18],[28],[35] 

– Multi-tier [20],[52],[53] 

• Infrastructure 

– VM [18],[28],[45],[29],[53] 

– Container [8],[36],[42],[44],[48] 

– VM and Container Together [10],[38] 

• Both Application and Infrastructure [18],[44],[48] 

 

3.0.4   Architecture 

from the architecture point of view elasticity solutions are 1) centralized and 2) decentralized. only one elasticity 

controller is used in centralized elasticity solutions. Single point of failure may occur in a centralized controller.  

In decentralized elasticity solutions, the architecture includes multiple elasticity controller. 

• Centralized [18],[28],[35],[36],[29] 

• Decentralized [56],[57],[58] 

 

3.0.5 Provider 

Elasticity mechanism can be provided for a single cloud or for multiple clouds. Single cloud means a single cloud 

service provider and may have multiple data centers distributed at multiple regions. Multi-cloud refers to multiple 

cloud providers. In literature, many papers found supporting a single cloud provider but found few that support 

and discusses multi-cloud. 

• Single [18],[28],[35],[36],[45],[29] 

• Multiple [37],[59],[60] 

 

3.0.6 Scaling Action Indicators 

Elasticity scaling action indicators can be memory utilization, response time or CPU utilization. At particular 

interval scaling algorithm may check this indicator’s value for triggering scaling actions. 

• Memory Utilization [12],[18] 

• Response Time  [35],[61] 

• CPU Utilization [18],[30],[36],[40],[45] 

• Number Of Requests [28],[29] 

 

Here it is also important to discuss the MAPE loop proposed first by IBM for architecting a self-adaptive system. 

MAPE is widely used in the autonomic system. It contains a loop of four steps  Monitor (M), Analyze (A), Plan 

(P), Execute (E). In the step of monitoring, monitoring information is collected. In analyzing step, the analysis of 

the present status of the system is performed. As per the analysis phase, the decision regarding auto-scaling is 

planned in the plan step. In executing step planned scaling operations are executed. 

4.   Realted Work 

This section discusses research work on elasticity. It contains the basic terminology and classification of elasticity 

solutions. 

M. Tighe and M. Bauer [35] proposed a new algorithm that combines both automatic scaling of application and 

dynamic allocation of a virtual machine that meets the goal of both user and provider. Used reactive policy for 

autoscaling evaluations shows that in the integrated algorithm (autoscaling and dynamic allocation) provides 
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better application performance and reduces VM live migrations. This algorithm satisfies QoS and minimizes the 

operational cost. 

R.N.Calheiros, E.Masoumi, R.Ranjan, and R.Buyya [29] In this paper cloud workload prediction module is 

proposed, which uses ARIMA model. The author considered the SaaS service model. Real traces of requests to a 

web server is used to evaluate the accuracy of the ARIMA model. Results describe that this proposed model gains 

an average accuracy of 91 percent. It increases the efficiency in resource utilization with minimum effect on QoS. 

Y. Hu, B. Deng, F. Peng, and D. Wang [28]. In this paper, the author proposed three prediction models for 

predicting workload from monitoring data. The time-series approach is used for analyzing the monitoring 

workload, and the Kalman filter model is used to forecast the cloud workload. It also introduced a novel model of 

pattern matching for predicting and analysis of workload. Results describe that the proposed approach improves 

the prediction accuracy and also reduce the automatic scaling delay. 

P. D. Kaur and I. Chana [37] proposed a QoS-Aware Resource Elasticity (QRE) framework which contains 

components like Workload Analyzer, Application Centric Behavior Analyzer, QoS Mapper, Resource Centric 

Behavior analyzer, Performance Database.it allows the cloud provider to study the application behavior and allows 

to dynamically scale the cloud resources that host the application components. An experiment performed using 

amazon ec2 setup and result indicates the effectiveness of this approach, which complies with the agreed QoS 

attributes of the users. 

P.Singh, P.Gupta, and K.Jyoti [47] proposed an adaptive prediction model. This model uses linear regression, 

ARIMA, and SVR. The considered scenario is a web application. The Model is selected as per the workload 

feature, and the workload classifier has been proposed for that. A heuristic approach is used to select model 

parameters and used real traces for evaluation. The proposed approach provides a significant improvement in 

RMSQE and MAPE metrics and improves the QoS for the web application. 

Y. Ogawa, G. Hasegawa, and M. Murata [49] In this paper author proposed an approach in which private cloud 

rents resources from a public cloud provider. The bursting cloud approach is discussed here. It uses both long- 

and short-term predictions of requests. In a private cloud pool of VMS are as signed by considering the one-week 

predictions while one- hour prediction is taken for VM activation in private and public clouds. Experimentation 

results show that even if bursty requests are received by website and one-hours of predictions include a MAPE 

error of 0.2, in private data center alone the total cost of provisioning get minimizes to half of the existing and 

response time is kept below 0.15 seconds for 95 percent of the response time. 

Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li  [62] in this paper author proposed deep learning model. It is 

based on canonical polyadic decomposition. This model is used for predicting the cloud workload for industry 

informatics. Weight metrics are compressed significantly to canonical polyadic format. In this paper, an efficient 

algorithm is developed to train parameters. This learning model is used for the VM workload prediction in the 

cloud. The PlanetLab dataset is used. The proposed model gains a higher training efficiency, workload prediction 

accuracy than another machine learning-based approach. 

P. Tang, F. Li, W. Zhou, TW. Hu, and L. Yang [63] in this paper author presented SRSA - SLA aware resource-

efficient self-learning approach. This approach is for making an auto-scaling policy decision. The scenario of the 

service volatility is classified into the daily busy and ideal scenario, and burst traffic scenario, Formulated 

workload as a discrete-time series. It treats the policy-making procedure as MDP. Parameters in the reinforcement 

learning process are also tuned. The results show that the proposed solution outperforms the threshold-based 

policy and voting policy adopted by the right scale in oscillation suppression, QoS guarantee, and energy saving. 

T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal [64] in this paper author proposed a dynamic scaling 

algorithm. This algorithm manages the automatic VM resource provisioning based on the threshold. Front end 

load balancer is used to route and balances the request to deployed web applications on VM. an active session is 

considered for making scaling decisions. 
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J. Huang, C. Li, and J. Yu [65] proposed a resource prediction model. This model used double exponential 

smoothing, and it considers the present state of resource and history record. A cloudsim simulator is used for the 

experiment. Results indicate better prediction accuracy and performance. 

N. Roy, A. Dubey, and A. Gokhale [19] in this paper, authors contributed to workload forecasting and optimal 

resource allocation. The author discussed the challenges involved in autoscaling. The next model prediction 

algorithm for workload forecasting is developed, which is used for resource autoscaling. Results show that the 

proposed algorithm satisfies both application QoS while minimizing operational cost. For workload prediction, 

the ARMA method has been used. 

M. Wajahat, A. Gandhi, A. Karve, and A. Kochut [66] proposed ML Scale that is a machine learning-based auto-

scaler and also it is an application-agnostic. This auto-scaler contains a neural network-based online performance 

modeler, regression-based metric predictor to estimate post scaling application, and system metric. The result 

shows that it reduces the resource cost of about 50% compared to the optimal static policy. No carefully tuned 

threshold policy is required. 

A. Khan, X. Yan, S. Tao, and N. Anerousis [45] proposed a multiple time series based approach. This approach 

first search for repeatable workload patterns of applications running on different virtual machines. Emphasis is 

given on identifying a group of VMS which frequently exhibits similar workload patterns during a time period 

for which VM groups are active by developing a co-clustering technique using workload data samples as time 

series. An introduced method based on the hidden Markov model to discover the VM cluster and to predict 

variation in workload patterns. Results show that this approach can help in understanding the workload of group-

level features and just make an accurate prediction for the workload that changes in a cloud. 

H.Arabnejad, C.Pahl,P. Jamshidi, and G.Estrada [54] this paper compares two dynamic learning strategies that 

are based on a fuzzy logic system, and that learns as well as modifies fuzzy scaling rules during runtime. The 

fuzzy logic controller is used with two reinforcement learning (RL) approaches that is Fuzzy SARSA Learning 

and Fuzzy Q-Learning. The result shows that the proposed approaches can handle different load traffic situations 

while reducing operating costs and prevents SLA violations. 

B. B. Bibal and D. Dharma [31] proposed HAS - Hybrid auto-scaler for adjusting the required resource 

automatically. HAS forecast the future behavior of the system by using the time series analysis method. The 

queuing model has been used to compute the required capacity. A reactive approach is used to scale out resources. 

Used CTMM - continuous-time Markov model to balance the load efficiently. 

L. Lu et al. [7] proposed AppRM tool. for SLOs, this tool automatically sets resource control for VM and resource 

pool. This tool contains the multilevel of virtual application managers and also resource pool managers. AppRM 

scales VM vertically, It manages vertical scaling by resource adjustment at the Virtual Machine level or at the 

resource pool level. 

J. F. Naomi and S. Roobini [55] proposed Independent Recurrent Neural Network (IndRNN) method for workload 

prediction. In this paper, both reactive and proactive approaches are used. Here the reactive approach is used to 

minimize the negative return from the proactive policy. 

E. G. Radhika, G. Sudha Sadasivam, and J. Fenila Naomi [70] in this paper used a deep learning technique known 

as Recurrent Neural Network with Long Short Term Memory (RNN-LSTM) for predicting the future demand 

using historical data. Here the reactive approach is used to minimize the negative return from the proactive policy. 

The results show that, when the massive workload arrives, the proposed system predicts future demand and spins 

the instance accordingly. 

W. Dawoud, I. Takouna, and C. Meinel [18] proposed an elastic system architecture in which three controllers 

implemented for CPU, Memory, and Application. All three controllers work in a parallel manner to better manage 

the resource and application. The proposed architecture reduces SLO violations. 

G. MoltÃ³, M. Caballer, and C. De Alfonso [12] proposed a CloudVamp framework cloudVamp means cloud 

virtual machine automatic memory procurement framework. It considered memory oversubscriptions. It can be 
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integrated with an on-premise cloud management platform (CMP) for automatically monitoring the VMs, to 

allocate memory dynamically in order to get requirement regarding present memory for the applications that are 

in execution. This framework enhances VM consolidation per Physical machine node. 

S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya [41] proposed an inter-cloud elasticity framework. In this work, 

the author introduced an inter-cloud load balancer (ICLB). It allows scaling operations by neglecting down times 

and communication failures. It distributes incoming user HTTP traffic to multiple instances. This instance belongs 

to inter-cloud applications, services. It performs dynamic reconfiguration of resources as per the real-time 

requirements. 

X. Tang and F. Zhang [36] proposed a framework that monitors containers resource utilization and performs 

container scaling operations as per requirements. The auto-scaler has four parts that are monitoring mechanism, 

decision mechanism, history recorder, and execution mechanism. For the same configuration, in repeat mode auto-

scaler perform a good job, here workload contains the recurring pattern, but for shuffle, repeat shuffle modes 

elasticity mechanism result is noticeably worse compared to the other two modes. It is found that to balance 

system stability and good elasticity, the length of the cool-down period should be proper. The auto scaler is tested 

by taking Stress workload on DC/OS cloud infrastructure. 

S. Taherizadeh and V. Stankovski [44] proposed a dynamic multilevel auto-scaling method. This method can 

work with a dynamically changing threshold that uses monitoring data from both infrastructure and application. 

DM is compared to the existing seven auto-scaling methods with different workload scenarios. The experimental 

results show that the DM method provides better performance under the different amounts of the workload, so 

this method is implemented in the SWITCH (software engineering system for time-critical cloud applications). 

B. Xie, [42] in this paper, an intelligent scheduling system is proposed. The aim of this system is to improve 

resource utilization. An auto-scaling algorithm mechanism is integrated into the intelligent kernel for analyzing 

and predicting the application behavior. The minimum amount of instances is calculated for pre-allocation and 

placement To reduce the response latency and lower deployment cost. Only one group of periodic requests are 

considered. The performance parameter used is the CPU utilization. 

Y. Meng, R. Rao, X. Zhang, and P. Hong [50] proposed the CRUPA algorithm. It is a response utilization 

prediction algorithm that used the ARIMA model from time series analysis. Experimental results show that this 

algorithm has high prediction accuracy, and it can scale resources well. 

O. A. B. U. Oun [43]  proposed JQueuer and CAutoScaler that offer job-queueing and automated scaling for the 

level of containers. It takes jobs list and auto-scaling policy, starts the containers in the cloud and dispatches the 

jobs to containers and perform scaling operations in order to complete the jobs according to the applied policy.  

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle [8] in this paper author proposed ElasticDocker. That is a 

system powering vertical elasticity.it uses the principle of IBM MAPE-K. It controls the scaling of both CPU and 

Memory that is assigned to each container as per the application workload. Container migration is performed by 

CRIU when host capacity reaches to its maximum limit. The author used Scalair's private cloud infrastructure for 

experiment results shows that the proposed approach outperforms the Kubernetes elasticity by 37.63 percentage. 

T. Ye, X. Guangtao, Q. Shiyou, and L. Minglu [48] in this paper author proposed an auto-scaler for containerized 

elastic applications. The author prepared a hybrid scaling strategy. This strategy is based on the resource demand 

prediction model to achieve SLA for quickly varying workloads. This work only considered CPU resources. The 

proposed approach ensures a low ratio of a violation. 

A. Barros, D. Grigori, N. C. Narendra, and H. K. Dam [38] considered four dimensions of scaling. Containers and 

virtual machines can adjust horizontally and vertically. This paper addresses the four-fold auto-scaling. This paper 

formulated a scaling decision problem in the form of a multi-objective optimization problem. The result shows 

that the proposed approach chooses and executes scaling actions that achieve twenty to twenty-eight percent of 

cost reduction over the baselines. 
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Y. Al-dhuraibi et al [10] In this paper author proposed an approach to consider both virtual machines and 

containers for vertical elasticity. They proposed a technique for applications based on the container to adjust 

resources at both container and VM level. Major components of the system are monitoring components and docker 

controller. The approach is evaluated using the RUBiS benchmark application. This approach reacts quickly and 

improves the performance of the application. This approach outperforms the vertical elasticity controller of the 

container by 18.34 % , horizontal elasticity by 39.6%, and vertical elasticity controller of VM by 70%. 

Table 1 Review of Cloud Elasticity 

Paper 

Reference 

No. 

Scope (VM/ 

Container / Both) 
Metric 

Mode (Reactive/ 

Proactive/ Both) 

Policy 

(Horizontal/ 

Vertical/ 

Both) 

[35] VM 
Active Hosts, Number of 

Migrations, Response Time 
Reactive Horizontal 

[29] VM 

Average Service Time, Minimum 

number of VM , Max number of 

VM, VM Hours, response time 

Proactive ( Arima – time 

series analysis) 
Horizontal 

[28] VM CPU Utilization 

Proactive ( time series 

analysis, kalman filter, , 

pattern matching approach) 

Horizontal 

[37] VM 
No. of VMS, Response Time, 

Resource Utilization 
Proactive Horizontal 

[47] VM Number of Requests 
Proactive (linear 

regression,Arima , SVM) 
Horizontal 

[49] VM Response Time Proactive ( ARIMA ) Horizontal 

[62] VM CPU Utilization 

Proactive (deep learning 

model that is based on the 

canonical polyadic 

decomposition) 

Horizontal 

[63] VM Workload 
Proactive ( reinforcement 

learning) 
Horizontal 

[64] VM Number of Active Sessions 
Proactive ( moving 

average) 
Horizontal 

[65] VM CPU Utilization 

Proactive ( time series 

analysis-double exponential 

smooting) 

Horizontal 

[19] VM Configuration Cost 
Proactive (ARMA time 

series analysis) 
Horizontal 

[66] VM Response Time 
Proactive ( machine 

learning) 
Horizontal 

[45] VM CPU Utilization 
Proactive ( multiple time 

series apporach) 
Horizontal 

[54] VM 
Workload, Response Time , 

Number of Virtual Machines. 

Proactive ( Reinforcement 

Learning) 
Horizontal 

[31] VM 

Average. Response Time, Future 

Arrival Rate, System Utilization 

Rate, Capacity Available and Used 

Reactive and Proactive 

(autoregression) both 
Horizontal 
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Paper 

Reference 

No. 

Scope (VM/ 

Container / Both) 
Metric 

Mode (Reactive/ 

Proactive/ Both) 

Policy 

(Horizontal/ 

Vertical/ 

Both) 

[7] VM 
Response Time, Application 

Throghput 

Proactive ( time series 

ARMA model ) 
Horizontal 

[55] VM Workload 

Proactive Independent 

Recurrent Neural Network 

(IndRNN) 

Horizontal 

[70] VM CPU Utilization Proactive ( RNN-LSTM) Horizontal 

[18] VM 
CPU,Memory Utilization , 

Response Time 
Reactive ( threshold based) Vertical 

[12] VM Memory Utilization Reactive Vertical 

[41] VM CPU, Memory, Disk Usage Reactive ( CPU utilization) 
Horizontal 

and vertical 

[36] Container 
CPU Utilization Per Container and  

PM,Response Time 

Reactive(\% of cpu utilized 

is a threshold) 
Horizontal 

[44] Container 

Uses both Application (Response 

time, Application Throughput) and 

infrastructure (CPU, Memory ) 

level metrics 

Reactive ( multi-level 

monitoring system) 
Horizontal 

[42] Container CPU Utilization 
Reactive ( CPU utilization 

percentage as threshold) 
Horizontal 

[50] Container Resource Demand Proactive ( ARIMA) Horizontal 

[43] Container Number of Jobs in the Queue Reactive Horizontal 

[8] Container 
CPU Utilization , Memory 

Utilization 

Reactive ( \% of cpu 

utilization as threshold) 
Vertical 

[48] Container CPU Utilization , Response Time Proactive ( ARIMA) 
Horizontal 

and Vertical 

[38] VM and Container Response Time Using optimizaiton model Horizontal 

[10] VM and Container CPU and Memory Utilization 
Reactive (\% of CPU 

utilization is threshold) 
Vertical 

 

5.   Discussion And Future Directions 

Difficulties in implementing general-purpose auto-scaler mechanism are related to 

• Scaling Timing: when to take scaling decision is a very important question. The auto-scaler should answer that. 

It is because different applications running inside a cloud computing environment have different workload patterns 

and preferences for QoS. 
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• Resource Estimation: to estimate resources (how many resources to provision or de-provision?) during the next 

scaling action is a critical question. Over-provisioning can result in higher costs and improper resource utilization. 

Under-provisioning can result in SLA Violations. 

• Scaling Method: types of scaling methods are horizontal scaling and vertical scaling.it is also possible to use 

both in a combination called diagonal scaling. selecting a particular method for managing resources is also an 

important factor that must be considered during the scaling plan. According to the study of Elasticity as above. 

we can list out possible future directions as below. 

• For cloud elasticity prediction method/technique plays a vital role, so it is required to select the prediction 

method/technique that provides the best prediction accuracy. To choose the best prediction method for a particular 

application can be a potential future work. 

• VM may fail at runtime. A cloud environment is subjected to such uncertainties. So, consideration of these 

aspects can be a potential future work.  

• Horizontal elasticity is discussed much, but Vertical elasticity is still not much explored. In vertical elasticity 

also either CPU or Memory is considered as performance parameter but not both together. So, consideration of 

CPU and Memory together can be a potential future work. 

• Only considered homogeneous style of resources. Work can be extended by considering the mixture of on-

demand, reserved, and related resources. 

• Major autoscaling work considered only SLA achievement, but the energy and carbon aware auto-scaling is still 

needed to explore. 

• Cloud container gained much popularity recently. A container can be placed on a physical machine or virtual 

machine. No work is found that addresses the management of physical machines or virtual machines for a 

container. Only the auto-scaling of a container or virtual machine is addressed. 

• Hybrid elasticity (horizontal + vertical elasticity) is still not much explored. 

• Major cloud service provider rent resources and charge on per hour basis. Work can be extended by introducing 

the concept of smart kill (turn down the VM just before it completes the hour to lower the cost and use this extra 

resource to address a sudden increase in workload). 

6.   Conclusion 

Elasticity is the dynamic property of the cloud and is used for provisioning and de-provisioning cloud resources 

to map between workload and cloud resources. In this paper, we classified elasticity with various aspects. elasticity 

classification with respect to scope, mode, and policy is our major interest. From this review we also proposed 

promising future directions that can be extended by the research community in the future. 
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