
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

321

A Review on Cloud Computing Elasticity

Hirenkumar R. Patel1, Dr. Tejas P. Patalia2

1. Research Scholar, Computer/IT Engineering, Gujarat Technological University, Chandkheda, Ahmedabad.

2. Head & Professor, Computer Engineering Department, VVP Engineering College, Rajkot, Gujarat, India.

Abstract:- Cloud computing is an internet-based computing environment where computing resources (hardware,

software) are managed, pooled, and provided on demand by the cloud service providers to cloud service users.

Users may rent resources with fixed capacity by considering the application's peak workload, but the application

workload may vary. The workload variation may depend on many situations like time of the day, day of the week,

etc., So resources may be underutilized when the workload is lower than the peak workload and overutilized when

the workload is higher than the peak workload so some strategies are required to manage resources that can add

or remove resource capacity as per the variation in workload. For managing cloud resource capacity elasticity

plays a vital role. Elasticity is the dynamic property of the cloud and is used for the provisioning and de-

provisioning of cloud resources to map between workload and cloud resources. This study reviews the elasticity

for “VM only”, “Container only” and “VM and containers together”.

Keywords: Cloud Computing, Resource Management, Autoscaling, Elasticity, Virtual Machine, Containers

1. Introduction

Cloud computing can be defined as an Internet-based computing environment where computing resources are

managed, pooled, and provided to cloud users on-demand basis[1] . Cloud computing environment has at most

two parties-cloud service user and cloud service provider. The other type of users that accesses an application

hosted in the cloud are the clients of the cloud service user. In the cloud computing environment, it is considered

that unlimited resource pool is available, and it is available on-demand and cloud service user has to pay as per

the resource usage.

According to the service provided by the cloud. it can be categorized into three service models, Infrastructures as

a Service (IaaS), Platforms as a Service (PaaS), Software as a Service (SaaS) [2]. Along with the Iaas, Pass, and

Saas, an earlier new type of service introduced is known as Container as a Service (CaaS).one such example of a

container management system is Docker. Docker is a tool, and using it developers can define containers for

applications. The position of CaaS is between Iaas and Paas. IaaS Provides Infrastructure related services, and

PaaS provides an application development environment, so CaaS layer was basically missing layer previously

which attaches both Iaas and PaaS [3].

Service level agreement (SLA) can be defined as a mutual contract between the service provider and consumer,

which determines the agreed service level objective (SLO) [4]. Service level agreement is very important to pursue

a profitable business relationship between the service user and the service provider. Common performance SLOs

include availability, response time, capacity, etc[1].

In the cloud computing environment, a service provider’s goal is to maximize profit and to achieve better resource

utilization. The service user’s goal is to minimize cost and maximize performance. Elasticity plays an important

role and helps for better resource utilization, in minimizing the service level agreement (SLA) violations.

Elasticity is the dynamic property of the cloud which deals with provisioning, de-provisioning of a resource in an

automatic manner in such a way that it closely matches the resources with the incoming workload in an automatic

manner [5].

This paper discusses the classification of elasticity, work done on elasticity by considering “VM only”, “Container

only” and “VM and containers together” scenarios.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

322

2. Resource Management

Cloud computing environment is a highly dynamic environment and resource management is a challenging while

managing SLAs. Elasticity can be used for managing cloud resources to achieve SLA objectives.

Figure 1. Provisioning for peak load[6]

Figure 2. Under provisioning[6]

Figure 1 and Figure 2 show the scenario of using a static resource capacity when the variable workload is given

to the server. Figure 1 shows the case when the resource is selected of fixed capacity by considering peak load. In

this case, resources not fully utilized all the time, and most of the time, it stays underutilized. Underutilization is

shown with the shaded area in figure. Figure 2 shows the case when resource capacity is selected based on the

average workload. In this case, resources are over-utilized, and customer demand cannot be served as shown with

the shaded area in the figure.

Instead of using static resource capacity, Cloud service providers may offer dynamic scaling mechanism to its

users, so according to the incoming workload resources capacity can be changed by the scale in or scale out the

resources [5].

Elasticity plays an important role in dynamic resource management. The next section contains a detailed

discussion of the elasticity.

3. Elasticity

Elasticity is a cloud computing dynamic property. It allows scaling of the system in or out on-demand in an

operational system. Elasticity is the feature available for clients to quickly demand, receive, and release resources

as needed [7]. Some other related and similar terms are scalability, efficiency, and auto-scaling.

Scalability can be defined as the ability to handle the additional load by adding extra capacity using extra

resources. for elasticity, scalability is the first requirement. Scalability does not consider time parameters like how

fast and often and at what granularity scaling actions can be taken. So, it can be written that scalability is the way

of increasing the capacity of the system, and it handles the increase in workload by using additional resources. It

is not time bounded; hence as elasticity, it does not care about how actual resource demands match with the

provided resources at a particular point in time [5].

Another term efficiency is expressed as the number of resources used for processing a workload. As in the case

of elasticity, efficiency is the best utilization of resources. Normally better elasticity gains higher efficiency [5].

Auto-scaling and elasticity used with the same meaning in literature, but there is a Minor difference between them.

Scalability with automation is known as auto-scaling. Auto-scaling with optimization is known as elasticity.

Elasticity can be classified from various aspects. A detailed discussion of the classification of cloud elasticity is

given as below.

3.0.1 Method

Elasticity can be classified as vertical, horizontal and hybrid from method point of view.

• Vertical: Vertical elasticity used to resize instance capacity in terms of CPU, Memory, and Storage or both at

run time. It provides good flexibility to cloud provider to easily manage the resources. Some hypervisor that

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

323

supports vertical elasticity is Xen, VMware. Papers like [7],[8],[9],[10] ,[11], [12],[13], [14], [15],[16], [17],[18]

discussed and applied vertical elasticity.

• Horizontal: Horizontal elasticity used to add/remove instances as per the change in workload. It is very simple

approach and so used by many cloud providers. Some time it is inefficient to use as it fails to perfectly fit in

requirement. In Papers [19], [20], [21], [22],[23], [24], [25], [26], [27], [28],[29], [30], [31],[32] ,[33],[34],

[35],[36], [37],[38] discussed and used horizontal elasticity.

• Hydride: Hybrid elasticity allows both vertical and horizontal scaling together. Few research papers found that

uses this approach like [5],[7],[23],[39]. It provides much flexibility in resource management compared to vertical

only or horizontal only approach.

3.0.2 Policy

The decision for adding or removing cloud resources can be taken from the current utilization Of resources (like

CPU, Memory utilization) or based on future resource demand. So reactive and proactive are the two possible

policies for resource addition or removal.

• Reactive: In Reactive policy decision for triggering is done based on some threshold or rules and no prediction

is used. Again, the threshold value can be changed during the operation so it can be further classified as a fixed

threshold and dynamic threshold. In some papers this policy is used are [8],[10],[12],[18],[26],[31], [35],

[36],[40],[41],[42],[43],[44]. it can be further detailed as Fixed Threshold and Dynamic Threshold.

• Proactive: In Proactive policy, forecasting technique is used for getting trends and future resource requirements.

Scaling decisions are taken accordingly. In some papers used this policy are [27], [28],[29],[45]. some proactive

techniques can be discussed as below.

– Time Series Analysis: In cloud computing for auto-scaling purpose time series, analysis-based methods can be

used. time series analysis contains various prediction methods. It is used to predict the next value in the series.

Accuracy of the prediction is depended on the kind of pattern for which it is used and also depends heavily on

associated parameters [46]. It contains several techniques like moving average, autoregression, ARMA, ARIMA,

Holt Winter etc. In some papers time series analysis used are [7], [19],[28],[45],[29],[47],[48],[49],[50].

– Control Theory: Sharing of resources among cloud applications is the aim of the control model. Control systems

have mainly two groups 1) open-loop 2) closed-loop control systems. In the open-loop control system, the output

depends on the input, and no feedback loop is used to improve the output. While in closed-loop control system

feedback loop is used to compare the existing output with the desired output, it manages the set of resources to

achieve the desired output. In some papers that used control theory are [11],[51],[18].

– Queuing Theory: Queueing theory is based on a mathematical model, and it is used to study the queue or waiting

line. A queueing model is built in order to predict queue lengths and waiting time. It is best suited for the system

with a stationary nature. In papers that used queuing theory are [20],[37],[52],[53].

– Reinforcement Learning: Reinforcement learning is a method of learning, and it develops optimal policies on a

given state. The reinforcement learning model continuously submits the action in a given environment for better

results. In this model, agents submit their actions based on the environment status, and agents get rewards from

the environment. The objective considered for the agent is to maximize reward function value or to minimize the

risk. In papers that used reinforcement learning are [34],[54].

• Reactive and Proactive Both [31],[33],[55].

3.0.3 Scope

Elasticity actions can be taken at the application level or infrastructure level if actions are taken at the application

level is also known as embedded elasticity. Again, the application can be considered with a single-tier or multi-

tier. The elasticity controller is used for monitoring the system. It takes a decision at the infrastructure level.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

324

Infrastructure considered are Virtual Machine (VM), Containers. In a few papers, virtual machines and containers

considered together.

• Application

– Single tier [18],[28],[35]

– Multi-tier [20],[52],[53]

• Infrastructure

– VM [18],[28],[45],[29],[53]

– Container [8],[36],[42],[44],[48]

– VM and Container Together [10],[38]

• Both Application and Infrastructure [18],[44],[48]

3.0.4 Architecture

from the architecture point of view elasticity solutions are 1) centralized and 2) decentralized. only one elasticity

controller is used in centralized elasticity solutions. Single point of failure may occur in a centralized controller.

In decentralized elasticity solutions, the architecture includes multiple elasticity controller.

• Centralized [18],[28],[35],[36],[29]

• Decentralized [56],[57],[58]

3.0.5 Provider

Elasticity mechanism can be provided for a single cloud or for multiple clouds. Single cloud means a single cloud

service provider and may have multiple data centers distributed at multiple regions. Multi-cloud refers to multiple

cloud providers. In literature, many papers found supporting a single cloud provider but found few that support

and discusses multi-cloud.

• Single [18],[28],[35],[36],[45],[29]

• Multiple [37],[59],[60]

3.0.6 Scaling Action Indicators

Elasticity scaling action indicators can be memory utilization, response time or CPU utilization. At particular

interval scaling algorithm may check this indicator’s value for triggering scaling actions.

• Memory Utilization [12],[18]

• Response Time [35],[61]

• CPU Utilization [18],[30],[36],[40],[45]

• Number Of Requests [28],[29]

Here it is also important to discuss the MAPE loop proposed first by IBM for architecting a self-adaptive system.

MAPE is widely used in the autonomic system. It contains a loop of four steps Monitor (M), Analyze (A), Plan

(P), Execute (E). In the step of monitoring, monitoring information is collected. In analyzing step, the analysis of

the present status of the system is performed. As per the analysis phase, the decision regarding auto-scaling is

planned in the plan step. In executing step planned scaling operations are executed.

4. Realted Work

This section discusses research work on elasticity. It contains the basic terminology and classification of elasticity

solutions.

M. Tighe and M. Bauer [35] proposed a new algorithm that combines both automatic scaling of application and

dynamic allocation of a virtual machine that meets the goal of both user and provider. Used reactive policy for

autoscaling evaluations shows that in the integrated algorithm (autoscaling and dynamic allocation) provides

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

325

better application performance and reduces VM live migrations. This algorithm satisfies QoS and minimizes the

operational cost.

R.N.Calheiros, E.Masoumi, R.Ranjan, and R.Buyya [29] In this paper cloud workload prediction module is

proposed, which uses ARIMA model. The author considered the SaaS service model. Real traces of requests to a

web server is used to evaluate the accuracy of the ARIMA model. Results describe that this proposed model gains

an average accuracy of 91 percent. It increases the efficiency in resource utilization with minimum effect on QoS.

Y. Hu, B. Deng, F. Peng, and D. Wang [28]. In this paper, the author proposed three prediction models for

predicting workload from monitoring data. The time-series approach is used for analyzing the monitoring

workload, and the Kalman filter model is used to forecast the cloud workload. It also introduced a novel model of

pattern matching for predicting and analysis of workload. Results describe that the proposed approach improves

the prediction accuracy and also reduce the automatic scaling delay.

P. D. Kaur and I. Chana [37] proposed a QoS-Aware Resource Elasticity (QRE) framework which contains

components like Workload Analyzer, Application Centric Behavior Analyzer, QoS Mapper, Resource Centric

Behavior analyzer, Performance Database.it allows the cloud provider to study the application behavior and allows

to dynamically scale the cloud resources that host the application components. An experiment performed using

amazon ec2 setup and result indicates the effectiveness of this approach, which complies with the agreed QoS

attributes of the users.

P.Singh, P.Gupta, and K.Jyoti [47] proposed an adaptive prediction model. This model uses linear regression,

ARIMA, and SVR. The considered scenario is a web application. The Model is selected as per the workload

feature, and the workload classifier has been proposed for that. A heuristic approach is used to select model

parameters and used real traces for evaluation. The proposed approach provides a significant improvement in

RMSQE and MAPE metrics and improves the QoS for the web application.

Y. Ogawa, G. Hasegawa, and M. Murata [49] In this paper author proposed an approach in which private cloud

rents resources from a public cloud provider. The bursting cloud approach is discussed here. It uses both long-

and short-term predictions of requests. In a private cloud pool of VMS are as signed by considering the one-week

predictions while one- hour prediction is taken for VM activation in private and public clouds. Experimentation

results show that even if bursty requests are received by website and one-hours of predictions include a MAPE

error of 0.2, in private data center alone the total cost of provisioning get minimizes to half of the existing and

response time is kept below 0.15 seconds for 95 percent of the response time.

Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li [62] in this paper author proposed deep learning model. It is

based on canonical polyadic decomposition. This model is used for predicting the cloud workload for industry

informatics. Weight metrics are compressed significantly to canonical polyadic format. In this paper, an efficient

algorithm is developed to train parameters. This learning model is used for the VM workload prediction in the

cloud. The PlanetLab dataset is used. The proposed model gains a higher training efficiency, workload prediction

accuracy than another machine learning-based approach.

P. Tang, F. Li, W. Zhou, TW. Hu, and L. Yang [63] in this paper author presented SRSA - SLA aware resource-

efficient self-learning approach. This approach is for making an auto-scaling policy decision. The scenario of the

service volatility is classified into the daily busy and ideal scenario, and burst traffic scenario, Formulated

workload as a discrete-time series. It treats the policy-making procedure as MDP. Parameters in the reinforcement

learning process are also tuned. The results show that the proposed solution outperforms the threshold-based

policy and voting policy adopted by the right scale in oscillation suppression, QoS guarantee, and energy saving.

T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal [64] in this paper author proposed a dynamic scaling

algorithm. This algorithm manages the automatic VM resource provisioning based on the threshold. Front end

load balancer is used to route and balances the request to deployed web applications on VM. an active session is

considered for making scaling decisions.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

326

J. Huang, C. Li, and J. Yu [65] proposed a resource prediction model. This model used double exponential

smoothing, and it considers the present state of resource and history record. A cloudsim simulator is used for the

experiment. Results indicate better prediction accuracy and performance.

N. Roy, A. Dubey, and A. Gokhale [19] in this paper, authors contributed to workload forecasting and optimal

resource allocation. The author discussed the challenges involved in autoscaling. The next model prediction

algorithm for workload forecasting is developed, which is used for resource autoscaling. Results show that the

proposed algorithm satisfies both application QoS while minimizing operational cost. For workload prediction,

the ARMA method has been used.

M. Wajahat, A. Gandhi, A. Karve, and A. Kochut [66] proposed ML Scale that is a machine learning-based auto-

scaler and also it is an application-agnostic. This auto-scaler contains a neural network-based online performance

modeler, regression-based metric predictor to estimate post scaling application, and system metric. The result

shows that it reduces the resource cost of about 50% compared to the optimal static policy. No carefully tuned

threshold policy is required.

A. Khan, X. Yan, S. Tao, and N. Anerousis [45] proposed a multiple time series based approach. This approach

first search for repeatable workload patterns of applications running on different virtual machines. Emphasis is

given on identifying a group of VMS which frequently exhibits similar workload patterns during a time period

for which VM groups are active by developing a co-clustering technique using workload data samples as time

series. An introduced method based on the hidden Markov model to discover the VM cluster and to predict

variation in workload patterns. Results show that this approach can help in understanding the workload of group-

level features and just make an accurate prediction for the workload that changes in a cloud.

H.Arabnejad, C.Pahl,P. Jamshidi, and G.Estrada [54] this paper compares two dynamic learning strategies that

are based on a fuzzy logic system, and that learns as well as modifies fuzzy scaling rules during runtime. The

fuzzy logic controller is used with two reinforcement learning (RL) approaches that is Fuzzy SARSA Learning

and Fuzzy Q-Learning. The result shows that the proposed approaches can handle different load traffic situations

while reducing operating costs and prevents SLA violations.

B. B. Bibal and D. Dharma [31] proposed HAS - Hybrid auto-scaler for adjusting the required resource

automatically. HAS forecast the future behavior of the system by using the time series analysis method. The

queuing model has been used to compute the required capacity. A reactive approach is used to scale out resources.

Used CTMM - continuous-time Markov model to balance the load efficiently.

L. Lu et al. [7] proposed AppRM tool. for SLOs, this tool automatically sets resource control for VM and resource

pool. This tool contains the multilevel of virtual application managers and also resource pool managers. AppRM

scales VM vertically, It manages vertical scaling by resource adjustment at the Virtual Machine level or at the

resource pool level.

J. F. Naomi and S. Roobini [55] proposed Independent Recurrent Neural Network (IndRNN) method for workload

prediction. In this paper, both reactive and proactive approaches are used. Here the reactive approach is used to

minimize the negative return from the proactive policy.

E. G. Radhika, G. Sudha Sadasivam, and J. Fenila Naomi [70] in this paper used a deep learning technique known

as Recurrent Neural Network with Long Short Term Memory (RNN-LSTM) for predicting the future demand

using historical data. Here the reactive approach is used to minimize the negative return from the proactive policy.

The results show that, when the massive workload arrives, the proposed system predicts future demand and spins

the instance accordingly.

W. Dawoud, I. Takouna, and C. Meinel [18] proposed an elastic system architecture in which three controllers

implemented for CPU, Memory, and Application. All three controllers work in a parallel manner to better manage

the resource and application. The proposed architecture reduces SLO violations.

G. MoltÃ³, M. Caballer, and C. De Alfonso [12] proposed a CloudVamp framework cloudVamp means cloud

virtual machine automatic memory procurement framework. It considered memory oversubscriptions. It can be

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

327

integrated with an on-premise cloud management platform (CMP) for automatically monitoring the VMs, to

allocate memory dynamically in order to get requirement regarding present memory for the applications that are

in execution. This framework enhances VM consolidation per Physical machine node.

S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya [41] proposed an inter-cloud elasticity framework. In this work,

the author introduced an inter-cloud load balancer (ICLB). It allows scaling operations by neglecting down times

and communication failures. It distributes incoming user HTTP traffic to multiple instances. This instance belongs

to inter-cloud applications, services. It performs dynamic reconfiguration of resources as per the real-time

requirements.

X. Tang and F. Zhang [36] proposed a framework that monitors containers resource utilization and performs

container scaling operations as per requirements. The auto-scaler has four parts that are monitoring mechanism,

decision mechanism, history recorder, and execution mechanism. For the same configuration, in repeat mode auto-

scaler perform a good job, here workload contains the recurring pattern, but for shuffle, repeat shuffle modes

elasticity mechanism result is noticeably worse compared to the other two modes. It is found that to balance

system stability and good elasticity, the length of the cool-down period should be proper. The auto scaler is tested

by taking Stress workload on DC/OS cloud infrastructure.

S. Taherizadeh and V. Stankovski [44] proposed a dynamic multilevel auto-scaling method. This method can

work with a dynamically changing threshold that uses monitoring data from both infrastructure and application.

DM is compared to the existing seven auto-scaling methods with different workload scenarios. The experimental

results show that the DM method provides better performance under the different amounts of the workload, so

this method is implemented in the SWITCH (software engineering system for time-critical cloud applications).

B. Xie, [42] in this paper, an intelligent scheduling system is proposed. The aim of this system is to improve

resource utilization. An auto-scaling algorithm mechanism is integrated into the intelligent kernel for analyzing

and predicting the application behavior. The minimum amount of instances is calculated for pre-allocation and

placement To reduce the response latency and lower deployment cost. Only one group of periodic requests are

considered. The performance parameter used is the CPU utilization.

Y. Meng, R. Rao, X. Zhang, and P. Hong [50] proposed the CRUPA algorithm. It is a response utilization

prediction algorithm that used the ARIMA model from time series analysis. Experimental results show that this

algorithm has high prediction accuracy, and it can scale resources well.

O. A. B. U. Oun [43] proposed JQueuer and CAutoScaler that offer job-queueing and automated scaling for the

level of containers. It takes jobs list and auto-scaling policy, starts the containers in the cloud and dispatches the

jobs to containers and perform scaling operations in order to complete the jobs according to the applied policy.

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle [8] in this paper author proposed ElasticDocker. That is a

system powering vertical elasticity.it uses the principle of IBM MAPE-K. It controls the scaling of both CPU and

Memory that is assigned to each container as per the application workload. Container migration is performed by

CRIU when host capacity reaches to its maximum limit. The author used Scalair's private cloud infrastructure for

experiment results shows that the proposed approach outperforms the Kubernetes elasticity by 37.63 percentage.

T. Ye, X. Guangtao, Q. Shiyou, and L. Minglu [48] in this paper author proposed an auto-scaler for containerized

elastic applications. The author prepared a hybrid scaling strategy. This strategy is based on the resource demand

prediction model to achieve SLA for quickly varying workloads. This work only considered CPU resources. The

proposed approach ensures a low ratio of a violation.

A. Barros, D. Grigori, N. C. Narendra, and H. K. Dam [38] considered four dimensions of scaling. Containers and

virtual machines can adjust horizontally and vertically. This paper addresses the four-fold auto-scaling. This paper

formulated a scaling decision problem in the form of a multi-objective optimization problem. The result shows

that the proposed approach chooses and executes scaling actions that achieve twenty to twenty-eight percent of

cost reduction over the baselines.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

328

Y. Al-dhuraibi et al [10] In this paper author proposed an approach to consider both virtual machines and

containers for vertical elasticity. They proposed a technique for applications based on the container to adjust

resources at both container and VM level. Major components of the system are monitoring components and docker

controller. The approach is evaluated using the RUBiS benchmark application. This approach reacts quickly and

improves the performance of the application. This approach outperforms the vertical elasticity controller of the

container by 18.34 % , horizontal elasticity by 39.6%, and vertical elasticity controller of VM by 70%.

Table 1 Review of Cloud Elasticity

Paper

Reference

No.

Scope (VM/

Container / Both)
Metric

Mode (Reactive/

Proactive/ Both)

Policy

(Horizontal/

Vertical/

Both)

[35] VM
Active Hosts, Number of

Migrations, Response Time
Reactive Horizontal

[29] VM

Average Service Time, Minimum

number of VM , Max number of

VM, VM Hours, response time

Proactive (Arima – time

series analysis)
Horizontal

[28] VM CPU Utilization

Proactive (time series

analysis, kalman filter, ,

pattern matching approach)

Horizontal

[37] VM
No. of VMS, Response Time,

Resource Utilization
Proactive Horizontal

[47] VM Number of Requests
Proactive (linear

regression,Arima , SVM)
Horizontal

[49] VM Response Time Proactive (ARIMA) Horizontal

[62] VM CPU Utilization

Proactive (deep learning

model that is based on the

canonical polyadic

decomposition)

Horizontal

[63] VM Workload
Proactive (reinforcement

learning)
Horizontal

[64] VM Number of Active Sessions
Proactive (moving

average)
Horizontal

[65] VM CPU Utilization

Proactive (time series

analysis-double exponential

smooting)

Horizontal

[19] VM Configuration Cost
Proactive (ARMA time

series analysis)
Horizontal

[66] VM Response Time
Proactive (machine

learning)
Horizontal

[45] VM CPU Utilization
Proactive (multiple time

series apporach)
Horizontal

[54] VM
Workload, Response Time ,

Number of Virtual Machines.

Proactive (Reinforcement

Learning)
Horizontal

[31] VM

Average. Response Time, Future

Arrival Rate, System Utilization

Rate, Capacity Available and Used

Reactive and Proactive

(autoregression) both
Horizontal

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

329

Paper

Reference

No.

Scope (VM/

Container / Both)
Metric

Mode (Reactive/

Proactive/ Both)

Policy

(Horizontal/

Vertical/

Both)

[7] VM
Response Time, Application

Throghput

Proactive (time series

ARMA model)
Horizontal

[55] VM Workload

Proactive Independent

Recurrent Neural Network

(IndRNN)

Horizontal

[70] VM CPU Utilization Proactive (RNN-LSTM) Horizontal

[18] VM
CPU,Memory Utilization ,

Response Time
Reactive (threshold based) Vertical

[12] VM Memory Utilization Reactive Vertical

[41] VM CPU, Memory, Disk Usage Reactive (CPU utilization)
Horizontal

and vertical

[36] Container
CPU Utilization Per Container and

PM,Response Time

Reactive(\% of cpu utilized

is a threshold)
Horizontal

[44] Container

Uses both Application (Response

time, Application Throughput) and

infrastructure (CPU, Memory)

level metrics

Reactive (multi-level

monitoring system)
Horizontal

[42] Container CPU Utilization
Reactive (CPU utilization

percentage as threshold)
Horizontal

[50] Container Resource Demand Proactive (ARIMA) Horizontal

[43] Container Number of Jobs in the Queue Reactive Horizontal

[8] Container
CPU Utilization , Memory

Utilization

Reactive (\% of cpu

utilization as threshold)
Vertical

[48] Container CPU Utilization , Response Time Proactive (ARIMA)
Horizontal

and Vertical

[38] VM and Container Response Time Using optimizaiton model Horizontal

[10] VM and Container CPU and Memory Utilization
Reactive (\% of CPU

utilization is threshold)
Vertical

5. Discussion And Future Directions

Difficulties in implementing general-purpose auto-scaler mechanism are related to

• Scaling Timing: when to take scaling decision is a very important question. The auto-scaler should answer that.

It is because different applications running inside a cloud computing environment have different workload patterns

and preferences for QoS.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

330

• Resource Estimation: to estimate resources (how many resources to provision or de-provision?) during the next

scaling action is a critical question. Over-provisioning can result in higher costs and improper resource utilization.

Under-provisioning can result in SLA Violations.

• Scaling Method: types of scaling methods are horizontal scaling and vertical scaling.it is also possible to use

both in a combination called diagonal scaling. selecting a particular method for managing resources is also an

important factor that must be considered during the scaling plan. According to the study of Elasticity as above.

we can list out possible future directions as below.

• For cloud elasticity prediction method/technique plays a vital role, so it is required to select the prediction

method/technique that provides the best prediction accuracy. To choose the best prediction method for a particular

application can be a potential future work.

• VM may fail at runtime. A cloud environment is subjected to such uncertainties. So, consideration of these

aspects can be a potential future work.

• Horizontal elasticity is discussed much, but Vertical elasticity is still not much explored. In vertical elasticity

also either CPU or Memory is considered as performance parameter but not both together. So, consideration of

CPU and Memory together can be a potential future work.

• Only considered homogeneous style of resources. Work can be extended by considering the mixture of on-

demand, reserved, and related resources.

• Major autoscaling work considered only SLA achievement, but the energy and carbon aware auto-scaling is still

needed to explore.

• Cloud container gained much popularity recently. A container can be placed on a physical machine or virtual

machine. No work is found that addresses the management of physical machines or virtual machines for a

container. Only the auto-scaling of a container or virtual machine is addressed.

• Hybrid elasticity (horizontal + vertical elasticity) is still not much explored.

• Major cloud service provider rent resources and charge on per hour basis. Work can be extended by introducing

the concept of smart kill (turn down the VM just before it completes the hour to lower the cost and use this extra

resource to address a sudden increase in workload).

6. Conclusion

Elasticity is the dynamic property of the cloud and is used for provisioning and de-provisioning cloud resources

to map between workload and cloud resources. In this paper, we classified elasticity with various aspects. elasticity

classification with respect to scope, mode, and policy is our major interest. From this review we also proposed

promising future directions that can be extended by the research community in the future.

References

[1] S. Chowhan, A. Kumar, and S. Shirwaikar, “Data Driven Resource Provisioning for Efficient Utilization

of Cloud Resources,” Int. J. Inf. Technol. Electr. Eng., vol. 8, no. 6, pp. 45–49, 2019.

[2] M. M. Khan, H. Ahmed, S. M. Pirzada, and A. Sajid, “Survey on Cloud Computing Services, Platforms

and Architecture,” Int. J. Inf. Technol. Electr. Eng., vol. 8, no. 2, pp. 17–21, 2019.

[3] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Efficient Virtual Machine Sizing for

Hosting Containers as a Service (SERVICES 2015),” in 2015 IEEE World Congress on Services, IEEE,

Jun. 2015, pp. 31–38. doi: 10.1109/SERVICES.2015.14.

[4] A. Mosallanejad, “A HIERARCHICAL SELF-HEALING SLA FOR CLOUD COMPUTING,” Int. J.

Digit. Inf. Wirel. Commun., vol. 4, no. 1, pp. 43–52, 2014, doi: 10.17781/P001082.

[5] N. Ma, A. Maghari, N. Sarkissian, and W. Clark Lambert, “Elasticity in Cloud Computing: What It Is,

and What It Is Not,” Skinmed, vol. 8, no. 6, pp. 361–362, 2010, [Online]. Available:

http://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-Elasticity.pdf

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

331

[6] C. Vazquez, R. Krishnan, and E. John, “Time series forecasting of cloud data center workloads for

dynamic resource provisioning,” J. Wirel. Mob. Networks, Ubiquitous Comput. Dependable Appl., vol. 6,

no. 3, pp. 87–110, 2015, doi: 10.22667/JOWUA.2015.09.31.087.

[7] L. Lu et al., “Application-driven dynamic vertical scaling of virtual machines in resource pools,” in 2014

IEEE Network Operations and Management Symposium (NOMS), IEEE, May 2014, pp. 1–9. doi:

10.1109/NOMS.2014.6838238.

[8] Y. Al-dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic Vertical Elasticity of Docker

Containers with ElasticDocker To cite this version : Autonomic Vertical Elasticity of Docker Containers

with ELASTICDOCKER,” Proc. 10th IEEE Int. Conf. Cloud Comput. IEEE CLOUD 2017, 2017.

[9] R. Bruno et al., “Dynamic vertical memory scalability for OpenJDK cloud applications,” in Proceedings

of the 2018 ACM SIGPLAN International Symposium on Memory Management - ISMM 2018, New York,

New York, USA: ACM Press, 2018, pp. 59–70. doi: 10.1145/3210563.3210567.

[10] Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle, “Coordinating vertical elasticity of both containers

and virtual machines,” in CLOSER 2018 - Proceedings of the 8th International Conference on Cloud

Computing and Services Science, 2018, pp. 322–329. doi: 10.5220/0006652403220329.

[11] S. Farokhi, P. Jamshidi, E. Bayuh Lakew, I. Brandic, and E. Elmroth, “A hybrid cloud controller for

vertical memory elasticity: A control-theoretic approach,” Futur. Gener. Comput. Syst., vol. 65, pp. 57–

72, Dec. 2016, doi: 10.1016/j.future.2016.05.028.

[12] G. Moltó, M. Caballer, and C. De Alfonso, “Automatic memory-based vertical elasticity and

oversubscription on cloud platforms,” Futur. Gener. Comput. Syst., vol. 56, no. October, pp. 1–10, Mar.

2016, doi: 10.1016/j.future.2015.10.002.

[13] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Koutsoukos, “Performance

Interference-Aware Vertical Elasticity for Cloud-Hosted Latency-Sensitive Applications,” in 2018 IEEE

11th International Conference on Cloud Computing (CLOUD), IEEE, Jul. 2018, pp. 82–89. doi:

10.1109/CLOUD.2018.00018.

[14] E. B. Lakew, A. V. Papadopoulos, M. Maggio, C. Klein, and E. Elmroth, “KPI-Agnostic Control for Fine-

Grained Vertical Elasticity,” in Proceedings - 2017 17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGRID 2017, IEEE, May 2017, pp. 589–598. doi:

10.1109/CCGRID.2017.71.

[15] A. P. Barzu, M. Carabas, and N. Tapus, “Scalability of a Web Server: How Does Vertical Scalability

Improve the Performance of a Server?,” in Proceedings - 2017 21st International Conference on Control

Systems and Computer, CSCS 2017, IEEE, May 2017, pp. 115–122. doi: 10.1109/CSCS.2017.22.

[16] C. Ruiz, H. A. Duran-Limon, and N. Parlavantzas, “An RLS Memory-based Mechanism for the Automatic

Adaptation of VMs on Cloud Environments,” in Proceedings of the 2017 Workshop on Adaptive Resource

Management and Scheduling for Cloud Computing - ARMS-CC ’17, New York, New York, USA: ACM

Press, 2017, pp. 17–23. doi: 10.1145/3110355.3110358.

[17] S. Farokhi, E. B. Lakew, C. Klein, I. Brandic, and E. Elmroth, “Coordinating CPU and Memory Elasticity

Controllers to Meet Service Response Time Constraints,” in 2015 International Conference on Cloud and

Autonomic Computing, IEEE, Sep. 2015, pp. 69–80. doi: 10.1109/ICCAC.2015.20.

[18] W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for Cloud Resources Provisioning Optimization,”

in Communications in Computer and Information Science, 2011, pp. 431–445. doi: 10.1007/978-3-642-

22709-7_43.

[19] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predictive models for

workload forecasting,” in Proceedings - 2011 IEEE 4th International Conference on Cloud Computing,

CLOUD 2011, 2011, pp. 500–507. doi: 10.1109/CLOUD.2011.42.

[20] D. Perez-Palacin, R. Mirandola, and R. Calinescu, “Synthesis of Adaptation Plans for Cloud Infrastructure

with Hybrid Cost Models,” in 2014 40th EUROMICRO Conference on Software Engineering and

Advanced Applications, IEEE, Aug. 2014, pp. 443–450. doi: 10.1109/SEAA.2014.57.

[21] S. K. Moghaddam, R. Buyya, and K. Ramamohanarao, “ACAS: An anomaly-based cause aware auto-

scaling framework for clouds,” J. Parallel Distrib. Comput., vol. 126, pp. 107–120, Apr. 2019, doi:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

332

10.1016/j.jpdc.2018.12.002.

[22] A. Naskos et al., “Dependable Horizontal Scaling Based on Probabilistic Model Checking,” in 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, IEEE, May 2015, pp. 31–

40. doi: 10.1109/CCGrid.2015.91.

[23] M. R. López and J. Spillner, “Towards Quantifiable Boundaries for Elastic Horizontal Scaling of

Microservices,” in Companion Proceedings of the10th International Conference on Utility and Cloud

Computing - UCC ’17 Companion, New York, New York, USA: ACM Press, 2017, pp. 35–40. doi:

10.1145/3147234.3148111.

[24] A.-F. Antonescu and T. Braun, “Simulation of SLA-based VM-scaling algorithms for cloud-distributed

applications,” Futur. Gener. Comput. Syst., vol. 54, pp. 260–273, Jan. 2016, doi:

10.1016/j.future.2015.01.015.

[25] A. Naskos, A. Gounaris, and P. Katsaros, “Cost-aware horizontal scaling of NoSQL databases using

probabilistic model checking,” Cluster Comput., vol. 20, no. 3, pp. 2687–2701, Sep. 2017, doi:

10.1007/s10586-017-0816-5.

[26] V. Podolskiy, A. Jindal, and M. Gerndt, “IaaS Reactive Autoscaling Performance Challenges,” in IEEE

International Conference on Cloud Computing, CLOUD, 2018, pp. 954–957. doi:

10.1109/CLOUD.2018.00144.

[27] S. Dipietro, R. Buyya, and G. Casale, “PAX: Partition-aware autoscaling for the Cassandra NoSQL

database,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, IEEE,

Apr. 2018, pp. 1–9. doi: 10.1109/NOMS.2018.8406271.

[28] Y. Hu, B. Deng, F. Peng, and D. Wang, “Workload prediction for cloud computing elasticity mechanism,”

in Proceedings of 2016 IEEE International Conference on Cloud Computing and Big Data Analysis,

ICCCBDA 2016, IEEE, Jul. 2016, pp. 244–249. doi: 10.1109/ICCCBDA.2016.7529565.

[29] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload Prediction Using ARIMA Model and

Its Impact on Cloud Applications’ QoS,” IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, Oct.

2015, doi: 10.1109/TCC.2014.2350475.

[30] A. Bauer, J. Grohmann, N. Herbst, and S. Kounev, “On the Value of Service Demand Estimation for

Auto-scaling,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), IEEE, 2018, pp. 142–156. doi: 10.1007/978-3-319-

74947-1_10.

[31] B. B. Bibal and D. Dharma, “HAS: Hybrid auto-scaler for resource scaling in cloud environment,” J.

Parallel Distrib. Comput., vol. 120, pp. 1–15, Oct. 2018, doi: 10.1016/j.jpdc.2018.04.016.

[32] M. S. Aslanpour, M. Ghobaei-Arani, and A. Nadjaran Toosi, “Auto-scaling web applications in clouds:

A cost-aware approach,” J. Netw. Comput. Appl., vol. 95, pp. 26–41, 2017, doi:

10.1016/j.jnca.2017.07.012.

[33] Y. Li and Y. Xia, “Auto-scaling web applications in hybrid cloud based on docker,” in Proceedings of

2016 5th International Conference on Computer Science and Network Technology, ICCSNT 2016, IEEE,

Dec. 2017, pp. 75–79. doi: 10.1109/ICCSNT.2016.8070122.

[34] B. Asgari, M. Ghobaei Arani, and S. Jabbehdari, “An Effiecient Approach for Resource Auto-Scaling in

Cloud Environments,” Int. J. Electr. Comput. Eng., vol. 6, no. 5, p. 2415, Oct. 2016, doi:

10.11591/ijece.v6i5.10639.

[35] M. Tighe and M. Bauer, “Integrating cloud application autoscaling with dynamic VM allocation,” in

IEEE/IFIP NOMS 2014 - IEEE/IFIP Network Operations and Management Symposium: Management in

a Software Defined World, 2014. doi: 10.1109/NOMS.2014.6838239.

[36] X. Tang and F. Zhang, “Quantifying Cloud Elasticity on Smart Devices with Container-based

Autoscaling,” Casalicchio, E. Clust. Comput, 2017.

[37] P. D. Kaur and I. Chana, “A resource elasticity framework for QoS-aware execution of cloud

applications,” Futur. Gener. Comput. Syst., vol. 37, pp. 14–25, Jul. 2014, doi:

10.1016/j.future.2014.02.018.

[38] A. Barros, D. Grigori, N. C. Narendra, and H. K. Dam, Service-oriented computing: 13th international

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

333

conference, ICSOC 2015 Goa, India, November 16-19, 2015 proceedings, vol. 9435, no. July 2017. in

Lecture Notes in Computer Science, vol. 9435. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. doi:

10.1007/978-3-662-48616-0.

[39] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,” in Proceeding of the 7th

International Conference on Autonomic Computing, ICAC ’10 and Co-located Workshops, New York,

New York, USA: ACM Press, 2010, pp. 1–10. doi: 10.1145/1809049.1809051.

[40] A. A. D. P. Souza and M. A. S. Netto, “Using Application Data for SLA-Aware Auto-scaling in Cloud

Environments,” in 2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, IEEE, Oct. 2015, pp. 252–255. doi:

10.1109/MASCOTS.2015.15.

[41] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load balancing for dynamic virtual machine

reconfiguration based on vertical and horizontal scaling,” IEEE Trans. Serv. Comput., vol. 12, no. 2, pp.

319–334, Mar. 2019, doi: 10.1109/TSC.2016.2634024.

[42] B. Xie, G. Sun, and G. Ma, “Prediction-based autoscaling for container-based PaaS system,” in

Proceedings - 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems,

I2CACIS 2017, IEEE, Oct. 2017, pp. 19–24. doi: 10.1109/I2CACIS.2017.8239026.

[43] O. Abu Oun and T. Kiss, “Job-queuing and auto-scaling in container-based cloud environments,” in

CEUR Workshop Proceedings, 2019.

[44] S. Taherizadeh and V. Stankovski, “Dynamic multi-level auto-scaling rules for containerized

applications,” Comput. J., vol. 62, no. 2, pp. 174–197, 2019, doi: 10.1093/comjnl/bxy043.

[45] A. Khan, Xifeng Yan, Shu Tao, and N. Anerousis, “Workload characterization and prediction in the cloud:

A multiple time series approach,” in 2012 IEEE Network Operations and Management Symposium, IEEE,

Apr. 2012, pp. 1287–1294. doi: 10.1109/NOMS.2012.6212065.

[46] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev, “Chameleon: A Hybrid, Proactive Auto-

Scaling Mechanism on a Level-Playing Field,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp.

800–813, Apr. 2019, doi: 10.1109/TPDS.2018.2870389.

[47] P. Singh, P. Gupta, and K. Jyoti, “TASM: technocrat ARIMA and SVR model for workload prediction of

web applications in cloud,” Cluster Comput., vol. 22, no. 2, pp. 619–633, Jun. 2019, doi: 10.1007/s10586-

018-2868-6.

[48] T. Ye, X. Guangtao, Q. Shiyou, and L. Minglu, “An Auto-Scaling Framework for Containerized Elastic

Applications,” in Proceedings - 2017 3rd International Conference on Big Data Computing and

Communications, BigCom 2017, IEEE, Aug. 2017, pp. 422–430. doi: 10.1109/BIGCOM.2017.40.

[49] Y. OGAWA, G. HASEGAWA, and M. MURATA, “Prediction-Based Cloud Bursting Approach and Its

Impact on Total Cost for Business-Critical Web Systems,” IEICE Trans. Commun., vol. E100.B, no. 11,

pp. 2007–2016, 2017, doi: 10.1587/transcom.2016NNP0006.

[50] Y. Meng, R. Rao, X. Zhang, and P. Hong, “CRUPA: A container resource utilization prediction algorithm

for auto-scaling based on time series analysis,” in 2016 International Conference on Progress in

Informatics and Computing (PIC), IEEE, Dec. 2016, pp. 468–472. doi: 10.1109/PIC.2016.7949546.

[51] D. Serrano et al., “Towards QoS-Oriented SLA Guarantees for Online Cloud Services,” in 2013 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, IEEE, May 2013, pp. 50–

57. doi: 10.1109/CCGrid.2013.66.

[52] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, “Enabling cost-aware and adaptive elasticity

of multi-tier cloud applications,” Futur. Gener. Comput. Syst., vol. 32, no. 1, pp. 82–98, Mar. 2014, doi:

10.1016/j.future.2012.05.018.

[53] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic Provisioning of Multi-tier Internet

Applications The Case for A New Provisioning Technique,” Second Int. Conf. Auton. Comput., pp. 217–

228, 2005.

[54] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A Comparison of Reinforcement Learning

Techniques for Fuzzy Cloud Auto-Scaling,” in 2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), IEEE, May 2017, pp. 64–73. doi:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 2 (2023)

__

334

10.1109/CCGRID.2017.15.

[55] J. F. Naomi and S. Roobini, “A Hybrid Auto scaling for Cloud applications using an Efficient Predictive

technique in Private Cloud,” Indian J. Sci. Technol., vol. 12, no. 8, pp. 1–7, Feb. 2019, doi:

10.17485/ijst/2019/v12i8/141807.

[56] A. Najjar, X. Serpaggi, C. Gravier, and O. Boissier, “Multi-agent Negotiation for User-centric Elasticity

Management in the Cloud,” in 2013 IEEE/ACM 6th International Conference on Utility and Cloud

Computing, IEEE, Dec. 2013, pp. 357–362. doi: 10.1109/UCC.2013.104.

[57] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with decommitment for dynamic

resource allocation in cloud computing,” Proc. Int. Jt. Conf. Auton. Agents Multiagent Syst. AAMAS, vol.

2, no. Aamas, pp. 981–988, 2010.

[58] M. Siebenhaar, T. A. B. Nguyen, U. Lampe, D. Schuller, and R. Steinmetz, “Concurrent Negotiations in

Cloud-Based Systems,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, pp. 17–31. doi: 10.1007/978-3-642-

28675-9_2.

[59] R. Buyya, “Intercloud: Scaling of applications across multiple cloud computing environments,” 10th Int.

Conf. Algorithms Archit. Parallel Process., pp. 13–31, 2010, [Online]. Available:

http://scholar.google.com.au/scholar?hl=en&q=intercloud+computing&as_sdt=0,5&as_ylo=2008&as_v

is=0#4

[60] K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and P. Riteau, “Infrastructure outsourcing in

multi-cloud environment,” in Proceedings of the 2012 workshop on Cloud services, federation, and the

8th open cirrus summit - FederatedClouds ’12, New York, New York, USA: ACM Press, 2012, p. 33.

doi: 10.1145/2378975.2378984.

[61] M. C. de Abranches and P. Solis, “A mechanism of auto elasticity based on response times for cloud

computer enviroments and autossimilar workload,” in 2016 XLII Latin American Computing Conference

(CLEI), IEEE, Oct. 2016, pp. 1–9. doi: 10.1109/CLEI.2016.7833403.

[62] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, “An Efficient Deep Learning Model to Predict Cloud

Workload for Industry Informatics,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3170–3178, Jul.

2018, doi: 10.1109/TII.2018.2808910.

[63] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient Auto-Scaling Approach in the Telco Cloud Using

Self-Learning Algorithm,” in 2015 IEEE Global Communications Conference (GLOBECOM), IEEE,

Dec. 2014, pp. 1–6. doi: 10.1109/GLOCOM.2014.7417181.

[64] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic Scaling of Web Applications in a

Virtualized Cloud Computing Environment,” in 2009 IEEE International Conference on e-Business

Engineering, IEEE, 2009, pp. 281–286. doi: 10.1109/ICEBE.2009.45.

[65] J. Huang, C. Li, and J. Yu, “Resource prediction based on double exponential smoothing in cloud

computing,” in 2012 2nd International Conference on Consumer Electronics, Communications and

Networks (CECNet), IEEE, Apr. 2012, pp. 2056–2060. doi: 10.1109/CECNet.2012.6201461.

[66] M. Wajahat, A. Gandhi, A. Karve, and A. Kochut, “Using machine learning for black-box autoscaling,”

in 2016 Seventh International Green and Sustainable Computing Conference (IGSC), IEEE, 2016, pp. 1–

8. doi: 10.1109/IGCC.2016.7892598.

