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Abstract: This research focuses on estimating the scale parameter for the Lindley distribution using various 

methods, including Maximum Likelihood, least squares, and Linear Quantile-Moment. These methods were 

employed to identify the most effective approach for estimating the distributional parameters. To determine the 

optimal parameter estimation approach, a comparison was conducted among these estimators based on the mean 

square error (MSE) criteria, which involved different simulation experiments. The results demonstrated the 

superiority of Maximum Likelihood estimation across all sample sizes. The best estimator was then utilized to 

study and analyze the waiting time for Zanko Bank/University of Duhok. 
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1. Introduction  

Time serves as a fundamental element for gaining a competitive advantage in organizations and institutions. 

However, it has been observed that these entities, including banks, often fail to fully recognize the significance 

of waiting time in enhancing task efficiency. At Zanko Bank / University of Duhok, customers' waiting times 

undergo two distinct stages within the bank's administrative operations. The initial stage encompasses the time 

customers spend completing the registration process for withdrawing checks accounts, while the second stage 

pertains to the time spent in front of the teller. This research aims to comprehensively describe and analyze the 

homogeneous waiting times within Zanko Bank / University of Duhok's administrative operations. 

It is crucial to note that the selection of applied probabilistic journals varies depending on the nature of the 

investigated systems, which can range from simple systems with single-distribution communities to complex 

and heterogeneous ones. Researchers encounter the challenge of choosing probability distributions that 

accurately correspond to the behavior of random variables within these systems, including generalized and 

mixed distributions. The Lindley distribution, initially proposed by Lindley in 1958 [Lindley, (1958)], belongs 

to the category of mixed distributions and has proven to be remarkably flexible in capturing the characteristics 

of systems composed of complex and heterogeneous populations. Consequently, it serves as a suitable choice 

for representing the diverse systems encountered. The theoretical aspect of this research involves comparing 

estimators such as the maximum likelihood method (MLE), the least squares method (LS), and the linear 

quantile moment method (LQM) in estimating the scaling parameter of the mixed Lindley distribution through 

various simulation experiments. Subsequently, the estimator yielding the lowest mean square error is selected 

and utilized. On the applied side, the study aims to describe and analyze the time spent by customers at Zanko 

Bank/University of Duhok. 
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This paper is structured as follows. In Section 2, the Lindley Distribution is examined. Section 3 explores 

Different Estimation Approaches for the Lindley distribution. Section 4 presents the Application of these 

techniques. Lastly, Section 5 provides a summary and conclusion. 

 

2. Methodology 

The probability density function (pdf) of one parameter Lindley distribution is given by[Bakouch et al, (2012), 

Ghitany et al, (2008)]: 

𝑓(𝑥;  𝜃) =
𝜃2 

(1 + θ)
(1 +  𝑥)𝑒−𝜃𝑥,  𝑥 > 0, 𝜃 > 0                                                       (1) 

Figure (1) shows the (pdf) of the Lindley Function with different values of parameters 𝜃 =

 0.5, 1, 1.5, 2, 2.5, 3.  

 

Figure (1): The (pdf) of the Lindley Function with different values of parameters θ. 

 

The cumulative density function (CDF) of one parameter Lindley distribution, corresponding to the pdf 

given in equation 

 𝐹(𝑥) = 1 −
1+𝜃+𝜃𝑥

1+𝜃
 𝑒−𝜃𝑥                                                                                        (2) 

Figure (2) shows the (CDF) of the Lindley Function with different parameters θ values.

 
Figure (2): shows the (CDF) of the Lindley Function with different values of parameters θ. 

 

This distribution is derived as a mixture of exponential (θ) and Gamma (2,θ) distribution. Hence the pdf 

takes the alternate form,  

             𝐺(𝑥) = 𝑝𝑓1(𝑥, 𝜃) + (1 − 𝑝)𝑓2(𝑥, 𝜃),                                                                  (3) 
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where 𝑓1(𝑥, 𝜃) = 𝜃𝑒−𝜃𝑥and f2(𝑥, θ) = θ2𝑥ℯ−θ𝑥 are the pdfs of exponential and gamma distributions 

respectively and 𝑝 =
𝜃

1+𝜃
  is the mixing proportion of distributions. 

2.1  Reversed Hazard Rate Function: 

The Reversed Hazard Rate Function (RHRF) [Ghitany, 2008] is defined as:  𝑅𝐻𝑅𝐹(𝑥, 𝜃) =
𝑓(𝑥,𝜃)

F(𝑥,𝜃)
,  

      RHRF(𝑥, 𝜃) =
𝜃2 

(1 + θ)
(1 +  𝑥)  𝑒−𝜃𝑥/(1 −

1+𝜃+𝜃𝑥

1+𝜃
 𝑒−𝜃𝑥).                                        (4) 

Figure (3) shows The value of the Lindley Reversed Hazard Rate Function with different parameters θ 

values. 

 

 
Figure (3): The value of the Lindley Reversed Hazard Rate Function with parameters θ. 

 

The survival analysis, can be represented as the complement of its cumulative distribution 

function[Belhamra et al,(2022), Safari et al,(2020)]. Figure 4 depicts the reliability function for various theta 

values, given by: 

𝑅(𝑥, 𝜃) = 1 − (1 −
1+𝜃+𝜃𝑥

1+𝜃
 𝑒−𝜃𝑥)                                                                           (5)  

 
Figure (4): the survival analysis (Reliability Function) of the Lindley Distribution. 

 

The Hazard Rate Function can be calculated as [Belhamra et al,(2022)]: 

ℎ(𝑥, 𝜃) =
𝑓(𝑥)

1−𝐹(𝑥)
=

𝜃2 

(1 + θ)
  (1 + 𝓍)  𝑒−𝜃𝑥

1−(1−
1+𝜃+𝜃𝑥

1+𝜃
 𝑒−𝜃𝑥)

                                                                        (6) 
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Figure (5) shows The value of the Lindley Reversed Hazard Rate Function with different parameters θ 

values 

 
Figure (5): Hazard Rate Function 

 

2.2 Mean Residual Life: 

The Mean Residual Life can be calculated as[Irshad, (2017)]: 

𝑀𝑅𝐿(𝑥, 𝜃) =
𝜃2  𝓍(1 + 𝓍)  𝑒−𝜃𝑥

(1+𝜃)2 (1−𝑒−𝜃𝑡)
 +  𝑡.                                                                           (7) 

Figure (6) shows the value of the Lindley Mean Residual Life with different parameters θ values 

 
Figure (6): Mean Residual Life 

2.3 Mean Inactivity Time: 

Mean Inactivity Time= ∫ 1 − 𝐹(𝑥 + 𝑡)𝑑𝑡
∞

0
,   

     MIT= ∫
1−𝑒−𝜃(𝑥+𝑡)−𝜃

(1+𝜃)(𝑥+𝑡)𝑒−𝜃(𝑥+𝑡)

∞

0
𝑑𝑡.                                                                                    (8) 

Figure (7) shows The value of the Lindley Mean Inactivity Time with parameters 𝜃 = 0.5 , 1, 1.5, 2, 2.5, 3. 
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Figure (7): Mean Inactivity Time 

 

2.4 Stress-Strength Reliability:  

The Stress-Strength Reliability (SSR) is calculated as follows [Abdi et al., 2019]: Let us consider X and Y as 

two distinct Lindley Random Variables (RVs) with individual parameters denoted as 𝜃1 and 𝜃2. These RVs have 

Probability Density Functions represented as 𝑓𝑋(·) and 𝑓𝑌 (·). It is crucial to emphasize that X and Y are 

independent of each other: 

𝑆𝑆𝑅 =  𝑃(𝑌 <  𝑋)  =  ∫ p(Y < X|Y = y)𝑓𝑌(y)dy 
∞

𝑠𝑡𝑟𝑒𝑠𝑠
                                         (9) 

The integral is performed over the range from stress to infinity, integrating the joint probability of stress 

exceeding strength for all possible strength values. Figure (8) shows the value of the Lindley Stress-Strength 

Reliability with different parameters θ values. 

 

 
Figure (8): Stress-Strength Reliability with parameters θ. 

 

3. Various Estimation Techniques 

3.1 Maximum Likelihood Estimator: 

This section describes the process of obtaining Maximum Likelihood Estimates (MLEs) for the unknown 

parameters of a Lindley distribution (θ). Let's consider a sample of size n from the Lindley distribution as 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛). The likelihood function, based on the observed data, can be expressed as follows[Ghitan,2008]: 

      𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) =
𝜃2𝑛

(1+𝜃)𝑛
∏ (1 + 𝑥𝑖)𝑒𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1𝑛

𝑖=1 ,                                                  (10) 
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by taking the logarithm for equation (10) we have  

     𝑙𝑛𝐿(𝜃, 𝑥1, 𝑥2, … , 𝑥𝑛) = 2𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛(1 + 𝜃) + 𝑙𝑛 ∏ (1 + 𝑥𝑖) −𝑛
𝑖=1 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1 ,         (11) 

partially differentiation equation (11 ) we have  

𝜕𝑙𝑛𝐿(𝜃,𝑥1,𝑥2,…,𝑥𝑛)

𝜕𝜃
=

2𝑛

𝜃
−

𝑛

(1+𝜃)
− ∑ 𝑥𝑖

𝑛
𝑖=1 =

2𝑛(𝜃+1)−𝑛𝜃−𝜃(𝜃+1) ∑ 𝑥𝑖
𝑛
𝑖=1

𝜃(𝜃+1)
,                             (12) 

hence equation (12) is equal to 0, then we obtain 

2(𝜃̂ + 1) − 𝜃̂ − 𝜃̂(𝜃̂ + 1)𝑥̅ = 0, 

⋮ 

𝑥̅𝜃̂2 + (𝑥̅ − 1)𝜃̂ − 2 = 0. 

And 

𝜃̂𝑀𝐿 =
−(1−𝑥̅)+√(𝑥̅−1)2+8𝑥̅

2𝑥̅
, 𝑥̅ > 0                                                                          (13) 

3.2 Least squares method 

Consider a random sample e 𝑋1, 𝑋2, ⋯ , 𝑋𝑛  drawn from the Lindley Distribution and 

let 𝑋(1), 𝑋(2), ⋯ , 𝑋(𝑛)  represent the corresponding ordered sample. In the context of estimating the parameters of 

the Lindley Distribution, the Least Squares (LS) method is employed. This method aims to minimize the sum of 

squared differences between the observed and predicted values. To achieve this, the derivative of the sum of 

squared differences with respect to the parameter is computed and equated to zero. The sum of squared 

differences is mathematically defined as follows[Hassan,2019]: 

𝑙(𝑥, 𝜃) = ∑ (𝐹(𝑥(𝑖)
𝑛
𝑖=1 ) −

𝑖

𝑛+1
)2 .                                                                          (14) 

To find the value of 𝜃 that minimizes the sum of squared differences we can formulate the equations as 

follows:  

𝜃̂ =argmin𝜃 ∑ [𝐹(𝑥(𝑖), 𝜃) −
𝑖

(𝑛+1)
]

2
𝑛
𝑖=1 .                                                                     (15) 

Where   

• 𝜃̂ is the estimated value of 𝜃. 

• 𝐹(𝑋(𝑖), 𝜃) is the distribution function with parameter 𝜃. 

• 𝑋(𝑖) is order sample.  

• 𝑛 is the sample size. 

The equations represents an optimization problem where we are searching for the value of  𝜃 that minimizes 

the sum of squared differences between  the observed quantiles 
𝑖

(𝑛+1)
 and the quantiles predicted by the 

distribution function 𝐹(𝑥, 𝜃). The argmin operation denotes the value of 𝜃  that achieves the minimum of the 

objective function. 

3.3 Linear Quantile Moment Method 

Obtaining the Quantile Function involves deriving it from the Cumulative Function (F(x)), as outlined as 

follows 

𝐹(𝑥) = 1 −
1+𝜃+𝜃𝑥

1+𝜃
 𝑒−𝜃𝑥.  

To find the value of x in terms of the CDF and θ, we'll rearrange the equation to isolate x: 

1 −  𝐹(𝑥) =
1 +  𝜃 +  𝜃𝑥

1 +  𝜃
∗  𝑒−𝜃𝑥. 

Now, multiply both sides by (1 + θ) to get rid of the denominator: 

(1 +  𝜃) ∗  (1 −  𝐹(𝑥)) =  (1 +  𝜃 +  𝜃𝑥) ∗  𝑒−𝜃𝑥. 

Expand both sides: 

1 −  𝐹(𝑥) +  𝜃 −  𝜃𝐹(𝑥) =  𝑒−𝜃𝑥 +  𝜃𝑒𝑒−𝜃𝑥  +  𝜃𝑥𝑒−𝜃𝑥. 

Combine like terms: 

𝜃 −  𝜃𝐹(𝑥) =  (1 +  𝜃 +  𝜃𝑥) ∗  𝑒−𝜃𝑥 . 

Now, isolate x on one side: 

𝜃 −  𝜃𝐹(𝑥) =  𝜃𝑒−𝜃𝑥 +  (1 +  𝜃)𝑒−𝜃𝑥. 
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Factor out 𝑒−𝜃𝑥 

𝜃 −  𝜃𝐹(𝑥) =  (𝜃 +  1) ∗  𝑒−𝜃𝑥 +  𝜃𝑥𝑒−𝜃𝑥. 

Subtract (θ + 1) * 𝑒−𝜃𝑥 from both sides: 

𝜃 −  𝜃𝐹(𝑥) − (𝜃 +  1) ∗  𝑒−𝜃𝑥 =  𝜃𝑥𝑒−𝜃𝑥. 

Divide both sides by θ: 1 −  𝐹(𝑥) −
𝜃 + 1

𝜃
∗  𝑒−𝜃𝑥 =  𝑥 ∗ 𝑒−𝜃𝑥 , 

now, 𝑥 =
1 − 𝐹(𝑥)−

𝜃 + 1

𝜃
∗ 𝑒−𝜃𝑥

𝑒−𝜃𝑥 . 

The equation mentioned above represents the Quantile function (Quantile function), which can be denoted 

in the following manner: 

 𝑄(𝐹) =
1 −  𝐹(𝑥) −

𝜃 +  1
𝜃

∗  𝑒−𝜃𝑥

𝑒−𝜃𝑥
, 

the Quantile moments of a random sample of size n:   𝑋1:𝑛 ≤  𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛. As follows 

𝜖𝑟̂ =
1

𝑟
∑ (−1)𝑘𝑟−1

𝑘=0 (
𝑟
𝑘

) 𝜏̂𝑝,𝑚(𝑋𝑟−𝑘:𝑟).                                                                         (16) 

Where 𝑋𝑟−𝑘:𝑟 represents the ordered sample values from 𝑋𝑟−𝑘 to 𝑋𝑟. 𝜏̂𝑝,𝑚(𝑋𝑟−𝑘:𝑟) is the quantile estimator 

defined as a weighted combination of quantile estimates:  

𝜏̂𝑝,𝑚(𝑋𝑟−𝑘:𝑟) = 𝑝𝑄̂𝑟−𝑘:𝑟(𝑚) + (1 − 2𝑝)𝑄̂𝑟−𝑘:𝑟 (
1

2
) + 𝑝𝑄̂𝑟−𝑘:𝑟(1 − 𝑚),                  (17) 

𝑝 is the quantile level typically set to 0.5 for median estimation, 𝑚 is a parameter that determines the fraction of 

the quantile level on each side typically set to 0.5 for symmetric estimation. And 𝑄̂𝑟−𝑘:𝑟(𝑢) is the quantile 

estimator obtained using the sample data.  

𝑄̂𝑟−𝑘:𝑟(𝑢) = ∑ [
1

𝑛
𝑘ℎ(∑ 𝑤𝑗,𝑛

𝑖
𝑗=1 − 𝑢)]𝑛

𝑖=1 𝑋𝑖,𝑛,                                                           (18) 

where 𝑘ℎ(𝑡) is the kernel function which is defined as the standard normal density function:  

𝑘ℎ(𝑡) =
1

√2𝜋
𝑒−

𝑡2

2 ,                                                                                                  (19) 

and 𝑤𝑗,𝑛 are the weights used in the quantile estimator defined as  

𝑤𝑗,𝑛 = {

1

2
(1 −

𝑛−2

√𝑛(𝑛−1)
) ,   𝑖𝑓 𝑖 = 1, 𝑛

1

√𝑛(𝑛−1)
,     𝑖𝑓 𝑖 = 1,2, … , 𝑛 − 1

                                                              (20) 

with the aim of deriving estimations through the LQM approach, equation 16 is employed, and the R 

programming language is utilized to determine the parameter. 

 

4. Application  

4.1 Simulation study: 

A simulation study will be conducted to compare the performance of three different estimators: the maximum 

likelihood estimators (MLEs), LQM estimators, and the least squares method estimators. The comparison will 

primarily focus on the estimates and mean squared errors (MSEs). The study will consider various sample sizes 

(25, 50, 75, 100, 150), utilize the R program, and explore different values for the theta parameters. To cover all 

possible combinations of sample size and shape parameter values, the experiment will be repeated 1000 times. 

The results, including the estimated parameters and MSEs for and, will be presented in Tables 1, 2, 3, 4, 5, and 

6. 
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Table 1: MSE of the parameter estimations and a comparison of the three methods of estimation at the 

sample sizes (25, 50, 100, 150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 0.5 

0.8705713 0.1373231 -7.94376 -3.50601 

LQM 0.3866515 0.4393473 80.90132 85.33907 

LS -0.049325 0.3017577 75.00254 76.22142 

MLE 

50 0.5 

0.7021932 0.04088208 1.677466 7.501512 

LQM 1.24793 0.5593987 184.1752 189.9992 

LS -0.026124 0.2768065 130.1272 132.0392 

MLE 

100 0.5 

0.751179 0.06309089 -15.8903 -8.68004 

LQM 1.187028 0.4720077 349.7226 56.9329 

LS -0.032666 0.2837332 280.0331 282.6383 

MLE 

150 0.5 

0.7810404 0.07898371 -27.6034 -19.5822 

LQM 1.162442 0.4388296 509.4133 517.4346 

LS -0.037883 0.289319 403.3566 406.3672 

 

In Table 1, the results indicate that the Maximum Likelihood Estimation (MLE) method consistently 

exhibits superior performance compared to the Least Squares (LS) and (LQM) methods in terms of Mean 

Squared Error (MSE). Across the various sample sizes and the initial value set, the MLE method consistently 

achieves smaller MSE values, suggesting that it provides more accurate parameter estimates. These findings 

support the notion that the MLE method is highly effective in capturing the underlying parameter values, thus 

making it a favorable choice for parameter estimation in this context. 

 

Table 2: MSE of the parameter estimations and a comparison of the three methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 1 

1.575181 0.3308332 45.85717 50.29492 

LQM 0.9603409 0.001572844 -35.7644 -31.3267 

LS -0.233721 1.52207 90.1945 91.41338 

MLE 

50 1 

1.273744 0.07493584 114.4008 120.2248 

LQM 1.075886 0.005758614 -42.4197 -36.5957 

LS -0.135957 1.290398 162.4002 164.3123 

MLE 

100 1 

1.361266 0.1305133 210.3338 217.5441 

LQM 1.006858 4.70332e-05 -111.836 -104.626 

LS -0.168178 1.364642 339.4725 342.0777 

MLE 

150 1 

1.414686 0.1719645 300.6415 308.6628 

LQM 0.9772737 0.000516483 -178.255 -170.233 

LS -0.190060 1.416244 498.7892 501.7998 

 

Tables 2 indicate that, considering the MSE values and the accuracy of parameter estimation, the LQM 

method appears to be the most favorable option among the three methods. 
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Table 3: MSE of the parameter estimations and a comparison of the three methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 1.5 

2.228961 0.5313839 25.48987 29.92762 

LQM 0.8031283 0.4856302 -59.6206 -55.18294 

LS -0.525521 4.102736 98.09339 99.31227 

MLE 

50 1.5 

1.800792 0.0904758 73.77994 79.60399 

LQM 0.9332349 0.3212227 -82.2565 -76.4325 

LS -0.317829 3.304503 179.6108 181.5228 

MLE 

100 1.5 

1.924846 0.1804942 129.2684 136.4787 

LQM 0.8610775 0.4082219 -197.285 -190.0754 

LS -0.392166 3.580293 371.181 373.7862 

MLE 

150 1.5 

2.000671 0.2506714 179.1448 187.166 

LQM 0.8294724 0.4496072 -311.190 -303.1695 

LS -0.439193 3.760473 548.6645 551.6751 

 

Table 4: MSE of the parameter estimations and a comparison of the three methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 2 

2.857448 0.7352175 11.07124 15.50899 

LQM 0.6817638 1.737747 -80.1915 -75.75379 

LS -0.899050 8.404492 103.2536 104.4725 

MLE 

50 2 

2.304725 0.0928573 44.9961 50.82014 

LQM 0.8159113 1.402066 -117.750 -111.9264 

LS -0.555618 6.531186 190.9856 192.8977 

MLE 

100 2 

2.464591 0.2158446 71.83609 79.04643 

LQM 0.7440355 1.577447 -272.657 -265.4476 

LS -0.683930 7.203482 392.1646 394.7698 

MLE 

150 2 

2.562419 0.316315 93.04789 101.0692 

LQM 0.7123558 1.658027 -427.700 -419.6791 

LS -0.762269 7.630135 581.2866 584.2973 
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Table 5: MSE of the parameter estimations and a comparison of the three methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 2.5 

3.470914 0.9426742 -0.10178 4.335973 

LQM 0.587565 3.657408 -98.0881 -93.65042 

LS -1.33747 14.72617 107.0101 108.229 

MLE 

50 2.5 

2.794521 0.0867424 22.67783 28.50187 

LQM 0.7195976 3.169833 -149.459 -143.6355 

LS -0.838620 11.14639 199.3129 201.225 

MLE 

100 2.5 

2.98989 0.2399921 27.30121 34.51155 

LQM 0.6500397 3.422353 -339.365 -332.1551 

LS -1.029808 12.45954 407.5564 410.1616 

MLE 

150 2.5 

3.109555 0.3715573 26.27797 34.29924 

LQM 0.6193887 3.536699 -530.26 -522.2388 

LS -1.144101 13.27947 605.0438 608.0544 

 

Table 6: MSE of the parameter estimations and a comparison of the three methods of estimation at the sample 

sizes (25,50,100,150) For the initial value set. 

methods 

 

Sample 

size 

 

value estimate Statistics 

𝜃 𝜃̂ MSE(𝜃̂) AIC BIC 

MLE 

25 3 

4.074537 1.154631 -9.22625 -4.788501 

LQM 0.513574 6.182314 -113.804 -109.3667 

LS -1.829306 23.3222 109.9269 111.1457 

MLE 

50 3 

3.274838 0.0755357 4.443963 10.26801 

LQM 0.6402976 5.568195 -177.931 -172.1077 

LS -1.159422 17.30079 205.7955 207.7076 

MLE 

100 3 

3.505572 0.255603 -9.08911 -1.878777 

LQM 0.5741024 5.884979 -398.757 -391.5473 

LS -1.420498 19.5408 419.5642 422.1694 

MLE 

150 3 

3.647004 0.4186145 -28.2847 -20.26344 

LQM 0.5450135 6.026959 -621.154 -613.1331 

LS -1.574407 20.9252 623.4893 626.4999 

 

Tables 3 through 6 indicate that considering the mean squared error (MSE) values and the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) statistics, the Maximum Likelihood 

Estimators (MLE) method seems to be the most appropriate option among the three methods, particularly when 

dealing with larger sample sizes. 

 

4.2 Real data 

This research applied theoretical principles to analyze the time spent by customers who hold current accounts 

with Zanko Bank/University of Duhok. The sample included 55 customers, and their time durations were 

recorded while completing the various steps involved in the bank withdrawal process. These steps include 
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providing information about the withdrawal process and subsequently receiving the amounts of the checks from 

the treasurer. Table 7 displays the waiting times of bank customers. 

 

Table 7: presents the duration of time that customers spend at the bank, measured in hours 

0.91666 0.2833 0.5833 0.25 0.2 0.4833 0.35 0.3833 

0.45 0.6833 0.81666 0.8166 0.25 0.4333 0.2833 0.4166 

0.7 0.1833 0.18333 0.31666 0.3666 0.3666 0.3500 0.8833 

0.6666 0.6666 1.26666 0.850 0.6333 0.5333 0.5833 0.3500 

0.4833 0.1166 0.53333 0.4000 0.3166 0.7833 0.2833 0.51666 

0.5500 0.1666 0.3000 0.28333 0.350 0.2166 0.3500 0.5333 

0.533 0.5000 0.2333 0.6000 0.1333 0.2333 0.1333  

 

Table 8: Presents the results of the Goodness-of-Fit tests conducted on the waiting time data. 

methods 

 

estimate Statistics 

𝜃̂ MSE(𝜃̂) AIC BIC Kolmogorov 

Smirnov 

p-value 

MLE 2.77693 0.0219635 22.66204 28.67671 

0.19477 0.07084 LQM 0.4739658 0.1801348 -171.742 -165.7279 

LS -1.616467 52.8247 145.6111 147.6184 

 

The test statistic (D) for the Kolmogorov-Smirnov test was 0.19477, with a p-value of 0.07084. The test's 

null hypothesis is that the data follows the Lindley distribution. We do not have enough evidence to reject the 

null hypothesis because the p-value (0.07084) is greater than the commonly used significance level of 0.05. As a 

result of this test. 

 

 
Figure (9): Reliability of time that customers spend at the bank, measured in hours 

 

5. Conclusion 

In conclusion, based on the simulation study and the analysis of real data, the Maximum Likelihood Estimation 

(MLE) method demonstrated superior performance in parameter estimation, particularly for larger sample sizes. 

Therefore, it can be considered the most appropriate and accurate method for capturing the underlying 

parameter values in this context. Researchers and practitioners can confidently use the MLE method to estimate 

parameters in similar situations. However, further investigations on different datasets and scenarios may be 

beneficial to validate the robustness and generalizability of these findings. 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 2 (2023) 

__________________________________________________________________________________ 

320 

Availability of Data: The datasets that support the paper’s results are included in the paper.  

 

Author Contributions: All authors contributed to and approved the final version of the work.  

 

Funding: There was no outside funding for this study.  

 

Conflicts of Interest: According to the writers, they have no conflicts of interest. 

 

 References 

[1] Abdi, M., Asgharzadeh, A., Bakouch, H.S. and Alipour, Z., 2019. A new compound gamma and Lindley 

distribution with application to failure data. Austrian Journal of Statistics, 48(3), pp.54-75. 

[2]  Bakouch, H.S., Al-Zahrani, B.M., Al-Shomrani, A.A., Marchi, V.A. and Louzada, F., 2012. An extended 

Lindley distribution. Journal of the Korean Statistical Society, 41, pp.75-85. 

[3] Belhamra, T., Zeghdoudi, H. and Raman, V., 2022. A NEW COMPOUND EXPONENTIAL-LINDLEY 

DISTRIBUTION: APPLICATION AND COMPARISON. Int. J. Agricult. Stat. Sci. Vol, 18(2), pp.755-766. 

[4] D.V. Lindley, Fiducial distributions and Bayes’ theorem, Journal of the Royal Statistical Society, Series B 

20 (1958) 102–107 

[5] Ghitany, M.E., Atieh, B. and Nadarajah, S., 2008. Lindley distribution and its application. Mathematics and 

computers in simulation, 78(4), pp.493-506. 

[6] Irshad, M.R., 2017. New extended generalized Lindley distribution: Properties and 

applications. Statistica, 77(1), pp.33-52. 

[7] Safari, M.A.M., Masseran, N. and Abdul Majid, M.H., 2020. Robust reliability estimation for Lindley 

distribution—A probability integral transform statistical approach. Mathematics, 8(9), p.1634. 

[8] Hassan, A.S., Elgarhy, M., Mohamd, R.E. and Alrajhi, S., 2019. On the alpha power transformed power 

Lindley distribution. Journal of Probability and Statistics, 2019. 

 

 


