
Tuijin Jishu/Journal of Propulsion Technology  

ISSN: 1001-4055  

Vol. 44 No. 4 (2023)  

____________________________________________________________________________________________ 

 

4532 
 

Power Quality Disturbances Classification 

Through Optimal Feature Selective Mechanism 

C. Krishna Reddy1*, Dr. B. Mangu2 

1Research Scholar, Dept., of Electrical Engineering, Osmania University, Hyderabad, India.  
2Professor, Dept., of Electrical Engineering, Osmania University, Hyderabad, India.  

Email: ckr.net@gmail.com  

Abstract: In the Detection and classification of Power Quality Disturbances, feature selection is 

very important because the more number of features causes more complexity and less number of 

feature impacts the accuracy. Hence, this paper proposed a new feature selection mechanism called 

as Flexible Mutual Information based Feature Selection (FMIFS) to represent the Power Quality 

Disturbances with an effective set of features. FMIFS computes the Mutual Redundancy between 

PQDs and removes redundant features between them. Once the optimal features are obtained for 

each PQD, then they are fed to Multi-class Support Vector Machine (MC-SVM) for classification. 

MC-SVM classifies each PQD based on the feature trained to the system. At experimental analysis, 

we applied our method on totally 11 types of PQDs for classification and the performance is 

measured through recall, precision, F1-score, and False Alarm Rate (FAR).  

Keywords: Power Quality Disturbances, Mutual Information, Mutual Redundancy, Support Vector 

Machine, F1-Score.  

 

I. INTRODUCTION 

In recent years, due to the rapid growth in the power electronic equipment components, solid 

state switching devices used in the public sectors and industrial sectors, an increased quality of power 

is demanded which makes the sensitive equipment more secure from typical power accidents. The 

quality of electrical supplies has gradually become an important issue for electric utilities and their 

customers. Since the occurrence of power quality disturbance results a great impact over the 

equipment, there is a need to design effective power disturbance detection mechanisms by which the 

safe and economical operations can be preserved more efficiently in the electric systems. Hence, the 

study and analysis of issues in the power systems is significantly more important for the improvement 

of power quality.  Particularly the exact detection and classification of power quality disturbances is a 

top priority in this direction and can also support power quality evaluation.  

Generally the problems associated with power quality are voltage sag/swell with and without 

harmonics, interruption, oscillatory transient, pure harmonics, and flicker etc. [1-3] Along with these 

problems, there exist some more problems, derived based on the deviations in the time, magnitude 

and frequency characteristics of electrical signals. To detect and classify the power quality 

disturbances, a complete knowledge about the characteristics of electrical signals is required. So many 

approaches are developed in earlier to analyze the in depth nature of different electrical signals such 

that the perfect discrimination between the power quality problems can be obtained. Based on the past 

studies, the detection and classification of power quality problems is carried out in three phases, (i) 

preprocessing, (ii) feature extraction and (iii) classification. Feature selection is always the key 

element among these processes as some essential features may be overlooked and some non-essential 

features may be inappropriately regarded. Any resulting combination of inappropriate attributes 

would add to the difficulty of classification when disturbance and noise exist simultaneously. In the 

feature extraction phase, extracting the optimal feature set is more important by which the 

classification accuracy increases significantly. But this feature extraction could not result in extra 

burden over the system. For this purpose, the obtained feature set needs to be optimal and also more 
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informative. Further selection of an appropriate classifier also constitutes a major concern in this PQD 

detection regard. 

Towards such aim, this paper proposes a new feature selection mechanism to represent each 

PQD signal with only few and optimal set of features. The proposed mechanism is called as Flexible 

Mutual Information based Feature Selection (FMIFS) which consider Mutual Redundancy (MR) 

between two PQDs to get the optimal features. The MR is evaluated based on the relation between on 

two aspects; they are (1) feature-to-feature relation and (2) Feature-to-Class relation. Once the optimal 

feature selection is completed, they are fed to Multi-class Support Vector Machine (MC-SVM) for 

classification. 

Rest of the paper is organized as follows; section II provides the details of related work. The 

complete details of proposed FMIFS and MC-SVM are explored in section III. The details of 

simulation experiments and results are explored in section IV and concluding remarks are provided in 

section V.     

II. RELATED WORK 

There are several sources of disturbances in any real-time system and it is unquestionably 

essential to detect and classify the disturbances automatically to improve the quality and reliability of 

power. Different approaches are proposed in earlier to achieve maximum detection accuracy in the 

power quality disturbances detection. Based on the objective aimed to achieve, the earlier developed 

approaches are categorized as feature extraction approaches and classification approaches.  

A. Feature Extraction approaches 

 In this category, the techniques extracts the feature form signals to understand the 

characteristics of different power quality problems. Different techniques such as wavelet transform 

(WT), short-time Fourier transform (STFT), Gabor–Winger transform, S-transform (ST) have been 

applied for detection and classification of PQ disturbances over the past years [4-10]. STFT [4] 

provides the information about time-frequency characteristics of a disturbance signals, however it has 

fixed window size which results in the not-efficient representation about the behavior of transient 

signals. Further the multi-resolution analysis (MRA) [5] and its derivatives are accomplished over the 

electrical signals to analyze the characteristics of power quality disturbances in the resolution level 

but it is observed that the performance is quite less in the case of noise affected signals. To overcome 

this drawbacks, some more techniques like WT [6], [14], S-Transform [7], [8], [13] Kalman filter [9] 

Gabor-Winger Transform [10], Hilbert Haung Transform (HHT) [11], and Parallel Computing [12] 

have been proposed for the detection of power quality disturbances in the noisy environments [15]. 

Wavelet Transform decomposes a the PQD signal into low frequency and high frequency bands 

through which the more detailed information about the signal disturbance can be revealed. But when 

the signals are buried under harmonica or noise, Wavelet based methods becomes unreliable. Further 

the main drawback with WT and its subsequent is the spectral leakage by which the performance of 

PQD detection system becomes degraded [20].  

Hilbert Haung Transform based on empirical mode decomposition is proposed in [16], [17] to 

analyze the power quality disturbances of the electrical signals by decomposing them into intrinsic 

mode functions (IMFs). Here the signal is decomposed into IMFs initially and then they are processed 

for analysis through Hilbert transform. However the HHT cannot reveal the frequency characteristics 

of the signal followed by resulting in an increased burden.  S-Transform is derivative of WT and 

inherits the STFT and WT since it is considered as the WT with phase correction or STFT with 

variable sized window.  Since the ST [18], [19] has an ability to analyze the signal even under noisy 

environments, there has been a wide usage is observed in the detection of Power quality disturbances. 

However, the high computational demand of ST constraints it’s application to real time applications. 

Though all these transform techniques can alleviate the characteristics of power quality problems 

effectively, considering all the feature results in an unnecessary computational complexity, which was 

not focused in earlier approaches.  

B. Classification Approaches 
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In this category, the main objective is to achieve maximum detection accuracy. Different 

techniques such as Artificial Neural Networks (ANN) [21-23], Fuzzy Logic (FL) [26], Decision Tree 

(DT) [28], K-nearest Neighbor (K-NN) [25], Support Vector Machine (SVM) [24], and AdaBoost 

[27] etc. have been applied for detection and classification of PQ disturbances over the past years. 

Kanirajan et. al., [21] proposed power quality disturbance detection technique by combining wavelet 

transform with radial basis function neural network (RBFNN). The obtained results are compared 

with generalized regressive neural network, feed forward neural network, learning vector quantization 

and probabilistic neural network techniques and it is shown that the accuracy is improved. Adaptive 

feature extraction technique that combines the EMD and Hilbert Spectral Analysis is combined with 

probabilistic neural network in [23] to detect the multiple power quality problems.  

Further the Moravej et.al., [24] proposed a PQ detection technique based on the support vector 

machine algorithm based on the inherent characteristics of signals. In [25], a new method is developed 

based on the K-nearest neighbor classifier by measuring the correlation to detect and classify the 

transmission line faults.  The noise immune S-transform is combined with fuzzy expert system in [26] 

for assigning a certainty factor for every classification rule thereby to improve the robustness of the 

PQ detection system in the presence of noise. Another approach for power quality detection is 

proposed by considering the rule-based S-Transform as a feature extraction and an Adaptive Boost 

(AdaBoost) as a classifier in [27]. By considering the advantages of ANN and decision tree, a hybrid 

power quality detection framework is proposed in [28]. This approach is applied on multiple PQ 

disturbances such as harmonics with swell, sag, interruption and flicker. However all these 

approaches have their own advantages and disadvantages like some methods are robust for only some 

power quality problems. For example, the decision tree algorithm achieves better classification 

accuracy in the case of normal power quality problems but won’t work on the harmonics based power 

quality problems. Similarly the convergence time of neural network related approaches is observed to 

be high 

III. PROPOSED APPROACH 

The complete methodology of the developed system is executed in two stages; one is training 

stage and second is testing stage. The system model is shown in Figure.1.  

 
Figure.1 Block diagram of FEFS with MC-SVM based PQD detection  

In the training phase, the system is trained with several PQDs such that it can acquire a plenty 

of knowledge about their characteristics and also can acquire the discrimination capability. In the 

testing phase, the trained system is subjected to testing process to assess the detection performance. 

According to figure.4.1, initially, for a given input PQD signal, FMIFS is applied to extract the 
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entropy features and then fed to SVM classifier for classification. SVM is a binary classifier and at a 

time, it can classify only two classes, but our work needs more than two classes. Hence this work 

accomplished SVM at multiple phases, called as Multi-Class SVM (MC-SVM). At every phase, two 

classes are detected by SVM classifier. For example, the first mode SVM classifies the input PQD 

signal into two classes such as normal class and disturbance class. If the signal is classified as 

disturbance, then it is again fed to second mode SVM. Finally for the classified results, the 

performance is evaluated with the help of several metrics such as FAR, and Accuracy. 

 3.1. Feature Selection  

Feature Selection has a great importance in the system developed for the PQDs detection. The 

main intention of a FS is to select an optimal and significant set of features from input PQD thereby 

the detection system can achieve a better classification results with less computational burden. The 

feature selection mechanism select only a small set of features from entire signal which results is a 

reduced feature recount, resulting in a less computational burden. Moreover, the small set of features 

are more informative and can also provide a discriminative knowledge to the detection system such 

that the system can classify the PQD signals more effectively, results in an increased accuracy. The 

feature extraction is accomplished at pre-processing phase. To perform this, a simple study and 

analysis is required about the characteristics of every PQD signal because, in real time there are so 

many kinds of PQDs. Purely, the FS mechanism is well-defined as an approach that converts the input 

PQD from one domain to another domain.     

A. Mutual Information based Feature selection (MIFS) 

In this contribution, the FS is accomplished through MI. There are so many methods like 

Euclidean Distance, MI, Distance Distribution Law and Correlation etc., to find the spatial 

relationships between the signals. Among those methods, MI has a promising solution in which it can 

measure the dependency estimation of a variable. Moreover, the MI is more proficient in the 

discovery of linear as well as non-linear dependencies between different aspects of signals. Hence, in 

this work we have chosen MI for FS process. MI derives the Mutual Relationship between two 

independent/dependent variables. For a given two statistical variables, a larger value of MI denotes a 

higher mutual dependency and lower value denotes mutual independency or lower mutual 

dependency between the variables.  

Consider two PQDs A and B as 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛}, where n 

denotes the total samples count in both the signals A and B, the MI between A and B is measured as   

         𝑀𝐼(𝐴; 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵)                  (1) 

Where 𝐻(𝐴) is the entropy of signal A, 𝐻(𝐵) is the entropy of signal B and 𝐻(𝐴, 𝐵) is the joint 

entropy. Mathematically the entropy and joint entropy are measured as; 

𝐻(𝐴) = ∑ 𝑝(𝑎𝑖)  log(𝑝(𝑎𝑖))𝑛
𝑖=1                             (2) 

And  

𝐻(𝐵) = ∑ 𝑝(𝑏𝑖)  log(𝑝(𝑏𝑖))𝑛
𝑖=1                             (3) 

And  

𝐻(𝐴, 𝐵) = ∑ ∑ 𝑝(𝑎𝑖, 𝑏𝑗)  log (𝑝(𝑎𝑖 , 𝑏𝑗))𝑛
𝑗=1

𝑛
𝑖=1            (4)   

A simple representation to measure the MI between two variables A and B can be shown as         

𝑀𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎𝑖 , 𝑏𝑗)  log (
𝑝(𝑎𝑖,𝑏𝑗)

𝑝(𝑎𝑖)𝑝(𝑏𝑗)
)𝑛

𝑗=1
𝑛
𝑖=1       (5)      

Where 𝑝(𝑎𝑖) and 𝑝(𝑏𝑗) are the marginal density functions of signal A and B respectively, and  

𝑝(𝑎𝑖 , 𝑏𝑗) is the joint probability density function. 

In the FS process, the features are considered as either relevant or redundant. If any feature 

contributes information about class C, then it is treated as relevant to class C otherwise it is treated as 
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redundant. For a give feature 𝑓𝑖  and class C, the relevancy or redundancy is measured through 

𝑀𝐼(𝐶; 𝑓𝑖). In this environment, if we noticed larger values of MI, then the features can be considered 

as more powerful and contributes more information towards the class. On the other side, if we have 

noticed that the 𝑀𝐼(𝐶; 𝑓𝑖) is zero, then the class C is considered to be independent with feature 𝑓𝑖, 

thereby the feature 𝑓𝑖 is redundant and removed from the feature set.  

 

B. FMIFS 

In the algorithm 1, step 4, the factor 𝛽 signifies the importance of relative MI between the 

features which are already chosen as relevant to class C and the candidate feature. In this scenario the 

variations of  𝛽 are conveyed through two values. If 𝛽 = 0, the feature selection process considers 

only the mutual information with output class. If 𝛽 = 0 ( 𝛽 > 0), the FS measure eliminates 

particular quantity of data relative to the MI with respect to the features which are already selected. 

However, assigning an appropriate value for  𝛽 is a complex and tedious task in the detection and 

classification of PQDs. To overcome this problem, this work proposes a modified version of MIFS 

called as FMIFS. This new way of feature selection is a simple extension to the earlier entropy based 

feature selection and modifies the process at step 4 in algorithm 1. In the new approach, the feature 

selection process considers the minimum redundancy between the features and the selection process at 

step 4 is replaced by the equation (6).  

𝐺𝑀𝐼 = argmax
𝑓𝑖∈𝐹

(𝑀𝐼(𝐶; 𝑓𝑖) −
1

|𝑠|
∑ 𝑀𝑅𝑓𝑠∈𝑆 )    (6)         

In the above equation, the new feature selection process considers the minimum redundancy (MR) 

instead of MI between the features and class. A feature which has maximum MI with class and also 

has average minimum redundancy is only selected. The MR is obtained as; 

𝑀𝑅 =
𝑀𝐼(𝑓𝑖;𝑓𝑠)

𝑀𝐼(𝐶; 𝑓𝑖)
                                                    (7) 

Where 𝑓𝑖 ∈ 𝐹 and 𝑓𝑠 ∈ 𝑆. In the above equation, 𝑀𝐼(𝐶; 𝑓𝑖) denotes the MI between class C and 

feature f, reveals the significance of feature f with respect to class C.  Next, the term 𝑀𝐼(𝑓𝑖; 𝑓𝑠) reveals 

the MI between already selected feature 𝑓𝑠 and feature 𝑓𝑖, reveals the redundancy. If 𝑀𝐼(𝐶; 𝑓𝑖) = 0, 𝑓𝑖 

is eliminated without the computation of  𝐺𝑀𝐼. If 𝑓𝑖 and 𝑓𝑠 found to have a high relative dependency 

between then with respect to 𝑀𝐼(𝐶; 𝑓𝑖), 𝑓𝑖 gives to the redundancy. Moreover, to decrease the total 

feature count, a numerical threshold is applied over the 𝐺𝑀𝐼 in equation (3.6), and the obtained 𝐺𝑀𝐼 

has following two cases;   

Case 1: 𝐺𝑀𝐼 = 0. In this case, the candidate feature 𝑓𝑖 has no contribution towards class C, thus 𝑓𝑖 is 

eliminated from the feature subset. 

 Case 1: 𝐺𝑀𝐼 ≠ 0. In this case, the candidate feature 𝑓𝑖 has some contribution towards class C, thus 𝑓𝑖 

is added to the feature subset. 

In this way, the size of feature set is decreased such that the final feature subset consists of 

only optimal features and they are trained with reduced computational complexity and CT.  
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Figure.2 Example representation of FMIFS based feature extraction 

As shown in the above Figure.2, the PQD signals are elapsed with 0.4 sec and they have 

approximately 4001 samples (noticed during the simulation). Among the 4001 samples, maximum 

sample convey same information and only few samples convey discriminative information.  We have 

to find those samples only such that the computational burden over the detection and classification 

system will reduce. Here the main responsibility of FMIFS to fetch that features only.  Based on the 

obtained feature subset S, the more discriminative sample samples are only extracted form PQD 

signal.  From the above figure, we notice that the FMIFS extracts the discriminative Samples and also 

removes the unnecessary redundant samples.  In this work, the FMIFS is applied at both training and 

testing phases. In the case of testing the discrimination is ensured by finding the mutual entropies 

between two different PQD signals at a time. In the case of testing, the discrimination is ensured 

through the mutual redundancy between different samples of same PQD signal.  

 

IV. SIMULATION EXPERIMENTS  

This section demonstrates the simulation test details. Initially, the simulation set up 

formulated to conduct tests is discussed. Next, the details of performance metrics accomplished for 

simulation are explored. And then the results obtained after the simulation are discussed. Finally the 

comparative analysis conducted between the proposed model and tradition models is explored to show 

the effectiveness.  

4.1. Simulation setup 

To simulate the proposed FMIFS + MC-SVM model, we have used MATLAB software. 

Initially the PQDs are generated conferring to the mathematical representations depicted Table.2.1. 

For every class of PQD, number of signals is generated by varying the control parameters. For 

example, the control parameters for swell signal is 𝛼. For a given range constraints of 𝛼, it was varied 

𝛼 = 0.1,0.2,0.3, … ,0.8. Further the range constraint of time (T) is 0.4 to 3.6. With an increment of T = 

0.1, the total number of possible values can be generated is 33 and for every T values, 𝛼 is varied. 

Based on these observations, the total number of possible swell signals can be generated are 

33×8=264. Similarly, for every PQD class, number of signals is generated and the signals generated 

for every class. All these signals are generated by varying their respective control parameters. These 

signals are divided into two groups, training set and testing set. The total number of signals divided as 

training and testing signals are represented in Table.1. 

Table 4.1 Training and testing set considered for simulation 

PQD Class Label Total signals Training Set Test Set 

Normal C1 10 7 3 
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Swell C2 264 185 79 

Sag C3 297 208 89 

Flicker C4 32 22 10 

Interruption C5 66 46 20 

Oscillatory transient C6 288 202 86 

Harmonics C7 27 19 8 

Notch C8 144 101 43 

Spike C9 144 101 43 

Swell with harmonics C10 216 159 57 

Sag with Harmonics C11 241 175 66 

Total 1729 1225 504 

 

The entire set of 1729 signals is grouped into two groups namely training and testing. Among the total 

1729, 1225 are grouped as training and the remaining 504 are grouped as testing. Under this 

simulation, we consider two complex PQDs as additional classes; hence the total classes count has 

become 11, total signals generated has become 1729, total signals used  for training are 1225 and total 

signals used for testing are 504.  

4.2. Results 

Under the simulation, the proposed approach is simulated for two cases, one is under normal 

case and other is noisy case. For both cases, the proposed detection system is subjected to the testing 

with same number of testing signals and the performance is measured individually. In both cases, 

initially, the detection system is trained with 1225 PQD signals and then tested with 504 signals. In 

both training phases, initially the PQD signals are subjected to feature selection through FMIMFS. 

Next, the obtained features are trained in training phase and in the testing phase they are fed to MC-

SVM classifier.  

a. Case 1: Normal  

Under this simulation, the proposed detection system is processed directly with raw signals. 

After testing, the classified results are formulated into a confusion matrix, as shown in Table.2. Based 

on the values shown in the confusion matrix, the performance metrics are evaluated and they are 

formulated in the Table.3. 

Table.2 Classification result of testing signals (Confusion matrix) 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Total 

C1 3 0 0 0 0 0 0 0 0 0 0 3 

C2 0 76 0 0 0 0 1 0 0 2 0 79 

C3 0 0 87 0 0 0 1 0 0 0 1 89 

C4 0 0 0 7 0 1 0 1 1 0 0 10 

C5 0 1 1 0 17 0 0 0 0 1 0 20 

C6 1 0 0 1 0 82 0 0 1 1 0 86 

C7 0 1 0 0 0 0 7 0 0 0 0 8 

C8 0 1 0 1 0 0 0 40 1 0 0 43 

C9 0 0 1 0 0 1 0 1 39 0 1 43 

C10 0 2 0 0 0 0 2 0 0 53 0 57 

C11 0 0 2 0 0 0 0 1 1 0 62 66 

Total 4 81 91 9 17 84 11 43 43 57 64 504 

 

Table.3 Performance evaluation metrics under normal simulation 

Class Recall (%) Precision (%)  F1-Score (%) FAR (%) 

C1 100.00 75.0000 85.7100 25.0000 
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C2 96.2000 93.8300 95.0000 6.1700 

C3 97.7500 95.6000 96.6700 4.4000 

C4 70.0000 77.7800 73.6800 22.2200 

C5 85.0000 100.00 91.8900 0000 

C6 95.3500 97.6200 96.4700 2.3800 

C7 87.5000 63.6400 73.6800 36.3600 

C8 93.0200 93.0200 93.0200 6.6900 

C9 90.7000 90.7000 90.7000 9.3000 

C10 92.9800 92.9800 92.9800 7.0200 

C11 93.9400 96.8800 95.3800 3.1300 

 

The performance metrics shown in table 4.3 are measured based on the confusion matrix 

shown in table.2. In this chapter, along with nine basic PQDs two more PQDs are added at simulation 

and the performance metrics are measured. The extra added two more PQDs are Swell with 

Harmonics (C10) and Sag with Harmonics (C11). From the table.3, it can be observed that the 

maximum recall rate is achieved for Class 1 (Normal – 100%) and minimum is for Class 4 (Flicker - 

70%). Next, the maximum precision is observed for Class 5 (Interruption - 100%) and minimum is for 

Class 7 (Harmonics – 63.6400%). Further, the maximum F1-Score is observed for two classes namely 

Class 4 (Sag - 96.6700%) and minimum is for two classes Class 4 (Interruption – 73.68%) and class 7 

(Harmonics – 73.68%). Finally, the maximum FAR is observed for Class 1 (Harmonics - 36.36%) and 

minimum is observed for Class 5 (Interruption – 0%).   

B. Case 2: Noisy  

Under this simulation, the proposed detection system is processed directly with Noisy input 

Signals. After testing, the classified results are formulated into a confusion matrix, as shown in 

table.4. Based on the values mentioned in the confusion matrix, the performance metrics are evaluated 

and they are formulated in the table.5. 

Table.4 Classification result of testing signals (Confusion matrix)  

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Total 

C1 3 0 0 0 0 0 0 0 0 0 0 3 

C2 0 74 1 0 1 0 1 0 0 2 0 79 

C3 0 0 85 0 0 0 2 0 0 0 2 89 

C4 0 0 0 6 0 2 0 1 1 0 0 10 

C5 0 2 1 1 15 0 0 0 0 1 0 20 

C6 1 0 0 2 0 81 0 0 1 1 0 86 

C7 0 1 0 0 0 0 6 0 0 0 1 8 

C8 0 1 0 1 0 0 0 39 2 0 0 43 

C9 0 0 1 0 1 1 0 2 37 0 1 43 

C10 0 3 0 0 0 0 2 0 0 50 2 57 

C11 0 2 1 0 0 0 0 1 1 1 60 66 

Total 4 83 89 10 17 84 11 43 42 55 66 504 

 

Table.5 Performance evaluation metrics under normal simulation 

Class Recall (%) Precision (%)  F1-Score (%) FAR 

C1 100.00 75.0000 85.7100 25.0000 

C2 96.2000 93.8300 95.0000 6.1700 

C3 97.7500 95.6000 96.6700 4.4400 

C4 70.0000 77.7800 73.6800 22.2200 

C5 85.0000 100.00 91.8900 0000 

C6 95.3500 97.6200 96.4700 2.3800 

C7 87.5000 63.6400 73.6800 36.3600 
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C8 93.0200 93.0200 93.0200 6.9800 

C9 90.7000 90.7000 90.7000 9.3000 

C10 92.9800 92.9800 92.9800 7.0200 

C11 93.9400 96.8800 95.3800 3.1300 

 

The performance metrics shown in table.5 are measured based on the confusion matrix shown in 

table.4. In this chapter, along with nine basic PQDs two more PQDs are added at simulation and the 

performance metrics are measured. The extra added two more PQDs are Swell with Harmonics (C10) 

and Sag with harmonics (C11). From the table 4.5, it can be observed that the maximum recall rate is 

achieved for Class 1 (Normal – 100%) and minimum is for Class 4 (Flicker – 70.0000%). Next, the 

maximum precision is observed for Class 5 (Interruption - 100%) and minimum is for Class 7 

(Harmonics – 63.6400%). Next, the maximum F1-Score is observed for Class 3 (Sag - 96.6700%) and 

minimum is for Class 7 (Harmonics – 73.6800%).   Finally, the maximum FAR is observed for Class 

7 (Harmonics – 36.36%) and minimum FAR is observed for Class 6 (Interruption – 0%).   

V. CONCLUSION 

This paper majorly focused on the removal of redundant features from PQD signal which 

creates a he computational burden on the classification system. Towards such prospect, FMIFS is 

proposed which computes the redundancy between PQDs based on the mutual redundancy between 

them. Since the occurrence of disturbance lays only a few instances, the remaining features are 

considered as redundant and they are discarded through FMIFS. Once the optimal features are derived 

for each PQD, they are subjected to MC-SVM for classification. Experimental analysis through 11 

types of PQDs proves the superiority of proposed approach.  
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