ξ -Semi-Continuous Maps on ξ -topological spaces

^[1]Arvind Kumar Sharma, ^[2]Mudassir Ahmad, ^[3]Mohammad Javed Alam, ^[4]Nazir Ahmad Ahengar, ^[5]Sanjay Bhajanker

[1][4]Department of Mathematics, School of Engineering, Pimpri Chinchwad University, Pune-412106, India

^[2]Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University Punjab-144411, India

[3]Department of Mathematics, School of Engineering, Presidency University Bangaluru-560064, India

^[5]Department of Physics, Govt. Agrasen College Bilha, Bilaspur, C.G. – 495224 India

Email: [1]arvind02bhanu@gmail.com, [2]mdabstract85@gmail.com, [3]mohd.javedalam@presidencyuniversity.in, [4]nzrhmd97@gmail.com, [5]sanjaybhajanker@hotmail.com

Abstract. In this paper the concepts of ξ -semi-continuous maps in ξ -topological spaces are introduced and all the possible relationships of these maps have been discussed and established by making the use of some counter examples.

Keywords: ξ -continuous maps, ξ -semi-continuous maps, totally ξ -continuous maps, strongly

1. Introduction

Continuity is most important concept in Mathematics and many different generalized forms of continuity have been studied and investigated. Levine [15] introduced weakly continuous functions and established some new results. Further, Son et al. [22] introduced weakly clopen and almost clopen functions. These authors [22] investigate that almost clopen functions are the generalized forms of perfectly continuous functions, regular set-connected functions and clopen functions. Chen et al. [6] demonstrated the dynamics on binary relations over topological spaces. The authors Arya,S. P., Gupta,R Anuradha, Baby Chacko and Singh D [2-3,21] introduced the concept of strongly continuous functions and almost perfectly continuous functions in topological spaces and established the various significant results. Benchalli S.S and Umadevi I Neeli Nour T.M [4, 20] studied the concept of totally semi-continuous functions and semi-totally continuous functions in topological spaces and verify the certain properties of the concept.

Nithyanantha and Thangavelu [19] introduced the concept of binary topology between two sets and investigate some of the basic properties, where a binary topology from X to Y is a binary structure satisfying certain axioms that are analogous to the axioms of topology. Jamal M. Mustafa [13] studied binary generalized topological spaces and investigate the various relationships of the maps so discussed with some other maps.

In this paper we study the concepts of generalized binary semi-continuous maps (ξ -semi-continuous maps), totally generalized binary continuous maps (totally ξ -continuous maps), totally generalized binary semi-continuous maps (totally ξ -semi-continuous maps), strongly generalized binary continuous maps (strongly ξ -continuous maps), strongly generalized binary semi-continuous maps (strongly ξ -semi-continuous maps) in generalized binary topological spaces (ξ -topological spaces).

The concepts of ξ -topological space ($\xi_T S$) have been discussed in section 2. In section 3, the concept of ξ -semi-continuous maps, totally ξ -continuous maps, totally ξ -semi-continuous maps, strongly ξ -continuous maps and strongly ξ -semi-continuous maps in ξ -topological spaces have been introduced and established the relationships. Throughout the paper $\mathcal{D}(\Upsilon)$ denotes the power set of Υ .

Vol. 44 No. 4 (2023)

2. Preliminaries

Definition 2.1: Let Y_1 and Y_2 be any two non-void sets. Then ξ -topology (ξ_T) from Y_1 to Y_2 is a binary structure $\xi \subseteq \mathscr{D}(Y_1) \times \mathscr{D}(Y_2)$ satisfying the conditions i.e. (\emptyset, \emptyset) , $(Y_1, Y_2) \in \xi$ and If $\{(L_\alpha, M_\alpha); \alpha \in \Gamma\}$ is a family of elements of ξ , then $(\bigcup_{\alpha \in \Gamma} L_\alpha, \bigcup_{\alpha \in \Gamma} M_\alpha) \in \xi$. If ξ is ξ_T from Y_1 to Y_2 , then (Y_1, Y_2, ξ) is called a ξ -topological space $(\xi_T S)$ and the elements of ξ are called the ξ -open subsets of (Y_1, Y_2, ξ) . The elements of $Y_1 \times Y_2$ are called simply ξ -points.

Definition 2.2: Let Y_1 and Y_2 be any two non-void set and (L_1, M_1) , (L_2, M_2) be the elements of $\mathcal{D}(Y_1) \times \mathcal{D}(Y_2)$. Then $(L_1, M_1) \subseteq (L_2, M_2)$ only if $L_1 \subseteq L_2$ and $M_1 \subseteq M_2$.

Remark 2.1: Let $\{T_{\alpha} : \alpha \in \Lambda\}$ be the family of ξ_T from Υ_1 to Υ_2 . Then, $\bigcap_{\alpha \in \Lambda} T_{\alpha}$ is also ξ_T from Υ_1 to Υ_2 . Further $\bigcup_{\alpha \in \Lambda} T_{\alpha}$ need not be ξ_T .

Definition 2.3: Let (Y_1, Y_2, ξ) be a $\xi_T S$ and $L \subseteq Y_1, M \subseteq Y_2$. Then (L, M) is called ξ -closed in (Y_1, Y_2, ξ) if $(Y_1 \setminus L, Y_2 \setminus M) \in \xi$.

Proposition 2.1: Let (Y_1, Y_2, ξ) is $\xi_T S$. Then (Y_1, Y_2) and (\emptyset, \emptyset) are ξ -closed sets. Similarly if $\{(L_\alpha, M_\alpha) : \alpha \in \Gamma\}$ is a family of ξ -closed sets, then $(\bigcap_{\alpha \in \Gamma} L_\alpha, \bigcap_{\alpha \in \Gamma} M_\alpha)$ is ξ -closed.

Definition 2.4: Let(Y_1, Y_2, ξ) is $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{1^*}_{\xi} = \bigcap \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{2^*}_{\xi} = \bigcap \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{1^*}_{\xi}$, $(L, M)^{2^*}_{\xi}$ is ξ -closed set and $(L, M) \subseteq (L, M)^{1^*}_{\xi}$, $(L, M)^{2^*}_{\xi}$. The ordered pair $(L, M)^{1^*}_{\xi}$, $(L, M)^{2^*}_{\xi}$ is called ξ -closure of (L, M) and is denoted (L, M) in (L, M) where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.2: Let(L, M) \subseteq (Y_1, Y_2). Then (L, M) is ξ -open in (Y_1, Y_2, ξ) iff (L, M) = I_{ξ} (L, M) and (L, M) is ξ -closed in (Y_1, Y_2, ξ) iff (L, M) = Cl_{ξ} (L, M).

 $\begin{array}{l} \textbf{Proposition 2.3:} \ \, \text{Let} \, \, (L,M) \subseteq (N,P) \subseteq (\Upsilon_1,\Upsilon_2) \, \, \text{and} \, \, (\Upsilon_1,\Upsilon_2,\xi) \, \, \text{is} \, \, \xi_T S. \, \, \text{Then} \, \, \text{Cl}_{\xi}(\emptyset,\emptyset) = (\emptyset,\emptyset), \, \, \text{Cl}_{\xi}(\Upsilon_1,\Upsilon_2) = (\Upsilon_1,\Upsilon_2) \, \, , \, \, \, (L,M) \subseteq \text{Cl}_{\xi}(L,M) \, \, , \, \, \, (L,M)^{1^*}{}_{\xi} \subseteq (N,P)^{1^*}{}_{\xi} \, \, , \, \, \, (L,M)^{2^*}{}_{\xi}) \subseteq (N,P)^{2^*}{}_{\xi} \, \, , \, \, \, \text{Cl}_{\xi}(L,M) \subseteq \text{Cl}_{\xi}(N,P) \, \, \text{and} \, \, \text{Cl}_{\xi}(L,M) = \text{Cl}_{\xi}(L,M). \end{array}$

Definition 2.5: Let (Y_1, Y_2, ξ) be $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{10}_{\xi} = \cup \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{20}_{\xi} = \cup \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{10}_{\xi}$, $(L, M)^{20}_{\xi}$ is ξ-open set and $(L, M)^{10}_{\xi}$, $(L, M)^{20}_{\xi}$ is called ξ-interior of (L, M) and is denoted $I_{\xi}(L, M)$ in $\xi_T S$ (Y_1, Y_2, ξ) where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.4: Let $(L, M) \subseteq (Y_1, Y_2)$. Then (L, M) is ξ -open set in (Y_1, Y_2, ξ) iff $(L, M) = I_{\xi}(L, M)$.

Proposition 2.5: Let $(L, M) \subseteq (N, P) \subseteq (Y_1, Y_2)$ and (Y_1, Y_2, ξ) is $\xi_T S$. Then $I_{\xi}(\emptyset, \emptyset) = (\emptyset, \emptyset)$, $I_{\xi}(Y_1, Y_2) = (Y_1, Y_2)$, $(L, M)^{1^0}{}_{\xi} \subseteq (N, P)^{1^0}{}_{\xi}$, $(L, M)^{2^0}{}_{\xi} \subseteq (N, P)^{2^0}{}_{\xi}$, $I_{\xi}(L, M) \subseteq I_{\xi}(N, P)$ and $I_{\xi}(I_{\xi}(L, M)) = I_{\xi}(L, M)$

Definition 2.6: Let (Y_1, Y_2, ξ) be ξ -topological space $(\xi_T S)$ and (Z, \mathcal{T}) be generalized topological space $(G_T S)$. Then the map $\mathcal{F} \colon (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -continuous at $z \in Z$ if for any ξ -open set $(L, M) \in (Y_1, Y_2, \xi)$ with $\mathcal{F}(z) \in (L, M)$ then there exists \mathcal{T} -open G in (Z, \mathcal{T}) such that $z \in G$ and $\mathcal{F}(G) \subseteq (L, M)$. The mapping \mathcal{F} is called ξ -continuous if it is ξ -continuous at each $z \in Z$.

Proposition 2.6: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -continuous map (ξCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) .

3. ξ-Semi-Continuous Maps (ξSCM)

Definition 3.1: Let (Y_1, Y_2, ξ) be $\xi_T S$. Then $(L, M) \subseteq (Y_1, Y_2, \xi)$ is said to ξ -semi-open set (ξSOS) if there exists ξ -open set (P, M) such that $(P, M) \subseteq (L, M) \subseteq Cl_{\xi}((L, M))$ or equivalently $(L, M) \subseteq Cl_{\xi}(I_{\xi}(L, M))$. The complement of ξ -semi-open set is ξ -semi-closed set denoted as (ξCOS) .

Definition 3.2: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -semi-continuous map (ξSCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) .

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Example 3.1: Let Z = {1, 2, 3}, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{1,2\}, \{2,3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1)$ and $\mathcal{F}(2) = \mathcal{F}(3) = (m_2, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2, 3\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ-open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-open in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξSCM

Proposition 3.1: Every ξ CM in ξ _TS is ξ SCM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξCM . Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) . Since every \mathcal{T} -open set is \mathcal{T} -semi-open set in (Z, \mathcal{T}) . Hence $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) . Thus $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξSCM .

Remark 3.1: The converse of Proposition 3.1 need not be true shown in Example 3.2.

Example 3.2: Let $Z = \{1, 2, 3, 4\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{3\}, \{3, 4\}, \{1, 2, 4\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F} \colon (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1)$ and $\mathcal{F}(2) = \mathcal{F}(3) = \mathcal{F}(4) = (m_2, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2, 3, 4\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-open in (Z, \mathcal{T}) . Hence $\mathcal{F} \colon (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ξ SCMbut not ξ CM, because $\mathcal{F}^{-1}(\{m_2\}, \{l_2\}) = \{2, 3, 4\}$, where $\{2, 3, 4\}$ is \mathcal{T} -semi-open set but not \mathcal{T} -open set in (Z, \mathcal{T}) .

Definition 3.3: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called totally ξ -continuous map $(T\xi CM)$ if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) .

Example 3.3: In Example 3.1, the \mathcal{T} -clopen sets in (Z,τ) are $\emptyset,\{1\},\{2,3\},Z$. Therefore $\mathcal{F}^{-1}(\emptyset,\emptyset)=\emptyset$, $\mathcal{F}^{-1}(\{m_1\},\{l_1\})=\{1\},\ \mathcal{F}^{-1}(\{m_1\},\{Y_2\})=\{1\},\ \mathcal{F}^{-1}(\{m_2\},\{Y_2\})=\{2,3\}$ and $\mathcal{F}^{-1}(Y_1,\ Y_2)=Z$. This shows that the inverse image of every ξ -open set in (Y_1,Y_2,ξ) is \mathcal{T} -clopen in (Z,\mathcal{T}) . Hence $\mathcal{F}:(Z,\mathcal{T})\to Y_1\times Y_2$ is $T\xi CM$

Definition 3.4: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called totally ξ -semi-continuous map $(T\xi CM)$ if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) . **Example 3.4:** In Example 3.1, the \mathcal{T} -semi-clopen sets in (Z, τ) are $\emptyset, \{1\}, \{2,3\}, Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is $T\xi SCM$

Proposition 3.2: Every T ξ CM in ξ _TS is T ξ SCM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is T\xi\text{CM}. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every \xi\text{\xi}-open set (L, M) in (Y_1, Y_2, ξ) . Since every \mathcal{T} -clopen set is \mathcal{T} -semi-clopen set in (Z, \mathcal{T}) . Hence $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) for every \xi\text{\xi}-open set (L, M) in (Y_1, Y_2, ξ) .. Thus $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is T\xi\text{\xi}SCM.

Remark 3.2: The converse of Proposition 3.2 need not be true shown in Example 3.5.

Example 3.5: Let $Z = \{1, 2, 3, 4\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{1,3,4\}, \{1,2,4\} Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1)$ and $\mathcal{F}(2) = \mathcal{F}(3) = \mathcal{F}(4) = (m_2, l_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2, 3, 4\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ-open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is TξSCMbut not TξCM, because $\mathcal{F}^{-1}(\{m_2\}, \{l_2\}) = \{2, 3, 4\}$, where $\{2, 3, 4\}$ is \mathcal{T} -semi-clopen set but not \mathcal{T} -clopen set in (Z, \mathcal{T}) .

Definition 3.5: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called strongly ξ -continuous map $(S\xi CM)$ if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in (Y_1, Y_2, ξ) .

 $\mathcal{F}^{-1}(\{Y_1\}, \{\emptyset\}) = \{\emptyset\}, \mathcal{F}^{-1}(\{Y_1\}, \{l_1\}) = \{1\}, \mathcal{F}^{-1}(\{Y_1\}, \{l_2\}) = \{2,3\} \text{ and } \mathcal{F}^{-1}(Y_1, Y_2) = Z.$ This shows that the inverse image of every ξ -set (L, M) in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence f is $S\xi CM$.

Definition 3.6: Let $(\Upsilon_1, \Upsilon_2, \xi)$ be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is called strongly ξ -semi-continuous map $(S\xi SCM)$ if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) for every ξ -set (L, M) in $(\Upsilon_1, \Upsilon_2, \xi)$.

Example 3.7: In Example 3.6 \emptyset , {1}, {2,3}, Z are \mathcal{T} -clopen sets in (Z, \mathcal{T}) and the inverse image of every ξ -set (L, M) in (Y_1 , Y_2 , ξ) is \mathcal{T} -semi-clopen in (Z, \mathcal{T}). Hence f is S ξ SCM

Proposition 3.3: Every S ξ CM in ξ _TS is S ξ SCM

Proof: Let (Y_1, Y_2, ξ) is $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is S\xiCM. Therefore $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every \xiSigma-set (L, M) in (Y_1, Y_2, ξ) . Since every \mathcal{T} -clopen set is \mathcal{T} -semi-clopen set in (Z, \mathcal{T}) . Hence $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) for every \xiSigma-set (L, M) in (Y_1, Y_2, ξ) .. Thus $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is S\xiSigmaSCM.

Remark 3.3: The converse of Proposition 3.3 need not be true shown in Example 3.8

Example 3.8: Let $Z = \{1, 2, 3, 4\}$ $, \qquad \Upsilon_1 = \{m_1, m_2\}$ $\Upsilon_2 = \{l_1, l_2\}$ Then $\mathcal{T} =$ $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{1,3,4\}, \{1,2,4\}, Z\}$ $\xi = \{(\emptyset, \emptyset),$ $(\{m_1\},\{l_1\}),(\{m_1\},\{Y_2\}),(\{m_2\},\{Y_2\}),(Y_1,Y_2)\}$. Clearly $\mathcal T$ is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (\mathbb{Z}, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ by $\mathcal{F}(1) = (m_1, l_1)$ and $\mathcal{F}(2) = \mathcal{F}(3) = \mathcal{F}(4) = (m_2, l_2)$. Therefore \mathcal{T} -semi-clopen sets in $(Z,\mathcal{T}) \quad \text{are} \quad \emptyset, \{1\}, \{2\}, \{3\}, \quad \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, Z \ . \quad \text{Now} \quad \mathcal{F}^{-1}(\emptyset,\emptyset) = \emptyset \ , \ \mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\} \ ,$ $\mathcal{F}^{-1}(\{\mathbf{m}_1\}, \{Y_2\}) = \{1\} \quad ,$ $\mathcal{F}^{-1}(\{m_2\}, \{\Upsilon_2\}) = \{2,3,4\},$ $\mathcal{F}^{-1}(\{\emptyset\},\{l_1\}) = \{\emptyset\}$, $\mathcal{F}^{-1}(\{\emptyset\},\{l_2\}) =$ $\mathcal{F}^{-1}(\{\mathbf{m}_1\}, \{\emptyset\}) = \{\emptyset\} \ , \ \mathcal{F}^{-1}(\{\mathbf{m}_1\}, \{\mathbf{l}_2\}) = \{\emptyset\} \ , \ \mathcal{F}^{-1}(\{\mathbf{m}_1\}, \{Y_2\}) = \{1\} \ ,$ $\{\emptyset\}, \mathcal{F}^{-1}(\{\emptyset\}, \{\Upsilon_2\}) = \{\emptyset\},\$ $\mathcal{F}^{-1}(\{m_2\},\emptyset) = \{\emptyset\} \quad , \quad \mathcal{F}^{-1}(\{m_2\},\{l_1\}) = \{\emptyset\} \quad , \quad \mathcal{F}^{-1}(\{m_2\},\{\,l_2\}) = \{2,3,4\} \quad , \quad \mathcal{F}^{-1}(\{\Upsilon_1\},\{\emptyset\}) = \{\emptyset\} \quad , \quad \mathcal{F}^{-1}(\{M_2\},\{M_2\},\{M_2\}) = \{M_2\},\{M$ $\mathcal{F}^{-1}(\{Y_1\},\{l_1\})=\{1\}, \mathcal{F}^{-1}(\{Y_1\},\{l_2\})=\{2,3,4\} \text{ and } \mathcal{F}^{-1}(Y_1,Y_2)=Z.$ This shows that the inverse image of every ξ -set in $(\Upsilon_1, \Upsilon_2, \xi)$ is \mathcal{T} -semi clopen sets in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to \Upsilon_1 \times \Upsilon_2$ is S ξ SCM but not S ξ CM because $\{2,3,4\}$ is \mathcal{T} -semi-clopen sets in (\mathbb{Z},\mathcal{T}) but not \mathcal{T} -clopen sets in (\mathbb{Z},\mathcal{T}) .

4. Conclusion

In this paper, a very useful concept of the concept of ξ -semi-continuous maps, totally ξ -continuous maps, strongly ξ -semi-continuous maps, strongly ξ -semi-continuous maps, semi-totally ξ -open maps and pre-totally ξ -open maps in $\xi_T S$ have been introduced and established the relationships between these maps and some other maps by making the use of some counter examples. Conclusion is illustrated in the following figure

References

- [1] Ahengar N.A. and J.K. Maitra, On g-binary continuity, Journal of Emerging Technologies and Inovative Research, 7, 240-244, (2018).
- [2] Arya, S. P. and Gupta, R. On strongly continuous functions, Kyungpook Math. J., 14, 131-143, (1974).
- [3] Anuradha N. and Baby Chacko, Some Properties of Almost Perfectly Continuous Functions in Topological Spaces, International Mathematical Forum 10(3), 143-156 (2015).
- [4] Benchalli S.S. and Umadevi I Neeli "Semi-Totally Continuous Functions in Topological Spaces" International Mathematical Forum 6(10), 479-492, (2011).

- [5] Bhattacharya,S, On Generalized Regular Closed Sets ,Int . J. Contemp. Math. Sciences, 6 (3) 145-152 (2011).
- [6] Chen, C.C., Conejero, J.A., Kostic, M., Murillo-Arcila., M., Dynamics on Binary Relations over Topological Spaces. Symmetry 2018, 10: 211. https://doi.org/10.3390/sym10060211
- [7] Csaszar, A. Generalized topology, generalized continuity, Acta Math. Hungar, 96, 351-357 (2002).
- [8] Devi, R., Balachandran K., Maki, H. Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 14, 41-54 (1993).
- [9] Egenhofer, MJ. Reasoning about binary topological relations. Symposium on Spatial Databases SSD 1991: Advances in Spatial Databases, 141-160, (1991).
- [10] Engelking R. Generel Topology, Polish Scientific Publishers, Warszawa (1977).
- [11] Gevorgyan, PS. Groups of binary operations and binary G-spaces. Topology and its Applications, 201, 18–28, (2016).
- [12] Hatir E, Noiri T. Decompositions of continuity and complete continuity. Acta Math Hungary , 4, 281–287, (2006).
- [13] Jamal M. Mustafa, On Binary Generalized Topological Spaces, Refaad General Letters in Mathematics, 2(3), 111-116 (2017).
- [14] Kuratowski, K., Topologie I, Warszawa, (1930).
- [15] Levine N. A decomposition of continuity in topological spaces. Am Math Mon, 68, 44–6, (1961).
- [16] Levine, N. Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, (1963).
- [17] Levine, N. Generalized closed sets in Topology, Rend. Cir. Mat. Palermo, 2, 89-96, (1970).
- [18] Njastad, O, On some classes of nearly open sets, Pacific J. Math, 15, 961–970, (1965).
- [19] NithyananthaJothi S., and P. Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3), 95-107 (2011)
- [20] Nour T.M, Totally semi-continuous functions, Indian J. Pure Appl.Math, 26(7), 675 678 (1995).
- [21] Singh D., Almost Perfectly continuous functions, Quaest Math, 33, 1-11 (2010).
- [22] Son MJ, Park JH, Lim KM. Weakly clopen functions. Chaos, Solitons& Fractals, 33, 1746–55, (2007).