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1. Introduction

The arithmetic mean A(Pi, Pj) = #, Geometric mean G (Pi, Pj)= ,/P;P;, Harmonic mean H(Pi,Pj)z%
ithj

. . . P?+P? . . -
and Contra harmonic mean C(Pi , Pj)= #have their own importance in literature.
i+P;

Convexity results on means refer [14, 20] and Schur convexity results were found in [1, 2, 6, 15-17, 21, 23] of
one function with respect to another is investigated. The convexity results on some standard means with their
applications to mean inequalities and applications to few Greek means in Engineering field were also discussed
in [5, 7-9, 11-13, 22, 25].

Somedistinct and interesting results on generalization of means and properties of well-known means were found
in[3,4,10,18,19,24].

2. Definitions and Lemmas
In this section, recall some definitions and lemmas necessary to develop this paper.

Definition 2.1: If 0 <P;<P,,2A—G is called complementary geometric mean with respect to A or
complementary geometric mean is given by°G = P, — PP+ P.

Generalised complementary geometric mean is given by
2
CGn:; P — (T POYY

Generalised complementary weighted geometric mean is given by
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2
CGang =1 W, P; _(H?:1Wipi)1/n

Definition 2.2: For 0 <P;<P; and p € (0, 1), the oscillatory mean of complementary geometric mean and

arithmetic mean is given by

Ocea(P; P s W) =1 (P, —/P; P +B)+(1 - u) PP and its dual is given by

OEGA(PH H) (P -\/W+P) (P+PJ)1 u

Definition 2.3: For 0 <P; <P and p € (0, 1), the oscillatory mean of complementary geometric mean and

geometric mean is given by

Occs (P; P, i M) = W (P, —/P; P + B) + (1 — w)/P; Band its dual is given by
a-w

0 (P, P i) = (P - /PP +P) (P P) 2
2.1 Remark: For0 <P; <P,, then

P~G=P (P, — /PP +P)=G~P >0

‘G-P =(P, /PP +PB)~P, =P —G 20
It is a clear indication that P, <°G < P; and it is justified that G is a mean.
2.2 Properties: For any two positive real numbers P; and F; , then

G(PP)=P — P+ P =P

°G(R P)= (P, — /[P +P;)=P, — /P[P + B=°G(P, P)

°G (tP, tP)=tP,- J(tP)(E) + tP=t(P, — /P P + P ) =t “G(P;,

“G(x,P) =G (P, x) = (x — /xB + P )= (P, ~/(P;x) +x)

=(JBP) (VB + P = V% )>0

Therefore, “G(P; P ) is Reflexive, Symmetric, Homogeneous and Isotone.

2.3 Inequality: For0 <P, <P;, A <°G < Cholds.

6-A=(p, - [P + ) - ()= (*52) - /R B>0

c-G=l -~ [RF + )= }{T(P —2 /B P +P)>0

B)
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Therefore, A <G < C.
Lemma 2.1: A mean M is called convex (with respect to A) if
1 A(P;) M(P;)
(2.1) 0 A(B)—-AM®P) M(P)-MP)|=0
0 AP —AP) MP)—M(P)
Lemma 2.2: Let Q SR™ be symmetric with non empty interior geometrically convex set and let ¢ : Q —R, be

continuous on Q and differentiable in Q° .

If @ is symmetric on Q and

@2 (- n) [ -] z0=0)
2.3) (InPp — lnP)[Pl— -y :T¢] >0(<0)
(2.4) (PL-—PJ-)[Pl-Z:% —sza"%] >0(<0)

holds for anyP = (P;,P,, ..., B,)EQ’, 0 <P, <Pithen ¢ is a Schur convex (concave), Schur geometrically
convex (concave) and Schur harmonically convex (concave) function respectively.

3. Main Results
Theorem 3.1:The complementary geometric mean is convex with respect to arithmetic mean.
Proof: For 0 <P; < P, < Py, then by lemma 2.1,

1 A(P;) Ce(P)
(3.1) 0 A(R)-AP) c(P)~ce(P)
0 A(Pk)_A(PL) CG(Pk)_CG(Pi)

Apply the definitions of arithmetic and complementary geometric mean to (3.1) gives

1 P, —\[;+1
o = 2 (n-fn)- (v i)
o ) (o)

Further simplification leads to,

(-,

(83 = > 0
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Fr-fod-rs
o

Therefore, complementary geometric mean is convexwith respect to arithmetic mean.

Theorem 3.2: The oscillatory mean of complementary geometric mean and arithmetic mean, denoted by Ocga
(P; B s 1), L E (0, 1),0<P; <P, and its dual are Schur convex.

Proof: Case 1
Consider, Ocoa (PP ;W) =p(P — /P B + P) + (1 — u)( )

£ﬂpCGA(H'3:LD]=5%{U(H —v¢ﬁ§+-ao-+<1-u>ci;ﬁﬂ

T o
2 2 2/PP;

2 Ocon (B 1= o[ = JPF + p)+ @ = (222

(Pi-Pj)
[OCGA GHARD By 7 [Ocea (P B 5 )] = uﬁ
Therefore, for 0 <P, < P,
(P, - P) {— [0CGA (P, B 5 W] = 5~ [0CGA (P, B u)]}EO

Case 2:

) —H

Consider, 0S4 (P;,P. ; 1) = (P; -\/PiP; + P;) (

im OGP )= in (P PB + )+ (1= ) n (57

L (d) (d) . p _ B 1
106 s W= 0@ B 7 —mﬂv(l zm)ﬂim]

9 @ ] (d) __ P 1-p
aP; [OCGA(P“ U)] Ocga(Pi .y < 1) [P —J/PiP; +Pj (1 ZJTP]-) + P,»+Pj]
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RPN G)) (d) () N (Pi-P))
E[OCGA(PLI u)]_F[OCGA(PLI sl = OCGA(PLY ! )Pi -JPiP; +P; [ 2 Pilj’j]
Therefore, for 0 <P; < P,

(P = B) (- 0P B W] = 5o [00CP By W]} 20
By case 1 and case 2, Ocga (P; ,P; ; W) and its dual are Schur Convex.

Theorem 3.3: The oscillatory mean of complementary geometric mean and arithmetic mean, denoted by Ocga
(P ,B; s 1), L E (0, 1),0 <P; <P, and its dual are Schurgeometric convex for 0 <P; < P,.

Proof: Case 1
. _ P; +Pj
Consider,0CGA (P;, P ; W) = (P, /PP +P)+ (1 - “)(T)

P 55-[0CGA (P, B s W= Psp-[w (P = P + B + (1 = w (23]

P; +P;
B3 [0CGA (B W] =B 5 [u PR + B) + (1 - w (7]

_ WP P WP P
= TJ + 7] "2 /P P
P55 [0CGA (P B 5 WP 53 [0CGA (P B W=~ B) (1)

Therefore, for0 <P, < B;,

(inp, - 1nB) (P 2-[0€6A B, 5 W] - B - [00GA (BB w20
Case 2:

Consider, 05y (P P, ; W) = (P; -\/PiP; +P;) (p +P) N

lnoég,)q(P s W=pin (P, -\/P;B +PB )+ (1— ) In (t”’)

@) ) u __P 1
P05 Bty W] = RO B 0 [t (1 - ) + 7]
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2 0@ @ p p - H K 1

d
Pigp [0, P. B SR AR

(@) u
OCGA(PI’ ’ )pl. Ny vy [’Di _P/]

Therefore, for0</2, < 7,,

a a
(n Pr~tn P)2: 55105 Py s W)=, 55105 (P75 W]J20
By case 1 and case 2, Ocea(#, ,#, ; W)and its dual are Schur geometric convex.

Theorem 3.4: The oscillatory mean of complementary geometric mean andarithmetic mean, denoted by Ocga
(P2, W), LE (0,1),0 <P, <P, is Schur harmonic convex and its dual is Schur harmonic concave for 0
<P, <P,.

Proof: Case 1

Consider,Ozy (P;, P, 5 W=W(P; —JP; P, +P;)+(1- “)(P[ ;P‘)

2 2 2/,01.,0/.

P P, +P,
2,2 77 [Ocen (P, 2, ; W] = 2,2 77, [u(/’ —JP: P, + P+ (A - u)(—;r /)]

S22 2/P P
2o o (P02 s WP, 5 (O (P, Py 5 W] =

@, -~ e, -7 P+ ) +

Therefore, for 0</#, < /7,,
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G2 [Pl' {OCGA('D’ P Y= AR 77, —Z{Ocen (P;, 7 ;s H)}]ZO
Case 2:
Consider, 0([2 (101' ,,D/. (p _\/W_'_ P ) (/’1 PP, ) —H

OGP Py iW e (P PP P+ A b (P)

2_9 1@ P — p 2@ o - 1l 7 1—p
P0G L= 2200 oy [t (L) + 5

a a
ID' [0()(’01'10/'“)] 20()(101!

. [ £ 1-p
,H)I:Pl' _W+P/'(1_2\/}71'—"7/>+ P/"’P/:l

P2 w (Po Pt —— [0( 2,2, W] =
2 () . u(?; -2;)
(750,305 &1 ) WGt

Therefore, for 0</#, < 2,,

(P/ _P/'){ l' [O(d) Py / ; H)] P/Z%[O(d) (Z: 'P/‘ ) ]} <0

By case 1 and case 2, Ocga (#, ,/, ; W) is Schur harmonic convex and its dual is Schur harmonic concave.

Theorem 3.5: For 0 <#, < /Z,and pe (0, 1) Oscillatory mean ofcomplementary geometric mean and
geometric mean denoted by Ocgg (#, ,#, ; W) is Schur convex and its dual is Schur concave.

Proof: Case 1

Consider,

Occe (P £y W) =W (P, P, P+ Py)+(L—WJP,; P,

ﬂTOCGG(Pzn TH) = [U(ID =P, +P/)+(1—H)\/ID1‘P/]

=p+(1- ZH)ZW
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55 Oces (P02, W) =52 (W2 = PP, + 7)) + (1= W7, 7]

=+ (1-2p); :j —

3 Vi /’:'7/’,-
577 Ocec (21,7 ;”)TP,- Ocec (#7771 W) = (1_2“);\#

Therefore, for 0<2, < 7,,
J J
@ =255 0aw (2025 W] = 55 [Ocea (P, .7, s W]} 2 0

Case 2:

Consider,

(d) 1l a-w
0D 2,2y W= PR R (2, )

b O (Pr Py iW=Rln (P [P, 7, +P,)+AL-Wh [P, 7,

20D p po = 0D (P P u R, a-w 2,
d/o[ OCM (Pl ’ID/ 'u) - OCM (IDI 'P/ 1“)[/,[ _\/}7/—}7/‘-}-}7/' <1 2\//31' P/') 2\//71' P/':I

0D iy s e D (p o u o~ - 2,
7 O i =0 008y et (1o ) + S

J a . a a .
o O (P Py W) =55 Oy (P Py o)

P,
— D (p p . n e -2
=0z (Pi Py W) Py —[P; P;+ P, +u-1 2P 7,

Therefore, for 0</#, < 2,,

a () . 9 () .
(#: =#)) [ﬁacx (il W) _7705“ Zrity H)] <0

By case 1 and case 2, Ocgg (#, ,#, ; K) is Schur Convex and its dual is Schur Concave.

Theorem 3.6: For 0 <#, < Z,and p€ (0, 1), then oscillatory mean of complementary geometric mean and
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geometric mean and its dual are Schur geometric convex.

Proof: Case 1

Consider, Oces (Z; 2, i W=W(P;, ~\[P, P, +P,)+(1-WJ P, P,

%OCGG(Pln JH) =p+ (1 - 2;1)2\/W

PPy
P, P, OCGG(Pzn ';H):Hf’i +(1_2p-)zm

7 Pi
a7, Ocec (P; £, 7 W) =U+(1_2|J)2 7, 7,

Ocee (P; P, W) =u /P, +(1— 2u)2\/ﬁ

/0"/’

Pp —= 77, Ocec (P 2, i W) P, OCGG(P“ W =2, -2

Therefore, for 0</#, < 2,,

ﬁ
(e P, ~tn P))|P; <%= OCGG (£, 7, ; W) — 55 OCGG (2,2, ; wl>o
Case 2:
a-w
Consider, 0% (7, .7, ;W= (P PP +P) (2, P,) 2

n O (P, P W =uln (P P, P, +P )V +(L—W) ln P, P,

2 0 (d) W= 2, (@) o H P (1w 2,
Pia O (P00 = 2 0 Py ) [t (1- i) + 4 )
0 @ (@) . u 2 a-w 2
2y op Oz Loy i) =P Oz (Pi Py 3 1) [p,- Y A (1 z\/ﬁ) 207, P,

(@) . 7 () W)= 09 WP - 2y)
P 70 (Pz‘vP/vU)_’D/'g_p/.Om (Pz'*’D/"“)_ (’Dl’ “)[ PZP/+P/:|
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Therefore, for 0</~, < 2,,

2O PP W P SO (2w |20

(o P, —tn P))|P, 2 ) 77,

e
By case 1 and case 2, Ocge (£, ,#, ; 1) and its dual are Schur geometric Convex.

Theorem 3.7: For 0 <#, < Z,and pe (0, 1),then Oscillatory mean ofcomplementary geometric mean and
geometric mean and its dual are Schur harmonic convex.

Proof: Case 1

Consider, Occg (#; .2, W) =WU(P; =[P, P, +P,)+(1 - WP, P,

J Py 2P
Pl'zﬁ OCGG(Pl' :Pj ;U)=HID1'2+(1_2U)7PL

4 PP,
P/Zﬁ_},/OCGG(Pzn W) =pA 2+ (1 ZH)—ﬁ

7 7
2y ZE Ocee (P £y i W) —P,? 97, Ocec (#; .£; i H)

=|wee, —y77 ) + e, -2y

Therefore, for 0<2, < 7,,

2 g . 2 0 .
@~ 2|2 577 Ocas (Pr P75 W) = ;% 57= O (Pi 12 wl>o

Case 2:

a-w
Consider, & (d) w (Pi Py )= (P - /PP +P) (Z,7;) T

b O (Pr Py WENE (P PP PR b (PP

2 9 (@) = @ . we 2 Lz a-we, 27
Prig 0 P18y W= 0 1ty 0 [ e (1) + 02
() = D . pe,? Y A-pe2e;

7’ 57, Oz (Li ) W= Oy (P W o (1= s )V 5 o
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2
22

a () . 7 () .
L AR ~7,? Eofm (#; .7y W)

. NVwr 1—
=0 (2, .2, ;W +(/’[ + 27, - —/) +%](P,' )

Py —JP; Py + 2P 2

Therefore, for 0</~, < 2,,

d
(P[ 7P/')[P[25—0(€6;' (P[;ID/' ) H) _P/'2

a a

(2) .
,;_p/_ofw (Pr Py H)] 20

P

By case 1 and case 2, Ocgg (#, ./, ; W) and its dual are Schur harmonic Convex.

4,

Conclusion:

In this paper, some main properties of complementary geometric mean, Schur convexity, Schur geometric
convexity and Schur harmonic convexity of oscillatory meansinvolving complementary geometric mean are
discussed. Because of this feasibility, the researchers may use this to crack the problems pertaining to
majorization, game theory and signal processing.As evidence, somespecial means satisfying these main
properties are applied to remove noises in digital image [22].
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