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Abstract: This paper proposes a fast Two-Dimensional DOA Estimation algorithm for low-elevation targets 

of Very High Frequency (VHF) Array Radar using an estimation method based on the Alternating Direction 

Method of Multipliers (ADMM). The method firstly utilizes the uncoupling characteristics of azimuth and pitch 

angle under a uniform planar array, to convert the two-dimensional angle estimation problem into two one-

dimensional DOA estimation problems. The target information is extracted by digital beamforming in the 

azimuth and elevation dimensions. Finally, the Alternating Direction Method of Multipliers is used for 

estimation of the azimuth and pitch angle. This method avoids the two-dimensional joint estimation, which is 

complex in the calculation, the complexity is greatly reduced, and the operation process does not require 

Eigenvalue decomposition, further improving the operation efficiency. 

Keywords: DOA estimation; low elevation target; VHF array radar; ADMM algorithm. 

 

 

1. Introduction 

With the continuous improvement of application requirements, modern meter wave radar should have 

high-precision ranging and two dimensional angle measurement capability. However, when the meter wave radar 

detects low-altitude and ultra-low altitude targets, the radar receives the echo signal includes not only the direct 

wave signal scattered and by the target but also there are ground reflected multipath signals. The presence of 

multipath signals will lead to unreliable DOA, hence the algorithm’s performance degrades or even falls.  

The main reasons can be summarized as follows: 

• Separating the direct and multipath waves from time and frequency domain is difficult as they are 

usually located in the same distance unit. 

• Due to considerably wider beam width, the reflected multipath and the direct signals are a group of 

strongly correlated waves, and are present in the same beam width or even in the half the beam width, 

which seriously affects the accurate measurement of angel of arrival in meter wave radars. 

• Due to narrow bandwidth of meter-wave radar, the distance unit is generally in the order of 100 

meters, and the distance measurement is accurate. The degree of measurement further affects the 

radar measurement performance. 

A lot of research has been done on the problem in recent years, many scholars at home and abroad have 

made a DOA Estimation on low elevation angle DOA. The methods are mainly divided into feature subspace 

algorithms, maximum likelihood (ML) class algorithms and compressed sensing class algorithms. The low-

elevation feature subspace class algorithm is mainly based on (MUSIC) Multiple Signal Classification and the 

rotation-invariant subspace (Estimation of Signal Parameter via Rotational Invariance Technique (ESPRIT), the 

solution method for the frame. Since MUSIC algorithm compared with ESPRIT, the former algorithm has higher 

stability and angular resolution, hence it is favored by developers [1, 2]. Literature [3] using spatial smoothing 

(SS) technique restores the rank of the covariance matrix to achieve solution coherence, but the absence of 

effective aperture will lead to the weakening of algorithm performance during estimation, which made it difficult 

for this type of algorithm to measure up the standard. 

The practical application requirements of meter wave radar, in literature [4] alternate projections 

technology and MUSIC Algorithms can be combined, to use prior information for low elevation angle estimation. 

But due to its cost function number is a non-convex optimization problem and one cannot guarantee that the 

algorithm will converge to global optimal solution. ML kind of algorithm can directly deal with coherent signals, 
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and also the algorithm has better estimation performance subject to the condition of low signal-to-noise ratio, but 

the algorithm complexity increases at an exponential rate to   number of targets, and the amount of calculation is 

huge, which cannot be fully meet real-time needs [5]. Compressed sensing algorithms use the few target 

characteristics in the spatial domain to directly analyze the sources with the same phase for DOA estimate. And 

most sparsely reconstructed classes DOA Estimation method, has reasonable estimation performance in the 

context of low signal-to-noise ratio and few snapshots [6], but currently the sparsely reconstructed class DOA 

Estimation algorithms usually have a large amount of computation. 

The problem of convex optimization with separable structure can be processed in blocks to reduce the 

solution complexity by using Alternating Direction Method of Multipliers (ADMM). Due to its high estimation 

accuracy and fast convergence, it is of frequent use in signal processing, image processing, machine learning and 

other fields [7]. 

ADMM Algorithm is proposed in this article for DOA estimation of two dimensional array, a suitable 

technique for meter wave surface array radar. The algorithm first begins with target angle, which is roughly 

estimated by dimensional beamforming, and then the azimuth and elevation angles row and column beamforming 

is performed on the array data respectively, which are not coupled. And Fourier Extract the target data by leaf 

interpolation, and finally use ADMM algorithm performs azimuth and pitch angle estimation.  

Compared with traditional algorithms, this proposed method uses the rough estimation data of the angle 

to limit range of target degrees. Reduces solution computational complexity, through the row and column 

beamforming processing, on the other hand improving the signal-to-noise ratio, data dimensionality reduction is 

achieved. Therefore avoiding the need for two dimensional combined estimation of complex computations, 

improves computational efficiency. Simulation result shows efficacy of proposed algorithm. 

 

2. Signal Model 

As shown in the Figure 1, matrix of array elements are 𝑀 × 𝑁. The uniform area array is placed in Y-Z 

axis, the adjacent array elements are separated by the distance of 𝑑 = 𝜆/2, λ represents the  wavelength. Under 

far-field conditions, the target echo arriving at each array element can be considered as the plane wave, and a 

target is well-defined as a projection on X-Y Plane.  

 
Fig 1: Geometric Model of Meter Wave Area Array Radar. 

 

The azimuth angle φ, is a angle in positive direction of Y, the angle target making at origin with X-Y 

plane is the pitch angle 𝜃. The lattice element is the reference array element, and each array element transmits 

narrow-band chirp signal as 

𝑠 ( 𝑡 ) =  𝑔( 𝑡 )𝑒𝑥𝑝 ( 𝑗2𝜋𝑓𝑐𝑡 );       0 ≤  𝑡 ≤  𝑇 − − − (1) 

Where 𝑔(𝑡) represents the complex envelope of a signal, 𝑓𝑐 is the center frequency, 𝑇 Indicates the pulse width. 

For the convenience of analysis, it is assumed to be only a single target in the space, and  noise is additive noise, 

each array element is received fundamental frequency of echo at time can be represented as 

𝑠 (𝑚, 𝑛, 𝑡) = 𝜎𝑔 (𝑡 −
𝑅(𝑚,𝑛)

𝑐
 )  exp (−j2π

𝑅(𝑚,𝑛)

𝜆
) + σρg (t −

𝑅′(𝑚,𝑛)

𝑐
) ·  exp (−j2π

𝑅′(𝑚,𝑛)

λ
) +  w(m, n, t) −

−(2) 
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Where 𝜎 is the target backscattering coefficient, 𝜌 indicates the multipath echo specular reflection coefficient. 

𝑅(𝑚, 𝑛) represents the target to the 𝑚 row 𝑛 array element distance, 𝑚 ∈ [1, 𝑀],  𝑛 ∈  [1, 𝑁]. 𝑅′(𝑚, 𝑛) indicates 

multipath echo that reaches each array element distance. W (m, n, t) means the first 𝑚 row 𝑛 additive white 

Gaussian noise of array elements. 

 
Fig 2: Ideal Multipath Propagation Model  

 

According to the assumption of far-field conditions, let the distance between the target and the reference 

array element be 𝑅, 𝑅(𝑚, 𝑛) expressed as 𝑅(𝑚, 𝑛)  = 𝑅 + 𝑦𝑛𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑧𝑚𝑠𝑖𝑛𝜃, in 𝑦𝑛 means the first n array 

element on Y axis position, 𝑧𝑚 is the first m row element on the Z axis position. Many studies have modeled 

multipath models under ideal terrain conditions, such as [1–3], the ideal plane position reflection model is as 

shown in figure 2. Multipath and direct wave distances there difference can be stated as ∆𝑅 = 𝑅′(𝑚, 𝑛) −

𝑅(𝑚, 𝑛) ≈ 2ℎ𝑎 sin 𝜃𝑑, where ℎ𝑎  indicates the height of the center of  array, elevation angle is the multipath direct 

wave 𝜃𝑑 with many radial elevation 𝜃𝑠 satisfy 𝜃𝑠= − arc sin (sin(𝜃𝑑) + 2ℎ𝑎/R), when the standard distance 

R≫ℎ𝑎 hour, 𝜃𝑑 ≈ −𝜃𝑠. Assuming the radar is elevated 10 m, as shown in the figure 3 relationship between 

difference of angle between multipath reflection-angle and angle of incidence of direct wave versus target 

distance.  

 
Fig 3: Relationship between angle difference and target distance 

 

From the figure it is evident that  target distance, the farther you reach, the difference between the absolute 

value of  multipath incident angle and the direct wave incident angle will be smaller, ignoring the effect of delay 

on the envelope, provided that the signal is narrowband, we can write the equation as. 

𝑔 (𝑡 −
𝑅(𝑚,𝑛)

𝑐
 ) ≈ 𝑔 (𝑡 −

𝑅′(𝑚,𝑛)

𝑐
 )= g(t) − − − −(3) 

Using the equation (3), (2) it can be converted and organized as  
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𝑠 (𝑚, 𝑛, 𝑡) = 𝜎′ (𝑒𝑥𝑝 ( −j
2

𝜆
(𝑦𝑐cos𝜃𝑑cos𝜙 + 𝑧𝑚  sin𝜃𝑑)) + ρ′exp (−j

2

𝜆
(𝑦𝑐cos𝜃𝑠cos𝜙 + 𝑧𝑚  sin𝜃𝑠))) . g(t)

+  w(m, n, t) − −(4) 

Where σ′ =  σ exp (−j2πfcR/c)， ρ′ =  ρ exp (−j2π∆R/λ), are the multipath coefficients. 

Pulse processing is performed on the data of each array element. Metadata beamforming processing and 

target detection to find targets rough angle. First, beamforming is performed on the row array elements, so that 

the first one row array Meta data given as 𝑆𝑟𝑒𝑓𝑁  (𝑡)  =  [𝑆(1,1, 𝑡), 𝑆(1,2, 𝑡), . . ., 𝑆(1, 𝑁, 𝑡)], the reference row array 

metadata. Use the formula (5) for realizing of beam forming of reference line array element. 

𝑆𝜑 (𝑡) =  𝑤𝑎
𝐻 (φ) 𝑆𝑟𝑒𝑓𝑁  (𝑡) − − − − − − − (5) 

𝑤𝑎  (φ) = [exp (−j2π𝑦1 cos φ), exp (−j2π𝑦2 cos φ), ... , exp (-𝑦𝑛cos φ) ]𝐻 

Represents the azimuth weighting vector of row array element. Secondly, the target detection is done on  the 

azimuth beam synthesis result, and let us definite 𝐻1 indicates the target exists hypothesis, 𝐻0 indicates that the 

target does not exist hypothesis, azimuth beamforming signal 𝑆𝜑 (𝑡) exist 𝐻1, 𝐻0 Conditional Probabilistic 

Density.  

The degree function 𝒑 (𝑆𝜑 (𝑡) 𝑗𝐻1) 𝒑 (𝑆𝜑 (𝑡) 𝑗𝐻0)  assuming noise observe zero mean, variance is  σ2 

The Gaussian distribution of, the likelihood ratio function is defined as 

Λ (𝑆𝜑 (𝑡)) =
𝑝(𝑆𝜑 (𝑡)⃓𝐻1)

𝑝(𝑆𝜑 (𝑡)⃓𝐻0)
 =

exp (−(𝑆𝜑 (𝑡)−𝑠(𝑡))2/(2σ2))

exp (−(𝑆𝜑 (𝑡))2/(2σ2))
 − − − − (6) 

In above formula 𝑠(𝑡) means that the assumption 𝐻1  is the source output value at the time. It can be seen 

from the above that the larger the likelihood ratio, the more likely the target exists in the signal. The literature [8] 

gives a binary hypothesis judgment method for radar target detection. 

Λ (t)   
𝐻1
>
<

𝐻0

  δ    − − − − − −  (7) 

Where δ indicates the detection threshold, which may be adjusted according to actual false alarm probability. 

When the likelihood ratio is greater than the threshold value, it is determined that there is the target, then record 

the current azimuth beamforming angle 𝜑, roughly estimated azimuth angle of that target, record the distance unit 

related to threshold value 𝑅𝐷. Use the azimuth to roughly estimate the weighted vector related to angle 𝑤𝑎  (𝜑1) 

to beam form each row array element data, and extract the beam formed distance of each row array element unit 

𝑅𝐷, the corresponding data is used as the initial data for the elevation beam synthesis, using the formula (8) beam 

synthesis to get pitch. 

SƟ (tRD
) =   wa

H (Ɵ) SDBF (tRD
)  --------- (8) 

Where,  𝑤𝑝 (Ɵ) = [exp (– j2π𝑧1 sin Ɵ), exp (– j2π𝑧2 sin Ɵ), ... , exp (-j2π𝑧𝑚 sin Ɵ) ]𝑇, represents the 

array element pitch weighted vector, SDBF (tRD
)  indicates the corresponding distance of each row array element 

after azimuth beam synthesis unit 𝑅𝐷 data. In the same way as the detection method after azimuth beam synthesis, 

the target detection is performed on the elevation synthesis data, and the rough estimation of the angle of elevation 

is recorded angle Ɵ1. Due to small bandwidth of meter wave radar, the distance unit is generally in the order of 

100 meters, and direct wave multipath signal after pulse compression are located in the same location. Distance 

unit, to extract target information more accurately, use coarse estimated angle versus received data two 

dimensional beam synthesis and interpolation processing to record the distance unit corresponding to the target 

position 𝑅𝑄 . 

Under the uniform area array model, the azimuth and pitch angles can be independently make an estimate. 

First use the azimuth angle φ1 perform azimuth beam synthesis on each row array element, and extract the distance 

unit after interpolation processing 𝑅𝑄 data. At the time, each row array outputs data 𝑦𝑟  =

 [S1r (𝑅𝑄);  S2r (𝑅𝑄), . , SMr (𝑅𝑄)]𝑇. . , where Sir (𝑅𝑄)  means the first line element azimuth wave bundled and 

interpolated distance units 𝑅𝑄 data. Use pitch angle Ɵ1 and distance unit 𝑅𝑄  get the output data of each column 

array  𝑦𝑐  =  [S1c (𝑅𝑄); S2c (𝑅𝑄), . , SMc (𝑅𝑄)]𝑇 . .,  where Sic (𝑅𝑄)  express the first 𝑗 array element pitch beam 

formed and interpolated range unit 𝑅𝑄 data, target data 𝑦𝑟, 𝑦𝑐 written in vector form, it is represented as 

𝑦𝑟 =  (𝑎(Ɵ𝑑)  +  𝜌′𝑎(Ɵ𝑠)) Sr  +  𝑤 

                                     𝑦𝑐 =  (𝑎(φ𝑑)  +  𝜌′𝑎(φ𝑠)) Sc  +  𝑤       − − − − − − (9) 
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𝑎(Ɵ𝑑)  = exp (– j2π𝑧𝑀 sin Ɵ𝑑/𝛌 ), 𝑎(Ɵ𝑠)  = exp (– j2π𝑧𝑀  sin Ɵ𝑠/𝛌 ) represent the multipath wave and direct 

signal pitch reception respectively, whereas steering vector, 

 𝑧𝑀 = [0, 𝑑, 2 𝑑, . . . , (𝑀 − 1)𝑑 ]  . 𝑏(φ𝑑) = 𝑒𝑥𝑝 (−𝑗2𝜋Y𝑁𝑐𝑜𝑠 (φ𝑑)/𝜆), 𝑏(φ𝑠)  = 𝑒𝑥𝑝 (−𝑗2𝜋Y𝑁𝑐𝑜𝑠(φ𝑠)/𝜆) 

represents the vector direct wave and multipath signal azimuth receiving guidance, respectively, where, Y𝑁 =

 [0, 𝑑, 2𝑑, . . , (𝑁 − 1)𝑑].  Sr  represents each row array element azimuth beam synthesis target corresponds to the 

envelope vector,  Sc  represents the envelope vector corresponding to each array element pitch beamforming target, 

𝑤 indicates the corresponding noise vector after array synthesis. 

Using φ𝑑 = φ𝑠, in the formula (5), output signal is expanded to an over complete representation of the spatial 

angle 

𝑦𝑟 =  (𝑎(Ɵ′𝑑)  +  𝜌′𝑎(Ɵ′𝑠)) S′r  +  𝑤 

                               𝑦𝑐 =  ((1 −  𝜌′)𝑏(φ′𝑑) ) S′c  +  𝑤       − − − − − (10) 

Where,Ɵ′𝑑 = Ɵ𝑖𝑛𝑖𝑡 +  [0;  1;  . . . ;  𝐿 −  1]∆𝜃, φ′𝑑  =  φ𝑖𝑛𝑖𝑡  +  [0; 1; . . . ;  𝑃 −  1]∆𝜑, are Corresponding 

complete space pitch and azimuth angles,  Ɵ𝑖𝑛𝑖𝑡 = Ɵ1 − Ɵ3𝑑𝐵/2,  φ𝑖𝑛𝑖𝑡  = φ1 − φ3𝑑𝐵/2 , represents the initial pitch 

angle and azimuth set respectively , Ɵ3𝑑𝐵, φ3𝑑𝐵 indicates 3 dB beam width pitch and azimuth respectively. ∆𝜃 =

Ɵ3𝑑𝐵/𝐿, ∆𝜑 = φ3𝑑𝐵/𝑃, divide the interval for the pitch and azimuth angle sets, that is, the pitch and azimuth 

angles complete set could be estimated in accordance with rough angle and pitch angle, elevation and azimuth 

beam widths are determined. 

Steering vector 𝑎(Ɵ′𝑑)  with Ɵ′𝑑  corresponds with each angle element is direct wave pitch angle steering 

composed of columns vector matrix, using Ɵ′𝑑=−Ɵ′𝑠 the multi-path steering vector-matrix can be obtained, 

𝑎(Ɵ′
𝑠), 𝑏(φ′𝑑) means with φ′𝑑 steering vector related with each angle element is the direct wave azimuth steering 

vector matrix consists of columns . S′r , S′c  represents the zero padding of  incident wave in the total set of pitch 

and azimuth angles respectively. From the perspective of sparse recovery, the formula (10) used for solving the 

target azimuth and problem of pitch could be converted into an optimization problem that minimizes the target 

function.   

arg
𝑚𝑖𝑛
. S′

r 
   ‖𝑦𝑟 − (𝑎(Ɵ′

𝑑) + 𝜌′𝑎(Ɵ′
𝑠))S′

r ‖
2
2

 +  ƞ. 𝑞(S′
r ) 

                                     arg
𝑚𝑖𝑛
. S′

c 
   ‖𝑦𝑐 − ((1 + 𝜌′) +  𝑏(φ′𝑑))S′

c ‖
2
2

 +  ƞ. 𝑞(S′
c)   − − − −(11) 

In the above equations, 𝑞(·) represents the sparse constraint function, ƞ  represents the regularization 

parameter, and defines the sparse constraint function as (S′
r ) =  ‖S′

r ‖1,  𝑞(S′
c ) =  ‖S′

r ‖1, the spatial angle 

sparsity is limited by this function, and the objective function can be expressed as 

 arg
𝑚𝑖𝑛
. S′

r 
   ‖𝑦𝑟 − (𝑎(Ɵ′

𝑑) +  𝜌′𝑎(Ɵ′
𝑠))S′

r ‖
2
2

 +  ƞ. ‖S′
r ‖1 

                                     arg
𝑚𝑖𝑛
. S′

c 
   ‖𝑦𝑐 − ((1 + 𝜌′) +  𝑏(φ′𝑑))S′

c ‖
2
2

 +  ƞ. 𝑞‖S′
r ‖1   − − − −(12) 

After the sparse constraint function is determined, solution can be obtained by sparse recovery 

algorithm to get the target azimuth and pitch angle 

 

3. Proposed Algorithm for Angle of Arrival estimation 

 

3.1 Alternating Direction Method of Multipliers Algorithm structure 

Alternating Direction Method of Multipliers Algorithm, a method suitable for solving distributed 

optimization problems. Computational methods, the most notable advantage of which is the ability to separate 

variables process, and make full use of the separable structure to solve objective function. The convergence speed 

is fast, and it is easy to implement in engineering (12). The objective function can be seen as LASSO class sparse 

reconstruction problem, the ADMM algorithm applied to LASSO in the class optimization sparse problem, its 

running speed and reconstruction better accuracy can be achieved than other mainstream 𝐿1 norm method [9-11]. 

According to the formula (12) one can observe that the solution of the objective function can be regarded as an 

problem of optimization for angle variables. ADMM is generally form of solving two-variable optimization 

problems with equality constraints can be represented by 

𝑚𝑖𝑛
𝑥, 𝑧

𝑓(𝑥)  +  𝑔(𝑧)  =  𝑐    
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                                               𝑠. 𝑡 𝑨𝑥 +  𝑩𝑧        =  𝑪   − − − − − − − − (13) 

Where ,𝑥 ∈ 𝑅𝑛,  𝑧 ∈ 𝑅𝑚 for the variable to be optimized, 𝑓(𝑥)  +  𝑔(𝑧)  The objective function to be optimized 

number, and 𝑓(𝑥) , 𝑔(𝑧) is a convex function, linear under constraints 𝐴 ∈ 𝑅𝑝𝑥𝑛,  𝐵 ∈ 𝑅𝑝𝑥𝑚, 𝐶 ∈ 𝑅𝑝 . Solving 

optimization problem is described, Lagrangian function is constructed and the augmented, its expression is 

given by 

𝐿𝜏 (𝑥, 𝑧, 𝛾) = 𝑓 (𝑥) +  𝑔 (𝑧) +   (𝐴𝑥 +  𝐵𝑧 −  𝑐) +
𝜏

2
∥ 𝐴𝑥 +  𝐵𝑧 −  𝑐 ∥

2
2

− − − (14) 

Where 𝛾 represents the Lagrange multiplier, 𝜏 represents the penalty term coefficient. According to ADMM the 

solution idea is to fix the other two variables when solving any variable, and make use  alternate iteration method 

to update the parameters until convergence, the solution process is as given by (15) 

𝑥𝑘  = arg
𝑚𝑖𝑛

𝑥
 𝑓 (𝑥) +  

𝜏

2
 ∥ 𝐴𝑥 +  𝐵𝑧𝑘−1  −  𝑐 +  𝜁𝑘−1 ∥

2
2

 

𝑧𝑘  = arg
𝑚𝑖𝑛

𝑧
 𝑔 (𝑥) +  

𝜏

2
 ∥ 𝐴𝑥 +  𝐵𝑧𝑘−1  −  𝑐 +  𝜁𝑘−1 ∥

2
2

 

                                      𝜁𝑘  =  𝜁𝑘−1  +  𝐴𝑥𝑘   +  𝐵𝑧𝑘  –  𝑐                           − − − − − − − −(15) 

Where  𝜁 =  
 𝛾

𝜏
 ,    𝑘 =  1,2, …   

 

3.2 DoA Algorithm implementation 

The above ADMM Algorithmic ideas are extended to one dimension DOA estimation, it is estimated 

with pitch angle DOA, for example, at this time 𝑥 = 𝑆′𝑟  resents the angle vector to be unraveled, that is the 

corresponding ADMM Algorithmic solution form, introduces auxiliary vector 𝛽, then the constraints are satisfied 

𝛽 =  𝑥, using the corresponding formula (12), the solution form expresses objective function as 

𝑚𝑖𝑛
x , 𝛽  

 
1

2
  ‖y − 𝐴𝑥‖

2
2

 +  ƞ. ‖𝛽‖1 

                                                                        s.t 𝛽 − 𝑥 = 0             − − − −(12) 

where, 𝑦 = 𝑦𝑟   is the array observation data, in terms of signal model, the specific form of the pitch angle 

estimation observation can be represented as  

A =  exp (−j
2π

λ
  (𝑧𝑚 sin(  θ′

𝑑)) + 𝜌′ exp (−j
2π

λ
(𝑧𝑚 sin ( θ′

𝑠))) 

Similarly, for azimuth DOA estimated, 𝑦 = 𝑦𝑐 , 𝑥 = 𝑆′𝑐, the azimuth estimation observation may be expressed by 

A =  exp (−j
2π

λ
  (𝑌𝑚  sin(  φ′

𝑑
) . Now after this point, construct the augmented Lagrangian function 

𝐿𝜏  (𝑥, 𝑧, 𝛾) =
1

2
∥ 𝑦 −  𝐴𝑥 ∥

2
2

+   ƞ. ‖𝛽‖1 +  γ𝑇(𝛽 − 𝑥)  +
𝜏

2
∥ β −  𝑥 ∥

2
2

− − − (17) 

According to ADMM algorithm the idea, at the beginning solve the variable x. Because 𝐿𝜏 is derivable, 
𝜕𝐿𝜏

∂x
 = 0, 

available 

  𝑥 = ( A𝐻𝐴 +  𝜏𝐼 )−1   ( A𝐻𝑦 +  𝜏𝛽 −  𝛾 ) = ( A𝐻𝐴 +  𝜏𝐼 )−1   (A𝐻𝑦 +  𝜏 ( 𝛽 −  𝜁 )) − − (18) 

Where I represents the identity matrix, =
 𝛾

𝜏
 , in this second pair beta can be solved  

𝑎𝑟𝑔 
𝑚𝑖𝑛
 𝛽  

𝐿𝜏 (𝑥, 𝑧, 𝛾) =  𝑎𝑟𝑔 
𝑚𝑖𝑛
 𝛽  

(  ƞ. ‖𝛽‖1 +  γ𝑇(𝛽 − 𝑥) +
𝜏

2
∥ β −  𝑥 ∥

2
2

)  𝘟   
2

 𝜏
  

                                  =  𝑎𝑟𝑔 
𝑚𝑖𝑛
 𝛽  

(  
2ƞ

 𝜏
 ‖𝛽‖1−∥

 𝛾

𝜏
∥

2
2

+∥
 𝛾

𝜏
+  β −  𝑥 ∥

2
2

) 

                                  =  𝑎𝑟𝑔 
𝑚𝑖𝑛
 𝛽  

(  
2ƞ

 𝜏
 ‖𝛽‖1+∥  β − (

 𝛾

𝜏
+ 𝑥)  ∥

2
2

) 

                                  =  𝛺 𝛾

𝜏
 (

 𝛾

𝜏
+ 𝑥) =  𝛺 𝛾

𝜏
 (𝜁 + 𝑥) − − − − − (19)  

Where 𝛺 𝛾

𝜏
 (𝜁 + 𝑥) represents soft threshold operator, finally by using equation (15) we get ζ analytical formula. 

One dimensional DoA estimation parameter update strategy can be stated through ADMM algorithm. This can 

be represented as follows, 

X𝑘  = (A𝐻𝐴 +  𝜏𝐼)−1   (A𝐻𝑦 +  𝜏 (𝛽𝑘−𝑖  – 𝜁𝑘−𝑖)) 

𝛽𝑘 =  𝛺 𝛾
𝜏

 (𝜁𝑘−𝑖 + X𝑘) 
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𝜁𝑘 = 𝜁𝑘−𝑖 +  X𝑘 −  𝛽𝑘  − − − − − (20) 

The target angle estimated value e Ɵ could be get from above formula, as stated in signal model, using 

the formula (19). Attenuation coefficient ‘𝜌‘ can be solved, use ρ update observation list A, the target angle 

estimated value is given by continuously updating the solution until the algorithm converges to Ɵ. Azimuth angle 

estimation is the same as the above process, so it will not be described in detail as, 

ρ′ = (𝑦𝑟 −  exp (−j2π  (𝑧𝑚 sin(Ɵ′)))/( exp (−j2π(𝑧𝑚 sin (−Ɵ′)) 

In summary, based on  ADMM two dimensional fast DOA flow chart of Estimation method flow chart 

is represented in the figure 4. 

 

3.3 Algorithm Complexity Analysis 

Complexity of proposed algorithm is analyzed in this section. Subject to condition of homogeneous array, 

one can assume that azimuth and elevation beams are synthesized and search angle is the numbers are M, N, the 

whole set of azimuth and elevation airspace The numbers are 𝑚, 𝑛. Then based on the formula (5) find the array 

receive data. Complexity of the time in two dimensional beamforming is 𝑂(𝑀𝑁), according to the formula (20) 

know the ADMM main calculation amount of the algorithm comes from solving the linear equation system when 

updating the parameters, and complexity of time is  𝑂(m3) + 𝑂(n3). In summary, algorithm proposed here, the 

main time complexity is O(MN + m3 + n3). 

 

 
Fig 4: ADMM for two dimensional DOA estimation. 
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4. Experimental simulation and analysis 

This section is presented with the comparison of proposed algorithm with Spatial Smoothing-Multiple 

Signal Classification (SS-MUSIC)[3] and Alternating projection- Multiple Signal Classification (AP-MUSIC)[4] 

algorithm. The comparison of estimation accuracy and operation time verifies the proposed algorithm’s 

effectiveness. The simulation conditions are set as follows: Number of horizontal array elements are 20, the no. 

of vertical array elements are 16, the array element interval 0.5 m, wavelength 1 meter, Radar Elevation 10 meters, 

the specular reflection coefficient is 0.95, the transmission bandwidth of the each array element 500KHZ. 

 
Fig 5: Target Spatial spectrum 

𝐑𝐌𝐒𝐄φ = √
1

𝐷
∑     ( φ′

𝑑
− φ)

𝐷

𝑑=1

² 

𝐑𝐌𝐒𝐄Ɵ = √
1

𝐷
∑     ( Ɵ′

𝑑 − Ɵ)

𝐷

𝑑=1

² 

(RMSE), the root mean square error is taken as DOA Measure of estimation accuracy, azimuth and 

elevation angle. RMSE can be defined as in the above equations, number of Monte Carlo experiments is given by 

D, estimated value obtained from the second experiment are φ′𝑑, Ɵ′
𝑑 respectively represent the dth angles.  φ, Ɵ 

indicates the true azimuth and pitch angle of target.  

 
Fig 6: RMSE for different SNR measured with single snapshot 

 

Experiment 1 is to verify effectiveness of algorithm proposed in this paper. Assuming that the target 

distance from radar is 50 km, the target height is 1.4 km, as given in Figure 2. Space geometric model can calculate 

the target pitch angle to be about 1.6°, set the target azimuth as 30° and the signal-to-noise ratio 5dB. Experimental 

setup for row-column beam synthesis, the angular search interval is 1°. From the beam synthesis the target azimuth 

angle is about 30°, so the rough azimuth angle of target is obtained by the beam synthesis. But for the pitch angle, 

since direct signal and multipath wave pitch angle approximately satisfy θ𝑑 ≈ − θ𝑠, the angle corresponds to the 
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target by beamforming is in 0° nearby. The approximate position of target may be determined by beam synthesis, 

so the beam width can set in terms of the azimuth and elevation angle of array position, pitch angle search range. 

In this experiment, the azimuth search range is set as the surrounded by 28◦∼32◦, the pitch angle search range 

could be set as −5◦∼5◦, the interval is set for angle search is 0.1°. 

Figure 5 demonstrates that results of algorithm proposed here and SS-MUSIC, AP-MUSIC. The 

algorithm correctly estimates the spatiotemporal spectral results. As shown in figure 5 it is evident that the target 

azimuth angle be estimated correctly, compared to other two algorithms. The proposed ADMM algorithm has a 

narrower main lobe and lower side lobes, indicating that proposed algorithm with higher DOA Estimation 

accuracy. 

 
Fig 7: RMSE for different SNR measured with 20 snapshots 

 

For the purpose of verifying performance of angle measurement of proposed algorithm, Experiment 2 

has been conducted. Figure 6 shows the performance of DOA estimation, each algorithm with a single snapshot, 

where Figures 6(a),(b) can be noticed intuitively that the algorithm of this work is closer to actual angle and has 

better two-dimensional DOA estimated performance compared to other two. 

Figure 7, the algorithm estimation performance compared under condition of the 20 snapshots, the RSME 

variation of algorithm with different signal-to-noise ratios (SNR). On an average, the proposed algorithm’s  

performance is improved by about 53% compared to the SS-MUSIC, and improved by about 100% compared to 

the AP-MUSUC algorithm. 

In Figure 8, we study RMSE azimuth and elevation estimation curve to different snapshot numbers, at 

the time of SNR = 0dB. It is obvious that RMSE performance is improved considering increasing snapshot 

numbers. And it is shown that the RMSEs of the methods with ADMM take an advantage over the SS-MUSIC 

and AP-MUSIC.  

 

 
Fig 8: RMSE with different numbers of snapshots 
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In order to compare the computational efficiency between the algorithms, table 1 gives the time required 

for a single run of each algorithm. One can notice from the Table 1, the computational efficiency of  algorithm 

proposed in the paper is obviously better than AP-MUSIC, the reason is method proposed in the study does not 

require to perform Eigen decomposition, and the convergence speed is fast. Because in SS-MUSIC, the procedure 

does not involve an iterative process, the operation speed is fast, and the process needs to perform Eigen 

decomposition. When array is large, the Eigen decomposition operation time will be greatly increased, so under 

the idea of ensuring accuracy requirements, proposed algorithm has more advantage. 

 

Table 1: Algorithm running time 

Sl# Algorithm Running time 

1 ADMM  0.0189 

2 AP-MUSIC 0.0598 

3 SS-MUSIC 0.0040 

5. Conclusion  

This study proposes a fast two-dimensional angle of arrival estimation technique for meter wave array 

radar. The algorithm transforms the two-dimensional DOA estimation into two one-dimensional DOA estimations 

through the row and column beamforming technology, which avoids the complex calculation of two-dimensional 

joint estimation and greatly lessens the complexity. Using the ADMM algorithm for angle estimation does not 

need any Eigen decomposition and it does not lose the effective aperture of array under condition of ensuring the 

angle measurement accuracy. Convergence speed of algorithm is better than existing, therefore proposed 

algorithm has more efficient and has wider scope of application.  
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