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Abstract: This study looks at the usage of Artificial Neural Network Modeling for predicting Specific Fuel 

Consumption for compression ignition engines running on Diesel, Low-Density Polyethylene Pyrolysis Oil 

(LDPE PO), High-Density Polyethylene Pyrolysis Oil (HDPE PO), and Polypropylene Pyrolysis Oil (PP PO). 

Using preliminary practical findings, The Model of ANN was built to estimate SFC by adjusting the 

parameters of the engine. SFC is anticipated by adjusting the parameters and utilizing the orthogonal array. 

The experiment is then carried out using an orthogonal array. The outcomes of experimental work are used to 

create an ANN model. In the case of a non-linear mapping between input & output, the classic back-

propagation method and a multi-layer perception network are utilized. The values of Mean Square Error 

(MSE), Root Mean Square Error (RMSE), and Regression Coefficient (R2) for LM10TP architecture are 

1.5143×10–06, 0.0012 & 1 in training & the validation values 1.2185×10–06, 0.0011 and 0.9999 respectively.  It 

was discovered that neural networks are useful tools for prediction since they performed well in specific fuel 

consumption prediction in both training and validation. 

 

Keywords:  high density polyethylene pyrolysis oil (hdpe po); low density polyethylene pyrolysis oil (ldpe 

po); polypropylene pyrolysis oil (pp po); artificial neural network; specific fuel consumption; compression 

ignition engine. 

 

 

1. Introduction 

I have read hundreds of articles in newspapers about the major problem with plastic trash. In our 

society, it is common practice to toss away food in plastic bags, and animals searching for food get the food in 

plastic bags, and they consume food with plastic that is not digestible, and the storage of this plastic in their 

stomach leads to the development of cancer’s cell in their bodies. The majority of plastic garbage ends up in 

landfills, where it forms a layer in the soil, due to the plastic layer preventing rainwater from reaching the 

required depth and crops from receiving sufficient nutrients from the soil. Storage of petroleum products is 

limited and as per the current usage; it will become empty in the nearest future, so required to find alternative 

options for petroleum products. The intermolecular structure of plastic material has a long chain of carbon and 

hydrogen and during the combustion of carbon can get energy. And in the current work with the help of the 

pyrolysis process fuel is generated from different types of waste plastic and used in Diesel engines and tested for 

emission and performance of the engine. In an engine using waste plastic fuel can reduce the waste plastic that 

goes into landfills, save the life of animals by awareness in society, and also satisfy the scarcity of petroleum 

products. For many decades, the diesel engine has dominated as a source of mechanical power, an engine useful 

in many fields such as industries, agriculture, and vehicles, among others. Because of the well-known fact that 

petroleum reservoirs are rapidly depleting, alternative fuel is the fastest-developing fuel replacement in the 

current environment (Cheikh et al. 2016). Because of human health hazards such as air pollution, acid rain, 

increased greenhouse gas emissions, and an unbalanced thermal balance of the planet caused by diesel 
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combustion, alternative fuels are a viable future energy source for businesses or transportation sectors. Given the 

aforementioned conflicts, it is critical to minimize emissions by limiting petroleum fuel usage. As a result, using 

environmentally acceptable, innocuous, ecological substitute fuels efficiently reduces the use of petroleum and 

emissions of greenhouse gas (Yinjie et al. 2018).  Here a partial restoration of diesel with biodiesel in CI engines 

might result in a viable mix with attributes similar to base diesel (Dey, S., M. Deb, P. K. Das 2019).  However, 

blending alcohol with diesel is usually a complex and difficult operation that needs a specialized solution.  The 

fundamental disadvantage of such diesel-alcohol mixes is their instability (Shahir et al. 2014). Extensive and 

time-consuming testing is needed to evaluate the emission and performance characteristics of a CI engine. To 

address this, researchers used the properly trained with appropriate data, an ANN prophesy tool may forecast the 

true value with astonishing precision. As a result, little experimentation is necessary for an efficient and 

successful ANN model, and the produced data will be used to train the network. The ability of ANN to learn, 

represent non-linear processes, and adapt to changes in real time distinguishes it from other prediction 

technologies. The predictive power of ANNs for diesel engine performance metrics was explored (Parlak et al. 

2006). ANN was used to forecast the emission and performance characteristics of hybrid fuels. They created a 

replica for training and assessing experimental data using a typical back propagation approach. They used the 

constructed network to predict engine characteristics with a little root mean square error (RMSE) and a 

correlation coefficient (R) of 0.975-0.999 (Wang et al. 2017). Created an ANN model to estimate NOX, torque 

and CO emissions from a CI engine running on peanut biodiesel, diesel and peanut biodiesel alcohol blend.  The 

back propagation method has more accurate outcomes than standard regression modeling (Tosun et al. 2016). 

Injection time, compression ratio, blend percentage, and % load were used as input factors to estimate exhaust 

gas temperature (EGT), smoke, UHC emissions, brake thermal efficiency (BTE), brake specific energy 

consumption (BSEC), NOX. They discovered a significant connection between experimental and ANN-

predicted values with 8% mean relative error (MRE) (Pai, P. Srinivasa, and BR Shrinivasa Rao 2011). For 

engine performance, specific fuel consumption (SFC), and exhaust emissions (CO and HC), Waste-cooking 

biodiesel with replica of ANN was also explored. Using MLP network, they obtained good correlation 

coefficients (R) of 0.999, 0.999, 0.9487, 0.929, and for HC emissions, SFC ,engine torque, CO respectively 

(Oguz, Hidayet, Ismail Sarıtas, and Hakan Emre Baydan, 2010). An ANN prophecy art was also created for 

predicting various performance parameters of diesel biodiesel-bioethanol blends, and it was revealed that ANN 

is acceptable for predicting various performance parameters with a 99.94% dependability value (Ghobadian et 

al. 2009). Based on the lowest MSE value of 0.0001086 at 18 hidden neurons, the ANN technique is utilized to 

estimate exhaust pollutants such as soot, NOX, and CO2 (Javed et al. 2015). A solid model for predicting various 

engine operating characteristics. They found an accurate match between experimental and projected data using 

the ANFIS model, with high overall R (0.998875-0.999989) and 0.08-1.84% MAPE value (Roy et al. 2015). 

The statistical errors of ANN training on various network topologies were also investigated, and an optimal 

network design was for the prediction of output parameters within range. Using the developed model with 6 

neurons in the hidden layer, they obtained MSE, MAPE and R values of 0.000225, 2.88%, 0.99893, and 

respectively. However, in the domain of diesel-biodiesel-ethanol blends for diesel engine applications 

(Bhowmik et al. 2017). Experiment findings reveal that increasing IOP causes increased HRR and decreased 

NOX levels. The average rise in BTHE was 4%, whereas NOX levels were lowered by 9%. UBHC and CO 

emissions were reduced by 33% and 10.5%, respectively (Srinidhi et al. 2022). The performance of the nano 

particles-induced NB25 mix is superior to EGR. BTE was raised by 17% using the nanoparticle approach. Even 

though the EGR approach efficiently lowers nitrogen oxide emissions, far larger quantities of unburned HC, 

CO, and CO2 were found (Srinidhi et al. 2022). A CI Engine fed with NB25 and fuel additives were evaluated 

for performance and emissions. The findings show that when additives with NiO fuel were added to the NB25 

mix, high NOX peaks with improved performance and lower CO and HC emissions were detected (Campli 

Srinidhi et al. 2021). The predicted and experimental responses of RSM predictors have a small error range of 

0.7%-4.64% (Srinidhi et al. 2021). According to the results of the experiments, 75 ppm NiO in the NB25 blend 

lowers thermal NOx upto 6.2% when compared to the absence of nanoparticles, BTE improves by 2.9%, and 

BSFC decreases by 1.8%. The addition of 75 ppm NiO in NB25 resulted in not only the greatest performance 

but also the lowest hazardous emission (Campli et al. 2021). A feed-forward multi-layer is utilized in 

combination with Trainlm, a Levenberg-Marqardt backpropagation training technique. The best static injection 
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time, fuel injection pressure, and HnOME mix parameters were found to be 18, 22° bTDC, 227 bar, and B60 

(Channapattana et al. 2017).  At 240 bar IP, Honne biodiesel’s BSFC is 0.042 Kg/kWhr greater than that of 

Diesel oil. As the IP and blend amounts grow, so do NOX emissions. The B20 blend outperforms other Honne 

biodiesel blends in terms of thermal performance, but it creates greater amounts of exhaust emissions 

(Channapattana et al. 2015). An experiment study of performance metrics (BP, BSFC, BTE, and EGT) and 

emission characteristics (NOX, HC, CO., etc.) on a modified variable compression ratio CI engine is obtained 

and compared with conventional diesel at various loads (Channapattana et al. 2015). An application of ANN 

modeling to forecast the SFC of a 4-Stroke single-cylinder diesel engine powered by Diesel. LDPE PO (Low-

Density Polyethylene Pyrolysis Oil), HDPE PO (High-Density Polyethylene Pyrolysis Oil), and PP PO 

(Polypropylene Pyrolysis Oil). Based on preliminary experimental results, an ANN model was built to forecast 

SFC by altering the percentage of load, injection pressure, and compression ratio. In the current experimental 

work, four types of fuel are taken for testing purposes. 64 sets of experiments for each fuel required using an 

orthogonal array 16 sets of experiments of each fuel were chosen and performed experimental work, Using 

ANN method calculate the engine performance parameter for remaining and already chosen sets of an 

experiment. Also, compare experimental results with ANN predicted result for minimum mean square error. The 

current study intended to create an Experimental-ANN hybrid model for the particular fuel consumption of a 

Diesel Engine. The ANN model is constructed utilizing experimental data from specific fuel consumption 

models based on the L64 orthogonal array. Using a neural network model saves time and effort. The value of 

MSE and R2 result in the training and validation model will require the nearest value of zero and one 

respectively. ANN finds the best prediction tool for optimization. Uncertainties in the experiment's numerous 

equipment and parameters taken as per literature survey (Channapattana et al. 2017).  

 

2. Material And Methods  

To generate waste plastic pyrolysis oil, many forms of plastic waste are utilized as raw materials in the 

pyrolysis process. Pyrolysis is the thermal breakdown of organic matter in the absence of oxygen.  A closed 

container was selected inside the waste plastic filled then the heat was given from the bottom of the container, 

vapor of plastic waste cooled inside the condenser at the bottom of the condenser plastic pyrolysis oil was 

collected in a bottle of.  
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Fig 1: Pyrolysis oil production Experimental view 

 

Figure 1 shows Pyrolysis oil production Experimental view in the experimental setup contains a 

pyrolysis chamber with a heat source and condenser. Different types of waste plastic feed into the combustion 

chamber to produce pyrolysis oil. Waste materials of Low-density polyethylene, High-Density polyethylene, 

and polypropylene are used to produce pyrolysis oil and tested with diesel fuel in engines. The parameters of 

diesel fuel and plastic pyrolysis fuel are listed in Table 1. The Taguchi method is a collection of mathematical 

and statistical techniques useful for the parametric optimization. ANN is used to study the connection between a 

response and a set of quantitative experimental variables or factors. 

 

LDPE PYROLYSIS OIL 

Density = 765 kg/m3,  

LCV = 10530 Calorie/ (gm-0c) 

HDPE PYROLYSIS OIL 

Density = 790 kg/m3,  

LCV = 9714 Calorie/ (gm-0c) 

PP PYROLYSIS OIL 

Density = 736 kg/m3, 

LCV = 9901 Calorie/ (gm-0c) 

   

 

Fig 2:  Pyrolysis oil used in experiment 
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3. Experimental Methodology 

 

Table 1: Fuel Properties Table 

Sample/ 

Properti

es 

Acid 

Value 

Specifi

c 

Gravit

y 

Densit

y 
LCV HCV 

Flash 

Point 

Fire 

Point 

Viscosity@40
0C 

Dynamic 

Viscosity@40
0C 

Unit 

(mg 

of 

KOH

)/ gm 

of oil 

- kg/m3 

Calori

e/ 

(gm-
0c) 

Calori

e/ 

(gm-
0c) 

0C 0C cSt Cp 

ASTM 

Standard 

D675

1 
D287 D287 

D4800

9 
D4809 

D9358

T 

D9358

T 
D445 D445 

Diesel 0.6 0.83 830 10034 10619 53 56 2.09 1.73 

LDPE 

PO 
- 0.765 765 10530 11116 35 41 2.22 1.69 

HDPE 

PO 
- 0.79 790 9714 10300 31 37 1.86 1.47 

PP PO - 0.736 736 9901 10487 24 31 1.64 1.21 

 

 
Fig 3: Flow chart of experiment (Patel & Bhatt, 2016) 
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Figure 3 depicts an experiment flow chart. Experiments for diesel, plastic pyrolysis fuel, injection 

pressure, and compression ratio are planned using Taguchi's L64 orthogonal array. Experimental work was 

performed with diesel and different types of plastic pyrolysis oil. Test engine specification taken as per literature 

review paper (Dey, S., M. Deb, P. K. Das 2019). Various injection pressure and compression ratios are used in 

the experimental setting. The photographic view to modify the compression ratio and injection pressure is 

shown in Figure 4. 

      
 

Fig 4: Changing in Compression Ratio and Injection Pressure 

 

Table 2: Factors and their levels 

Factor                                          Level 

1 2 3 4 

Type of Fuel 1 (DIESEL) 2 (LDPE PO) 3(HDPE PO) 4 (PP PO) 

Compression Ratio 15 16 17 18 

Injection Pressure (bar) 180 200 220 240 

Load (Kg) 0 4 8 12 

 

Table 2 represents the factors and their levels taken into the experimental setup. Types of fuel, 

compression ratio, Injection pressure and Load considered. Every factor having four levels considered in 

experimental setup. 

Table 3: Experimental Results Table 

Sr. No 
Experimental 

Run 

Factors 
SFC 

(kg/kWh) Types of fuel CR IP Load 

Training Data Sets 

1 2 1 15 200 4.12 0.7631 

2 3 1 15 220 8.13 0.4781 

3 4 1 15 240 12.33 0.4092 

4 5 1 16 180 3.88 0.7637 

5 7 1 16 220 12.22 0.4414 

6 8 1 16 240 0.13 15.9842 

7 9 1 17 180 8.1 0.4814 
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8 11 1 17 220 0.23 8.2872 

9 12 1 17 240 4.22 0.7088 

10 13 1 18 180 12.25 0.4389 

11 14 1 18 200 0.23 8.9635 

12 16 1 18 240 8.22 0.4744 

13 17 2 15 180 0.23 8.5068 

14 18 2 15 200 4.25 0.6188 

15 19 2 15 220 8.28 0.4642 

16 21 2 16 180 4.22 0.5427 

17 23 2 16 220 12.32 0.3997 

18 24 2 16 240 0.17 11.7309 

19 25 2 17 180 8.23 0.4458 

20 26 2 17 200 12.42 0.3926 

21 28 2 17 240 4.13 0.6368 

22 29 2 18 180 12.33 0.3215 

23 30 2 18 200 0.13 13.6036 

24 32 2 18 240 8.21 0.4026 

25 33 3 15 180 0.12 18.0943 

26 35 3 15 220 8.13 0.4409 

27 36 3 15 240 12.21 0.3952 

28 37 3 16 180 4.23 0.7079 

29 38 3 16 200 8.19 0.3935 

30 40 3 16 240 0.23 9.3343 

31 42 3 17 200 12.31 0.3746 

32 43 3 17 220 0.14 14.2211 

33 44 3 17 240 4.29 0.6267 

34 45 3 18 180 11.73 0.4401 

35 47 3 18 220 4.14 0.7291 

36 48 3 18 240 8.22 0.4534 

37 49 4 15 180 0.23 9.6329 

38 50 4 15 200 4.13 0.6572 

39 52 4 15 240 12.1 0.3296 

40 54 4 16 200 8.12 0.3882 

41 55 4 16 220 12.32 0.3167 

42 56 4 16 240 0.26 8.5447 

43 57 4 17 180 8.23 0.3843 

44 59 4 17 220 0.24 8.3119 

45 60 4 17 240 4.24 0.6332 

46 61 4 18 180 12.11 0.3285 

47 63 4 18 220 4.07 0.6896 

48 64 4 18 240 8.31 0.3809 

Validation Data Sets 

49 1 1 15 180 0.13 17.4198 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 4 (2023)  
____________________________________________________________________________________________ 

 

3620 

 

50 6 1 16 200 8.23 0.4742 

51 10 1 17 200 12.33 0.4206 

52 15 1 18 220 4.22 0.7064 

53 20 2 15 240 12.23 0.3440 

54 22 2 16 200 8.11 0.4124 

55 27 2 17 220 0.24 6.7708 

56 31 2 18 220 4.33 0.5671 

57 34 3 15 200 4.19 0.6044 

58 39 3 16 220 12.35 0.3498 

59 41 3 17 180 8.29 0.4878 

60 46 3 18 200 0.15 14.3220 

61 51 4 15 220 8.24 0.4005 

62 53 4 16 180 4.23 0.6296 

63 58 4 17 200 11.92 0.3070 

64 62 4 18 200 0.2 9.9480 

 

In Table 3 contained 64 experimental set up with specific fuel consumption performance parameter and 

in Table 4 shows the Experimental and BS-VI Emission range Comparison. 

 

Table 4: Experimental and BS-VI Emission range Comparison 

Emission 

Parameter 

 

Fuel 

Emission Range 

during 

Experiment 

BS-VI 

Emission 

Range 

Remarks 

CO (%vol) 

1 (DIESEL) 0.07-0.41 

0.3 

Only In overload out of Range 

2 (LDPE PO) 0.05-0.45 Only In overload out of Range 

3(HDPE PO) 0.09-0.33 Only In overload out of Range 

4 (PP PO) 0.07-0.26 Within Range 

NOX 

(g/kWh) 

1 (DIESEL) 0.239-4.493 88% 

Reduced 

compare 

with BS-

IV 

4.2 

In overload out of Range 

2 (LDPE PO) 0.745-4.312 Only In overload out of Range 

3(HDPE PO) 0.205-4.167 Within Range 

4 (PP PO) 0.128-3.245 Within Range 

HC (ppm) 

1 (DIESEL) 15-52 

200 

Within Range 

2 (LDPE PO) 22-67 Within Range 

3(HDPE PO) 36-90 Within Range 

4 (PP PO) 31-260 Only In overload out of Range 

Smoke 

( HSU) 

1 (DIESEL) 1.8-24.5 

26 

Within Range 

2 (LDPE PO) 1.2-16.3 Within Range 

3(HDPE PO) 1.1-6.2 Within Range 

4 (PP PO) 0.8-26.5 Only In overload out of Range 

 

 

4. Effect Of Engine Parameter On Performance 

The thermal efficiency and brake-specific fuel consumption rise as the compression ratio increases. 

Compression ratio increases result in greater in-cylinder pressure, quicker heat release, and shorter ignition 

delay. High-pressure fuel injection enhances fuel atomization, shortens the delay time, speeds up combustion, 
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and improves fuel/air mixing to promote full combustion, all of which increase fuel efficiency. With excessive 

injection pressure, the ignition delay time shortens, reducing the possibility of homogenous mixing and 

lowering combustion efficiency. Low injection pressure increases the diameter of fuel droplets, resulting in a 

longer ignition delay and inefficient combustion. The combustion parameters of an engine are affected by 

engine load. As engine load increases, engine speed lowers. When the load exceeds the rated load, the engine 

is overloaded. In an overload condition, the speed drops below the rated speed. Heavy loads have greater 

inertia and rolling resistance, both of which lead to higher fuel consumption. Overload puts a lot of strain on 

the system. The tyres might easily wear out and overheat. This results in costly tyre breakdowns and the risk of 

a disastrous blowout. Extra strain means the engine has to work harder to propel the car. 

 

5. Effect Of Engine Parameter On Exhaust Emission 

Lower exhaust gas temperatures were recorded at increased compression ratios. This is owing to 

improved heat-to-work conversion, which is caused by efficient combustion. The use of a lean mixture at part-

load lowered exhaust gas temperature. Increasing the injection pressure resulted in quicker combustion, a 

considerable decrease in soot, especially at low engine speeds, but also a large increase in NO emissions, 

according to the data. The temperature of the exhaust gas rose with increasing engine load in all operating 

modes. This is related to higher fuel consumption, which causes an increase in total energy intake under high 

load. It was also determined that increasing the quantity of EGR. This orthogonal array was chosen because of 

its capacity to examine factor interactions. "Orthogonal arrays" (OA) are experimental designs that use 

specially created tables. The usage of these tables makes experiment design relatively simple and uniform. The 

value of specific fuel consumption is assessed to determine the appropriate injection pressure, compression 

ratio, and fuel. A series of experiments are carried out in order to determine the best injection pressure, 

compression ratio, and fuel. Because particular fuel consumption is deemed more relevant for study, an ANN 

model is developed to forecast specific fuel consumption using data from Table 4. Error Bars are a graphical 

addition that depicts the variability of data presented on a Cartesian graph. Error bars are used to illustrate 

estimated error or uncertainty in order to provide a broad idea of how exact a measurement is. In all the graphs 

of the current paper error bar is included. 

 

6. ANN Model For Predicting Sfc Using Ann Approach 

According to literature reviews, ANN models outperform regression models in terms of prediction 

capabilities. As a result, ANN models are constantly developed for predicting particular fuel usage. post-

process model, Pre-processes, model simulation, training and design in the production of ANN prediction 

models are all covered in this part. 

 

Table 5: Errors vs no. of neurons in hidden layer 

No. of Neurons MSE R2 

1 0.00173600 0.99733 

2 0.00075035 0.99885 

3 0.00032700 0.99950 

4 0.00025842 0.99960 

5 0.00015770 0.99988 

6 0.00010799 0.99992 

7 5.0651× 10–06 0.99994 

8 8.545 × 10–06 0.99995 

9 2.3233 × 10–06 0.99999 

10 1.5143 × 10–06 1 

11 4.1962 × 10–06 1 
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12 1.2958 × 10–17 1 

13 2.1948 × 10–16 1 

14 1.7804 × 10–26 1 

15 4.0781 × 10–24 1 

 

Data must be translated into a range of -1 to 1 or 0 to 1 before being used for ANN training, i.e. 

normalised for ANN training. Range in [-1, 1], is used to determine data normalisation. 

                                                                                                            

                                                                                                                                (1) 

where: 

xn = Normalized Value of Variable x;  x = Value of Variable x; 

xmin = Min. Value of Variable x; xmax = Max. Value of Variable x 

Following normalisation, training target sets and input data are developed. Each input set, target data 

sets include normalised measured specific fuel consumption numbers. Study involves a function estimation or 

prediction problem where the eventual error reduction was to be as small as feasible.In the current experiment, 

each reading was obtained three times, and the average value of all three readings was used to calculate and 

construct graphs. During Experimental work, each minor precaution is taken to avoid a personal error. We 

have examined combustion charts for every experiment and the parameters responsible for the Acoustic 

signature and misfire are in a proper range. So, we did not experience any abnormal combustion during the 

experiment. 

 

7. Neural Network Design 

64 experimental data sets are separated into two categories: training and validation. MATLAB's 

Neural Network Toolbox is used to train and test multiple network configurations with varying numbers of 

hidden neurons. For training, 48 orthogonal array data employed & 16 data sets are  

chosen at random for validation. Training data reduce ANN learning processing time & boost model 

generalization. A maximum data used to train the models. Here, the Levenberg-Marquardt (LM) optimisation 

approach used to determine biases and weights. Training approach adjusts iteratively in order to remove errors 

between the objective & predicted output. The literature has shown that Levenberg-Marquardt can generate 

proper results quickly if the number of neurons in hidden layers is appropriately selected. Table 5 shows a 

performance analysis (MSE, R2) score that is equal to the no. of neurons in the hidden layer. With data 

Augmentation, Regularisation, Dropouts, Increasing the size of the training dataset, and Cross-validation, all 

mentioned ways to overcome overfitting, increasing the size of the training dataset was taken in the current 

work, for Training dataset 48 experiments, and Validation dataset 16 experiments. 

 
Fig 5: R2 vs no. of neurons in hidden layer 
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Fig 6: No. of neurons vs MSE in hidden layer. 

 

Figures 5 and 6 demonstrate how the number of neurons in the hidden layer affects R2 and MSE. 

When the number of neurons in the hidden layer reaches 10, the LM technique leads R2 to converge towards 1 

and MSE to converge towards 0. However, in training, this algorithm overfits predicted data, preventing it 

from appropriately generalising.  the network memorises training data too well, rendering it incapable of 

generating good predictions under new situations. As a result, testing the ANN model on a new dataset during 

the training process is crucial, first to check that the chosen structure gives outstanding results under random 

settings, and subsequently to fine-tune the structure choice. This inquiry will focus on one buried layer with 10 

neurons. 

 

Neural Network Training 

 
Fig 7: ANN Model designation 
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  Fig 8: LM10TP model with 3 layers 

 

 
Fig 9: LM10TP model Training 
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Figure 7 depicts how this model was named. This term refers to the numerous properties of the 

produced ANN model. It goes through the many types of training methods that are utilised, as well as the 

amount of neurons in the hidden layer, the transfer function used between the input and hidden layers, and the 

transfer function used between the hidden and output layers. Finally, a three-layer ANN model was created, 

trained, and simulated: one input layer, one hidden layer, and one output layer. The number of neurons in the 

input and output layers remained constant at four and one, respectively. In this study, one hidden layer with 10 

neurons used. In model, the tansig transfer function utilised between the hidden and input layers, while the 

purelin transfer function used between the output and hidden layers. 

Following data normalisation, target data files and input data files are created for training. Following 

data normalisation, target data files and input data files are created for training. Target data files contain targets 

for training and validation data sets, which are normalised measured specific fuel consumption thresholds. 

Works includes a prediction challenge that required the end error to be reduced to a very minimal number.  

Figure 8 illustrates the LM10TP model's fundamental perspective, whereas Figure 9 depicts the LM10TP 

model's neural network training window. 

 

 
Fig 10: LM10TP model training performance graph 

 

At epoch 6598, the best Training Performance is 1.5143 × 10-06. The training performance (MSE) 

graph of the LM10TP model created during training is depicted in Figure 8. The training was stopped after 

6598 epochs since the performance goal was attained. It is a great diagnostic tool for plotting faults and 

monitoring training progress. 

 

8. Mathematical Model For Predicting Output 

By modifying and storing suitable weights in the interconnection connections between neurons in 

different layers, the ANN model is trained. These weight values are the parameters responsible for allowing 

trained ANN models to forecast. The following equations 2 and 3 were utilised to generate the ANN output 

using weight, bias matrix, and transfer function. 

For first layer output 

a1 = f1 [(net. iw {1, 1} × p) + (net. b1 {1})]. (2) 

For second layer output  

a2 = f2 [(net. lw {2, 1} × a1) + (net. b2 {2})], (3) 

where a1 and a2 are the hidden layer and output layer of output vectors.  f1 = tansig transfer function, f2 = 

purelin transfer function, lw and iw are the weight matrices of the output and hidden layers, p is the input 

vector, and b1 and b2 are the bias vectors of the hidden and output layers, respectively. 
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Table 6: Weights in LM10TP model connections 

Weight 

values 

Bias 

Values 

Input–Hidden Layer Hidden – 

Output 

layer 

Input – 

Hidden layer 

Hidden – 

Output 

layer 

6.221514 3.123819 3.144247 2.875623071 -8.6675 2.178405713  

 

 

 

3.26535687 

14.4759 16.0651 -12.271 -34.12866049 0.173021 -29.1015509 

-3.33666 0.330777 2.196083 2.790147383 39.44371 9.59412524 

10.54957 -2.67429 -2.7649 -9.758369212 -0.04227 -2.26305401 

1.451752 1.972002 -1.72853 -6.588162804 -0.32879 -5.16054739 

-35.1262 -45.0384 6.259702 29.2926789 -0.00413 17.94165217 

-1.92107 0.539011 0.430859 3.65300448 -0.05577 0.501818928 

7.744301 3.116884 3.137591 2.832754193 -27.3696 3.18536946 

-0.03127 0.013652 0.05915 14.71766868 -43.8343 16.5848082 

7.220715 3.06043 3.08066 2.794263766 36.03121 2.892288716 

 

9. ANN Model Accuracy Checking 

ANN is producing great predictions, test data that has never been fed into the network is used, and the 

results are analysed. MSE, RMSE & coefficient of multiple determination (R2) measurements were used for 

comparisons. The following equations 4, 5, and 6 are used to calculate these values: 

             𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑖 − 𝑝𝑖)2𝑖=𝑛
𝑖=1                                                                          (4) 

 

              𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑖 − 𝑝𝑖)2𝑖=𝑛
𝑖=1

2
                                                                   (5) 

 

                     𝑅2 = 1 −
∑ (𝑎𝑖−𝑝𝑖)2𝑖=𝑛
𝑖=1

∑ (𝑝𝑖)2𝑖=𝑛
𝑖=1

                                                                         (6) 
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Fig 11: LM10TP model prediction errors in Training and Validation 
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Fig 12: Actual vs. ANN predicted result in Training and Validation 

 

The MATLAB programme was used to validate the prediction model's errors. The simulated ANN 

results were exported into the MATLAB workspace after training. Following the collection of training and 

experimental data, all findings were validated for three types of error terms. Figure 11 displays the LM10TP 

model's prediction errors throughout training and validation. In training, the LM10TP architecture's mean square 

error, root mean square error, and coefficient of determination R2 are 1.5143 x 10 -06, 0.0012, and 1, respectively. 

The MSE, RMSE & coefficient of determination R2 for the LM10TP architecture in the validation are 1.2185 x 

10-06, 0.0011, and 0.9999, respectively.   

 
Fig 13: LM10TP Model Linear Fitting 
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It demonstrates that this model performed well in both training and validation for particular fuel 

consumption predictions. Figure 12 shows a comparison of the LM10TP model's anticipated fuel 

consumption with the actual target during training and validation. Different colors and markers are used to 

demonstrate the comparison. The graph clearly shows that ANN's projected outcomes are quite close to real 

aims. To some degree, the mistakes on the training and validation sets may be used to measure the 

performance of a trained network is usually beneficial to analyse the network response in higher depth. This 

analysis is performed by the routine postreg. Postreg was receiving the network output and the related 

objectives. It offered three options. The first 2 values, b & m, are the slope and y-intercept, respectively. It 

was carried out for training and validation purposes between the network outputs and the given targets 

Figure 13 shows linear regression with three parameters m, b, and R for training and validation of the LM10TP 

model. Throughout training, R is equal to one, meaning that there is a perfect correlation between objectives 

and outputs. The validation graphs and parameters show that the LM10TP model fits linearly with R = 0.9999. 

This shows that the LM10TP model is ideally suited for precise fuel usage. 

 

10. Multiple Linear Regression Analysis 

Linear regression is a technique for describing the connection between a scalar dependent variable 

and one or more independent variables denoted by the letter X. When there is just one independent variable, 

simple linear regression is performed. When there are several independent variables, multiple linear regression 

is utilised. The relationship between a response variable (Ŷ) and 3 predictor variables (X1, X2 & X3) is 

described by a multiple linear regression equation. Equation (7) shows the multiple regression. 

                                                         

                                                     Ŷ = B0 - B1*X1- B2*X2 - B3*X3,                                       (7) 

Where: 

Ŷ - Predicted value of Specific fuel consumption, 

X1 – Compression Ratio, X2 – Injection Pressure, X3 - % of full load, 

B0 – Approximate value of y-intercept, 

B1, B2, and B3 Approximate value of the autonomous variable coefficient. 

 

Table 7: MLR Analysis Table 

Term Coef SE Coef T-Value P-Value VIF 

Constant 11.27 8.84 1.28 0.209 1.01 

CR -0.132 0.459 -0.29 0.774 1.01 

IP (bar) -0.0040 0.0217 -0.18 0.856 1.02 

Load (kg) -0.817 0.115 -7.13 0.000 1.01 

Types of fuel 

1 -0.017 0.885 -0.02 0.985 1.50 

2 0.004 0.891 0.00 0.996 1.52 

3 0.643 0.885 0.73 0.472 1.50 

S = 3.53786, R-sq = 56.24%, R-sq(adj) = 49.83%, R-sq(pred) = 39.37% 

 

MLR analysis is performed using Minitab 16 software. Table 7 displays the results of the MLR 

analysis performed with Minitab. Relation of Specific fuel consumption with Compression Ratio, Injection 

Pressure and % of full load is shown in equation (8), (9), (10) and (11). 

 

Fuel-1, SFC (kg/kWh) = 11.26 - 0.132 CR - 0.0040 IP (bar) - 0.817 Load (kg)                  (8) 

Fuel-2, SFC (kg/kWh) = 11.28 - 0.132 CR - 0.0040 IP (bar) - 0.817 Load (kg)                  (9) 

Fuel-3, SFC (kg/kWh) = 11.92 - 0.132 CR - 0.0040 IP (bar) - 0.817 Load (kg)              (10) 

Fuel-4, SFC (kg/kWh) = 10.64 - 0.132 CR - 0.0040 IP (bar) - 0.817 Load (kg)              (11) 
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Because the p-value is less than 5%, Compression Ratio, Injection Pressure, and % of full load have a 

statistically significant influence on Specific fuel consumption at the 95% confidence level. Table 7 displays 

the R Square (56.24) and Adjusted R Square (49.83) values, demonstrating that the LM10TP ANN model 

outperforms the linear regression model in terms of prediction output. MLR model is developed to examine 

the versatility of ANN model. In this study we are comparing R2 and MSE error of both the model.  

 

11. Comparison of ANN and MLR 

Table 8 compares the ANN and MLR prediction models. The RMSE between the experimental and 

projected responses for the ANN and MLR models was 0.012 and 3.374, respectively. Both models predicted 

particular fuel consumption; however the ANN model outperformed the MLR model in forecasting the SFC. 

This might be because constructing a sustainable regression model requires a significant quantity of data, but 

the ANN can recognize associations with small data. The impact of the predictors on the response variable, 

which may or may not be linear, provides a second reason. Particularly, their superior aptitude and flexibility 

in modelling nonlinearity, ANN models are likely to estimate Specific fuel use with more accuracy. As a 

result, ANN may be favoured when there are less datasets. 

 

Table 8: Comparison of MLR prophecy model and ANN error 

Run 

Experimental  

SFC 

(kg/kWh) 

ANN 

Predicted 

SFC 

(kg/kWh) 

ANN 

Error 

ANN 

RMS 

Error 

MLA 

Predicted 

SFC 

(kg/kWh) 

MLA 

Error 

MLA 

RMS 

Error 

1 17.42 17.407 0.013 

0
.0

1
2
 

8.454 8.966 

3
.3

7
4
 

2 0.763 0.755 0.008 5.114 -4.351 

3 0.478 0.477 0.001 1.758 -1.280 

4 0.409 0.411 -0.002 -1.754 2.163 

5 0.764 0.77 -0.006 5.258 -4.494 

6 0.474 0.477 -0.003 1.624 -1.150 

7 0.441 0.439 0.003 -1.716 2.157 

8 15.984 15.973 0.011 8.082 7.902 

9 0.481 0.477 0.005 1.678 -1.197 

10 0.421 0.419 0.001 -1.858 2.278 

11 8.287 8.291 -0.004 7.948 0.339 

12 0.709 0.709 0 4.608 -3.899 

13 0.439 0.44 -0.002 -1.844 2.283 

14 8.964 8.967 -0.004 7.896 1.067 

15 0.706 0.706 0 4.556 -3.850 

16 0.474 0.474 0 1.208 -0.734 

17 8.507 8.512 -0.005 8.392 0.115 

18 0.619 0.624 -0.005 5.028 -4.409 

19 0.464 0.464 0 1.655 -1.191 

20 0.344 0.364 -0.02 -1.652 1.996 

21 0.543 0.542 0.001 5.000 -4.458 

22 0.412 0.412 0.001 1.742 -1.330 

23 0.4 0.363 0.037 -1.777 2.177 

24 11.731 11.721 0.01 8.069 3.662 
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25 0.446 0.446 0 1.592 -1.146 

26 0.393 0.362 0.03 -1.911 2.304 

27 6.771 6.767 0.003 7.960 -1.189 

28 0.637 0.637 0 4.702 -4.065 

29 0.321 0.364 -0.042 -1.890 2.211 

30 13.604 13.591 0.012 7.998 5.606 

31 0.567 0.567 0.001 4.486 -3.919 

32 0.403 0.403 0 1.236 -0.834 

33 18.094 18.094 0 9.122 8.972 

34 0.604 0.601 0.003 5.717 -5.112 

35 0.441 0.442 -0.001 2.418 -1.977 

36 0.395 0.37 0.025 -0.996 1.391 

37 0.708 0.706 0.002 5.632 -4.924 

38 0.394 0.411 -0.018 2.317 -1.923 

39 0.35 0.37 -0.02 -1.162 1.512 

40 9.334 9.338 -0.004 8.660 0.674 

41 0.488 0.467 0.021 2.183 -1.695 

42 0.375 0.37 0.005 -1.181 1.556 

43 14.221 14.243 -0.022 8.682 5.540 

44 0.627 0.623 0.003 5.211 -4.584 

45 0.44 0.444 -0.004 -0.759 1.200 

46 14.322 14.322 0 8.621 5.701 

47 0.729 0.729 0 5.282 -4.553 

48 0.453 0.461 -0.007 1.868 -1.415 

49 9.633 9.633 0 7.752 1.881 

50 0.657 0.657 0 4.486 -3.829 

51 0.4 0.395 0.006 1.048 -0.647 

52 0.33 0.308 0.022 -2.186 2.515 

53 0.63 0.63 0 4.352 -3.723 

54 0.388 0.392 -0.004 1.094 -0.706 

55 0.317 0.335 -0.018 -2.417 2.734 

56 8.545 8.545 0 7.356 1.189 

57 0.384 0.384 0 0.952 -0.568 

58 0.307 0.3 0.007 -2.143 2.450 

59 8.312 8.312 0 7.320 0.992 

60 0.633 0.633 0 3.972 -3.339 

61 0.328 0.346 -0.018 -2.350 2.678 

62 9.948 9.948 0 7.301 2.647 

63 0.69 0.69 0 4.059 -3.369 

64 0.381 0.383 -0.002 0.515 -0.134 
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12. Conclusion 

The current study intended to create an Experimental-ANN hybrid model for particular fuel 

consumption of a Compression Ignition Engine. Based on L64 orthogonal array the ANN model of SFC 

prepared. The ANN model for predicting particular fuel use comes to the following findings. 

Neural network model based on experimental result decrease the Time and efforts.  

In training, the mean square error and coefficient of determination for the LM10TP architecture are 

1.5143 x 10-06 and 1, respectively.  

In the validation, the MSE and coefficient of determination for the LM10TP design are 1.2185 x 10 -06 

and 0.9999, respectively.  

The ANN's projected specific fuel consumption values are extremely similar to the experimental data.  

As a consequence, Utilized ANN is best substitute for predicting particular fuel consumption based on 

the impacts of Compression Ignition Engine settings. 
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