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Abstract: The paper investigates the “two-layered model of blood flow” as steady incompressible couple 

stress fluid through one-dimensional channel in multi-stenosed blood vessel. Within the core region, the blood 

flow is conceptualized as a dynamic entity exhibiting the attributes of a couple stress fluid, distinguished by 

variable viscosity orchestrated in accordance with the precepts delineated by the Einstein relation and the 

peripheral region of the tube comprises of plasma which is considered as “Newtonian fluid with constant 

viscosity”. The governing equations of the blood flow are solved using the Frobenius technique using the slip 

boundary condition and the expressions are derived for peripheral and central velocities along with shear stress 

and pressure gradient. The effects of various parameters on the flow variables have been emphasised. 

MATLAB programming software is used to visualize the results regarding shear stress and pressure gradient. 

The study further interrogates the effect of change in thickness of peripheral layer on pressure gradient under 

the influence of magnetic field and slip velocity. 
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1. Introduction 

The complex dynamics of blood flow within the circulatory system have long been a subject of intense 

research due to their paramount importance in understanding cardiovascular diseases and optimizing medical 

interventions. Hemodynamics, the study of blood flow in the circulatory system, plays a crucial role in elucidating 

the intricate phenomena associated with blood transport through vessels of varying geometries and properties. 

The flow of blood within stenosed tubes, which are constrictions or narrowings in blood vessels, is of particular 

interest due to its clinical relevance in conditions such as atherosclerosis, thrombosis, and other vascular diseases. 

Misra et al. [1] introduced a “non-newtonian” model of blood flow through confined arteries. A couple stress fluid 

model is characterized by its ability to account for the rotational deformations that occur within blood at the 

microscale. Blood is not a homogeneous, continuous fluid but rather comprises discrete components, including 

red and white blood cells, platelets, and plasma. These components interact and deform in response to fluid shear, 

exhibiting complex behavior. Modeling blood as a couple stress fluid allows us to capture these intricate 

microstructural effects [10]. 

Magnetic fields have emerged as a non-invasive tool with the potential to manipulate blood flow within 

the circulatory system. This area of research holds promise for novel diagnostic and therapeutic approaches. 

Magnetic fields can be applied externally, offering a means to exert control over the movement of blood without 

the need for invasive procedures. One significant application of magnetic fields in hemodynamics is the control 

of drug delivery. Magnetic nanoparticles, when introduced into the bloodstream, can be directed to specific target 

sites using external magnetic fields [2]. This technique has opened up possibilities for precisely delivering 

therapeutic agents to diseased tissues, reducing side effects, and enhancing treatment efficacy. Additionally, 

magnetic fields have been explored for their potential to enhance targeted drug delivery within the circulatory 

system [3]. The ability to guide therapeutic agents to specific regions of the vascular network offers considerable 

potential for improving the treatment of vascular diseases and cancers. Further, the impact of slip velocity against 
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the wall in a blood flow was investigated by Roy and Sinha [4]. Kumari et al. [5] diagnosed the peristaltic flow 

properties of blood through stenotic artery in the presence of magnetic field and slip velocity. The model for 

peculiar arterial expansion because of “intravascular plaques” is characterized in figure 1. 

The present study takes into account the presence of magnetic fields, and models blood as a couple stress 

fluid with variable viscosity and slip velocity. These complex factors interplay in a way that significantly 

influences the flow patterns and transport properties of blood within the circulatory system. Understanding these 

dynamics not only provides insight into the fundamentals of blood flow but also has important implications for 

clinical diagnostics and treatment strategies. 

 

2. Formulation of the Problem: 

We examine a scenario involving a continuous, incompressible, and extensively matured blood flow 

with a viscosity that changes as it courses through the central stratum within a dual-layer framework 

representing the dynamics of blood circulation in a constricted artery. The geometry of this complex, narrowed 

arterial passage is  
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               (2) 

 

where 𝑅1(𝑧) and 𝑅(𝑧) are respectively the “radii of central layer and stenotic tube with peripheral layer”, and 𝑅0 

is the “radius of unobstructed blood vessel”.  𝐿0 is the length of the tube, 𝑑 is the position of stenosis, 𝛿𝑠 is the 

height of stenosis,  𝛿1 is the maximum bulging of the interface at 𝑧 = 𝑑 +
𝐿0

2
, 𝛼 is the ratio of radius to central 

layer and radius of unobstructed artery. 

 The viscosity of the blood within the central layer is permitted to fluctuate in accordance with the 

principles outlined by the Einstein relation 

𝜇𝑐 = 𝜇𝑝[1 + 𝛽ℎ(𝑟)]      (3) 

where 𝜇𝑐 is “viscosity of central layer”, 𝜇𝑝 is “viscosity of plasma”, ℎ(𝑟) is “hematocrit” and 𝛽 is constant. 

 

Figure 1 
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Hematocrit is described as by the relation 

 

ℎ(𝑟) = ℎ𝑚 [1 − (
𝑟

𝑅0
)
3

]     (4) 

 

where ℎ𝑚 is “maximum hematocrit of blood” and 𝑅0 is “ radius of unstenosed artery”.  

 Substituting the value of ℎ(𝑟) from equation (4) in equation (3), we get 

    𝜇𝑐 = 𝜇𝑝 [𝑎 − 𝑘 (
𝑟

𝑅0
)
3

]            (5) 

where 𝑎 = 1 + 𝑘 and 𝑘 = 𝛽ℎ𝑚.  

In this particular problem, we investigate the behaviour of blood flow that adheres to a non-Newtonian pattern within 

the innermost stratum of a two-layer construct that simulates blood circulation. The fluid occupying the core region of 

the conduit is characterized as a couple stress fluid, while the outermost layer of the blood vessel contains plasma, 

conforming to the characteristics of a constant viscosity Newtonian fluid. The governing equations dictating the flow 

dynamics within both the central and peripheral layers in this present scenario are articulated as follows 

𝜇𝑐∇
2𝜇𝑐 − 𝜂∇

4𝜇𝑐 + (
𝜕𝜇𝑐

𝜕𝑟
) (

𝜕𝑢𝑐

𝜕𝑟
) − 𝛽0

2𝜎𝑒
𝑐𝑢𝑐 −

𝜕𝑝

𝜕𝑧
= 0    (6) 

𝜇𝑝∇
2𝜇𝑝 − 𝛽0

2𝜎𝑒
𝑝
𝑢𝑝 −

𝜇𝑝

𝐾
𝑢𝑝 −

𝜕𝑝

𝜕𝑧
=  0   (7) 

where 
𝜕𝑝

𝜕𝑧
 is the pressure gradient, 𝐾 is the “permeability constant”,  𝜂 is the “couple stress constant”, 𝑢𝑐 and 𝑢𝑝 

are the fluid velocities, 𝜎𝑒
𝑐 and 𝜎𝑒

𝑝
 are “electrical conductivities for central and peripheral layers”, accordingly. 

The boundary conditions are described as 
𝜕𝑢

𝜕𝑟
= −ℎ𝑢   (Slip condition)          

or 

𝑢′ + ℎ𝑢 = 0  when 𝑟 = 𝑅          (8) 

where ℎ = −
𝜂1

𝑅𝑜ξ𝐾
 ;  𝜂1 is constant which depends on the properties of “porous medium” and on its structure. 

𝜕2𝜇𝑐

𝜕𝑟2
−

𝜂

𝑟
 
𝜕𝜇𝑐

𝜕𝑟
= 0 at 𝑟 = 𝑅1(𝑧)        (9) 

𝜕𝑢𝑐

𝜕𝑟
= 0 at 𝑟 = 0                      (10) 

𝑢𝑐 = 𝑢𝑝 at 𝑟 = 𝑅1(𝑧)                     (11) 

c p =  at 𝑟 = 𝑅1(𝑧)                    (12) 

Considering the transformation, 

𝑥 =
𝑟

𝑅0
  

to make the variable 𝑟 dimensionless. 

So, the governing equations (6) and (7) becomes, 
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𝜕2𝑢𝑐
𝜕𝑥2

+ 𝑥2
𝜕𝑢𝑐
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] − 3𝑘𝑥5
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1

𝛼1
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3
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𝜕𝑥4
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2
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                       (13) 

where 𝛼1 is couple stress parameter, 𝛼1
2 =

𝜇𝑝

𝜂
𝑅0
2 and 𝑀1

2 =
𝛽0
2𝑅0

2𝜎𝑒
𝑐

𝜇𝑜
 is the Hartmann number for central layer. 

𝑥
𝜕2𝑢𝑝

𝜕𝑥2
+
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𝜕𝑥
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2

𝐾
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where 𝑀2
2 =

𝛽0
2𝑅0

2𝜎𝑒
𝑝

𝜇0
 is the Hartmann number for peripheral layer. 

Now, boundary condition becomes  

𝜕2𝜇𝑐
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𝜂
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𝜕𝑢𝑐

𝜕𝑥
= 0                       at  0x =                  (16) 

𝑢𝑝 = −ℎ
𝜕𝑢𝑝

𝜕𝑥
                 at           

( )

0

R z
x

R
=                 (17) 

𝑢𝑐 = 𝑢𝑝                          at  𝑥 =
𝑅1(𝑧)

𝑅0
                           (18) 

c p =                   at   𝑥 =
𝑅1(𝑧)

𝑅0
                (19) 

 

We will solve the equation (13) and (14) by using Frobenius Method and by applying boundary conditions, the 

expressions for velocities 𝑢𝑐 and 𝑢𝑝 can be obtained as  

 

𝑢𝑐 =
𝛼1
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2
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∞
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∞
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∞
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∞
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}]  

                       (20) 
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𝑢𝑝 =
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+ ℎ
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∞
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           (21) 

 

3. Graphical Discussion 

Using the MATLAB software, mathematical form of pressure gradient, and sheer stress at the walls of 

an artery are plotted for different values of slip parameter h, Hartman number M1, M2, permeability parameter K, 

couple stress fluid constant η and α1 against stenosis size. Variation in pressure gradient due to increasing values 

of η, K, magnetic field and slip parameter are shown in the figure 2, 3, 4, 5 and 6. In Figure 2, as the stenosis size 

increases, the pressure gradient rises when α1 is small, but it remains relatively stable as the stenosis size grows 

larger. When the stenosis size is held constant, the pressure gradient decreases significantly for α1 values of 2 and 

4, but it begins to increase again for α1 values of 6, 8, and 10.. From figure 3 to 6, pressure gradient increases with 

increasing stenosis size. In the figure 3 and 4, pressure gradient increases due to increasing value of η and K. 

Several psychological and haemodynamic changes occur in the body when pressure gradient rises. In the figure 

5, pressure gradient falls with increasing magnetic field and pressure gradient almost tends to 0 for high intensity 

magnetic field. In the figure 6, pressure gradient decreases gradually with increasing value of sleep parameter. 

Also, introducing slip parameter potentially reduces sheer stress exerted on the endothelial lining of the arteries 

as shown in figure 11. Decrease in shear stress have implications for vascular health and endothelial integrity.  

Elevated pressure gradient can contribute to cardiovascular issues over time. The augmentation of the 

pressure gradient can be managed by employing an appropriate magnitude of magnetic field intensity and 

adjusting the slip parameters at the arterial walls. 

Figure 7 to figure 11 shows variation in shear stress for different values of η, α1, M1, M2, Kand slip 

parameter. In figure 7, shear stress firstly decreases when α1=2, 4, but its start increasing for α1=6, 8, 10 and it is 

almost 0 for α1=10. In the figure 8, shear stress increases gradually due to increase in the value of η, but more hike 

is there for η=2. Increasing shear stress is crucial for maintaining endothelial health. In the figure 9, shear stress 

increases due to increase in the value of “permeability parameter”. Rise in shear stress for large values of 

permeability parameter is not so much rapid as shear stress rises for small values of permeability parameter. In 

the figure 10, shear stress decreases due to increase in the magnetic field. Increase in the shear stress can be 

controlled by introducing slip parameter and magnetic field. Hence, it is demonstrated that the magnetic field 

enhances blood circulation to a certain degree. This assertion is corroborated by the findings of Haldar and Ghosh 

[6]. 
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Figure 2 

 
Figure 3 
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Figure 4 

 

 
Figure 5 
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Figure 6 

 

 
Figure 7 
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Figure 8 

 

 
Figure 9 
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Figure 10 

 

 
Figure 11  

 

4. Conclusion 

Blood flow through stenosed tubes is a multifaceted phenomenon with significant clinical relevance. The 

integration of magnetic fields, permeable walls, the characterization of blood as a couple stress fluid, and the 

consideration of variable viscosity and slip velocity adds layers of complexity to our understanding of this intricate 

flow behavior. The following are the significant findings of the study: 
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• When the pressure gradient decreases, flood of blow through blood vessels, slows down. This reduced 

blood flow can impact the delivery of oxygen and nutrients to the tissues and organs.  

• When pressure gradient falls, heart may have to work harder to maintain adequate blood flow to the 

body that leads to complications. Changes in the blood flow pattern could impact the development 

and progression of stenosis or other vascular diseases.  

• Changes in the shear stress can impact platelet behaviour and coagulation.  

• Altered sheer stress might increase the risk of thrombus formation and clotting. 
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