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Abstract: Atrial Fibrillation (AF) is a common “cardiac arrhythmia” with significant health implications.
Traditional AF detection methods have limitations in continuous monitoring and data analysis. The emergence
of machine learning (ML) offers promising solutions for accurate and timely AF detection. This study aims to
explore and evaluate various ML techniques for AF detection, considering data quality, clinical validation, and
algorithm performance. A diverse dataset of ECG signals and patient information is collected and pre-processed
for training and testing ML models. The study implements supervised and unsupervised learning algorithms,
deep learning (DL) architectures, and ensemble methods to compare their effectiveness in AF detection. Results
demonstrate the potential of ML-based AF detection to revolutionize diagnosis and management, leading to
improved patient care and healthcare outcomes in cardiology. The results of our comparative study demonstrate
that all ML approaches achieved impressive results in detecting AF from ECG signals. “The logistic regression
classifier achieved an accuracy of 92.48% and sensitivity of 91.89%. The Naive Bayes classifier achieved an
accuracy of 90.26% and sensitivity of 89.27%. The SVM classifier achieved an accuracy of 93.87% and
sensitivity of 92.43%. The Decision tree achieved an accuracy of 93.87% and sensitivity of 90.63%. Finally, the
Random Forest model attained an accuracy of 95.8% and sensitivity of 92.88%”.

Keywords: Atrial Fibrillation, ML, AF Detection, Cardiac Arrhythmia, Healthcare Innovation.

Introduction

AF is a heart problem summarized by inconsistent and often rapid heartbeats, which can affect an individual’s
quality of life and increase the risk of severe health complications, including stroke, heart failure, and other
cardiovascular diseases (Johnson & Cornia, 2019). For timely intervention to reduce associated health risks
early detection of AF is necessary. Traditional methods of AF detection, such as electrocardiograms (ECGs) and
Holter monitors, have limitations in terms of continuous monitoring, real-time analysis, and processing vast
amounts of data (Young, 2019). However, recent advancements in ML offer promising avenues for developing
efficient and reliable AF detection systems.

The use of ML algorithms for medical applications has found considerable support as it has the ability to
analyse complex and large-scale data sets (Lippi et al., 2021). ML techniques have demonstrated remarkable
prominence in different domains, including image recognition, natural language processing, and finance
((Alhusseini et al., 2020); (Sivanandarajah et al., 2022); (Liaqat et al., 2020)). Applying these cutting-edge
techniques to AF detection has the potential to revolutionize how healthcare professionals identify and manage
this cardiac condition.

The traditional methods of AF detection have limitations that hinder their ability to provide comprehensive and
timely insights(Plaseka & Taborsky, 2019). For instance, standard 12-lead ECGs can only capture brief periods
of a patient's cardiac activity, potentially missing intermittent episodes of AF (Ahmed & Zhu, 2020). Holter
monitors, while more extended in their monitoring capability, generate vast amounts of data, making manual
analysis laborious and time-consuming for healthcare practitioners (Wei et al., 2022).
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ML approaches can overcome these limitations by enabling continuous monitoring of heart rhythm through
wearable devices or implantable cardiac monitors (Roithinger, 2020). These devices can collect a wealth of data
over extended periods, providing a comprehensive picture of a patient's cardiac activity. ML algorithms can then
process this data in real-time or retrospectively, accurately detecting AF episodes and helping healthcare
professionals make informed decisions about patient care (Liagat et al., 2020).

Despite the immense promise of ML in AF detection, several challenges need to be demonstrated for its
successful implementation in clinical practice. Firstly, the quality and reliability of data obtained from wearable
devices and monitors are crucial for accurate AF detection. Noise, artifacts, and motion interference may affect
the data, leading to false positives or negatives. Ensuring data accuracy and developing robust preprocessing
techniques are essential in mitigating these issues. Secondly, the interpretation of ML results requires validation
and integration with clinical expertise. ML models can yield highly accurate predictions, but their effectiveness
in a real-world clinical setting must be carefully evaluated and compared with existing standards of AF
detection.

The primary objective of this study is to explore and evaluate various ML techniques for AF detection,
considering their potential advantages and limitations. Specifically, the main contribution of this study involves:

(a) Collect and preprocess a diverse dataset of ECG signals and related patient information for training and
validating ML models.

(b) Implement and compare various ML algorithms for AF detection, including supervised and unsupervised
methods, DL architectures, and ensemble techniques.

(c) Assess the performance and robustness of the developed models on the dataset and evaluate their potential
for real-world deployment in clinical settings.

2. Literature Review

This comprehensive review assesses the applicability of ML models, specifically Naive bias, SVM, Random
Forest, decision tree, and Logistic regression, in Atrial Fibrillation detection and diagnosis.

(Tison et al., 2018) investigates the feasibility of passive AF detection using consumer-grade smartwatches
equipped with photoplethysmography sensors. The authors employ ML algorithms to analyse wrist-worn optical
sensor data and accurately detect AF episodes in real-time. The study demonstrates the potential of wearable
devices combined with ML for continuous and non-invasive AF monitoring. (Hannun et al., 2019) proposes a
DL approach for AF detection using ambulatory ECG. The deep neural network achieves cardiologist-level
accuracy in detecting various arrhythmias, including AF. The study emphasizes the potential of DL algorithms
in improving the accuracy and efficiency of AF detection in clinical settings.

In the study by (Attia et al., 2019), an Al based ECG algorithm is developed to detect AF during sinus rhythm.
The algorithm utilizes ML methods to predict AF presence based on standard 12-lead ECG recordings. The
research highlights the potential of Al-powered algorithms for early AF detection and outcome prediction. In the
study, (Ghrissi et al., 2022) proposes using ML to automatize the identification of atrial fibrillation's
spatiotemporal dispersion electrograms. They compared different data formats and found promising results with
VGG16-based transfer learning for real-time deployment. However, due to class imbalance, precision and F1
score were relatively low, but data augmentation addressed the issue effectively. The Apple Heart Study,
sponsored by Apple Inc., used the Apple Watch's heart-rate pulse sensor to detect atrial fibrillation. Findings by
(Stanford Medicine, 2019) showed promising potential for wearable technology in detecting health conditions.

(Torres-Soto & Ashley, 2020) presented DeepBeat, a multitask DL model, greatly enhances atrial fibrillation
detection from wearable photoplethysmography devices. Two-stage training improves performance, addressing
unbalanced data challenges in biomedical applications. High sensitivity, specificity, and F1 score are achieved
in real-time monitoring.
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(Michel et al., 2021) The y-metric filter approach for feature selection in atrial fibrillation detection using short
ECG recordings showed satisfactory results, with high stability and accuracy for models with fewer features.
New methodological avenues are opened for clinical decision making.

3. Methods
3.1. Methodology

An electrocardiogram (ECG) serves as a vital diagnostic tool, capturing the heart's electrical activity. Its primary
purpose lies in evaluating the heart's rhythm and identifying potential irregularities indicative of cardiac
conditions (Mathews, 2022). To generate the ECG signal, electrodes are strategically placed on the chest, arms,
and legs (Serhani et al., 2020). These electrodes detect the heart's electrical signals and transmit them to a
recording device, displaying a waveform that represents the heart's activity over time.

The ECG waveform comprises distinct waves and intervals, each corresponding to a different phase of the
heart's electrical cycle. Medical professionals utilize the ECG signal to diagnose an array of heart conditions,
including arrhythmias, conduction disorders, and heart attacks ((Mousavi et al., 2021); (Merdjanovska &
Rashkovska, 2022); (Park et al., 2022)). By meticulously analysing the shape and timing of the various waves
and intervals, doctors can gain valuable insights into the heart's health and functionality.

3.2 Preprocessing of ECG signals

Preprocessing of ECG signals plays a critical role in signal analysis and classification, involving a various
technique to optimize signal quality, eliminate noise and artifacts, and ready the signal for subsequent
processing (Sikorska et al., 2022). Below are some common preprocessing techniques commonly applied to
ECG signals:

Baseline wander removal: ECG signals are frequently affected by low-frequency noise, known as baseline
wander (Venkatesan et al., 2018). This interference can be effectively eliminated by applying high-pass filtering
or subtracting a moving average of the signal (Karnewar & Shandilya, 2022).

Filtering: ECG are susceptible to different noise, such as powerline interference, muscle artifacts, and electrode
motion artifacts. To address these issues, filtering techniques like bandpass and notch filters are employed to
effectively remove these noise components (Rahman et al., 2019).

Signal normalization: ECG signals often exhibit variations in amplitude and polarity between individuals and
recordings (Luz et al., 2016). Signal normalization techniques, such as normalization to the mean or
standardizing to a fixed amplitude range, are utilized to establish a consistent baseline for the signal.

Resampling: ECG signals are typically recorded at a high sampling rate, which can be computationally
demanding for further analysis. To alleviate this, resampling techniques like decimation or interpolation are
applied to reduce the sampling rate while preserving the essential features of the signal (Singh et al., 2021). This
aids in making the subsequent analysis more efficient without losing crucial information.

3.3. Atrial Fibrillation (AF) ECG signal

Atrial Fibrillation (AF) ECG signals can undergo classification based on various extracted features from the
ECG waveform (Budeus et al., 2007). Below are commonly utilized features for AF classification:

() RR Interval Analysis:

RR interval variability: Quantitative assessments of variances in the consecutive RR intervals (Castells et al.,
2007).

Mean RR interval: The average duration of RR intervals.
Heart rate: Mean heart rate per minute derived from RR interval data.

(b) Frequency-domain Analysis:
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Power spectral density: Analyzing the power distribution of the signal across different frequency bands
(Guaragnella et al., 2019).

LF/HF ratio: The ratio of LF power to HF power, providing information about the balance in the autonomic
nervous system.

(c) P-wave Analysis:
P-wave duration: Difference of the P-wave component in the ECG signal.

P-wave morphology: Assessing the shape and characteristics of the P-wave, including amplitude, slope, and
presence of notches or abnormal morphologies (Gupta & Mittal, 2020).

(d) QRS Complex Analysis:

QRS duration: The length of the QRS complex in the ECG signal.

QRS morphology: Evaluating the shape and characteristics of the QRS complex (An & Stylios, 2020).
(e) Heart Rate Variability (HRV) Analysis:

Time-domain HRV measures: It involves the evaluation of variability in consecutive RR intervals, employing
measurements such as the standard deviation of RR intervals or the root mean square of successive RR intervals.

Frequency-domain HRV measures: Analyzing power spectral density of RR intervals.
0] Morphological Analysis:

Morphological features related to waveform characteristics, such as presence of irregular or chaotic patterns in
the ECG signal (Ganesh et al., 2021).

These features are extracted from the ECG signal using signal processing techniques and then fed as inputs to a
classification model, such as “Support Vector Machines (SVM), Random Forest (RF), or DL models like
Convolutional Neural Networks (CNN), to classify AF ECG signals”.

3.4. Classification Methodology
3.4.1. Logistic Regression

Logistic regression stands as a prevalent statistical technique employed in binary classification tasks, wherein
the target variable assumes one of two possible values, usually represented as 0 or 1 (Sperandei, 2014). This
method finds broad application across multiple domains, encompassing machine learning, statistics, and social
sciences, owing to its straightforwardness, interpretability, and efficacy in addressing classification challenges
(Austin & Merlo, 2017).

The logistic regression model applies the logistic or sigmoid function to the result of a linear combination of
input features. The sigmoid function effectively defines any real-valued number to a range spanning from 0 to 1,
making it well-suited for expressing probabilities (Ghavamipour et al., 2022). This transformation ensures that
the predicted probability lies within the valid probability range, allowing us to interpret the model's output as the
likelihood of the positive class (class 1) occurring. Mathematically, the logistic regression model can be
expressed as:

1
p(y =1|x) = 1+e—Bo+B1x1+B2x2++Bnxn) .

where: p (y = 1) represents the probability of the positive class (class 1) given the input features x; Bo, B1, P2,

X

..., Pn are the coefficients (also known as weights) of the model that determine the effect of each input feature on
the estimated probability; X3, X, ..., X, are the input features (Scott et al., 1991). The coefficients are estimated
during the model training process using optimization techniques like maximum likelihood estimation, reducing
the variance in the estimated probabilities and the actual binary outcomes in the training data.
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To make predictions with logistic regression, a threshold (usually 0.5) is applied to the predicted probabilities
(Ahmadini, 2022). One of the key benifits of logistic regression is its interpretability. The model coefficients
provide insights into the influence of each input feature on the likelihood of the positive outcome.

3.4.2. Naive Bayes

"Naive Bayes represents a widely embraced and uncomplicated classification algorithm rooted in Bayes'
theorem, a fundamental principle in probability theory (Chen et al., 2020). Its utility extends prominently to
machine learning and natural language processing tasks, especially in situations characterized by an abundance
of intricate features. At its core, Naive Bayes relies on Bayes' theorem, which elucidates the process of updating
the probability of a hypothesis based on fresh evidence (Ressan & Hassan, 2022). In the context of
classification, it empowers us to compute the probability associated with a specific class given the input
features. The "naive" aspect of Naive Bayes posits that all input features are conditionally independent,
signifying that the presence or absence of one feature exerts no influence on the presence or absence of any
other feature (Foo et al., 2022). This simplifying assumption significantly mitigates computational complexity
and renders the algorithm highly scalable, even in scenarios characterized by a profusion of features."

Consider a dataset comprising input features X1, X2, ..., Xn, with the goal of predicting the class label Y, which
represents the target variable. In the Naive Bayes methodology, the algorithm calculates the likelihood of each
class given the input features and subsequently designates the class with the highest probability as the predicted
category (Kim & Lee, 2022). Mathematically, for a specific class denoted as c, the probability of observing the
features X1, X2, ..., Xn can be determined using Bayes' theorem as expressed below:
_ P(¥Y=c)P(x1|Y=c)P(xz|Y=c)..P(xn|Y=C)

P(x1,X2,...Xn)

P(Y = clxy, X9, e\ Xp) 2)

In the formula provided, P(Y=c) denotes the prior probability associated with class c, signifying the relative
frequency of class ¢ instances within the training data. P(Xi|Y=c) represents the conditional probability of
feature Xi given class ¢, and this can be estimated from the training data. P(X1, X2, ..., Xn) represents the
probability of observing the input features, serving as a normalization factor that remains consistent across all
classes. During the classification process, this term can be disregarded as it does not impact the comparative
likelihood of different classes (Kim & Lee, 2022).

During the training phase, Naive Bayes calculates the prior probabilities and conditional probabilities from the
labelled training data. For discrete features, such as word occurrences in text classification, the probabilities can
be estimated using simple frequency counting(Xu, 2018). For continuous features, common probability
distributions like Gaussian (for continuous numeric features) or multinomial (for count data) are often used to
estimate the probabilities.

3.43. SVM

SVM is a potent ML algorithm for classification and regression tasks, widely used in pattern recognition, image
classification, text categorization, and bioinformatics due to its versatility (Huang et al., 2017). It seeks to
discover the optimal hyperplane in a high-dimensional feature space to effectively separate different class data
points, enhancing classification accuracy. In binary classification, this hyperplane serves as the decision
boundary, creating a clear divide between two classes (Chandra & Bedi, 2021).

During the training phase, SVM aims to minimize the classification error while maximizing the margin. It does
this by formulating a cost function that penalizes misclassification and accounts for the margin width (Zeng et
al., 2019). The optimization process involves finding the Lagrange multipliers associated with the support
vectors to determine the hyperplane coefficients. SVM offers several advantages, including:

@ Flexibility: The use of various kernel functions allows SVM to handle data that might not be linearly
separable in the original feature space.

(b) Robustness: SVM's reliance on support vectors makes it less sensitive to outliers, improving
generalization performance.
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() High-dimensional spaces: SVM is well-suited for problems with a large number of features, as it
operates effectively in high-dimensional spaces.

(d) Interpretability: The support vectors are key components of the model, allowing for better
understanding and interpretation of the classification boundaries.

3.4.4. Decision Tree

Decision Tree, a widely used ML algorithm for classification and regression, builds a hierarchical, interpretable
tree-like structure from data (Lee et al., 2022). It repeatedly divides data into subsets using the most informative
feature, aiding in clear decision-making. Internal nodes represent feature-based decisions, while leaf nodes
contain final predictions for data subsets (Charbuty & Abdulazeez, 2021).

In Decision Trees, the decision process begins at the root node and follows a path down the tree based on input
data's feature values. At each internal node, a choice is made using a feature-specific threshold or condition
(Kotsiantis, 2013). This continues until a leaf node is reached, providing the final prediction. Building the tree
involves selecting the best feature and split point at each node, which is determined by criteria like Gini
impurity (Alcolea & Resano, 2021), and MSE or MAE errors for regression.

Decision Trees are interpretable, with a visualizable tree structure that represents rules for predictions. They
work with numerical and categorical features and manage missing values automatically.

3.4.5. Random Forest

Random Forest, an hybrid ML method, enhances both classification and regression tasks by combining multiple
Decision Trees for more accurate and stable predictions (Schonlau & Zou, 2020). Its versatility in handling
complex data, reducing overfitting, and ensuring reliability makes it a key ML tool. The core concept involves
creating numerous Decision Trees during training, then aggregating their predictions (Sekuli¢ et al., 2020). Each
tree is trained on random subsets of data and features, introducing diversity that bolsters model robustness
against overfitting (Bai et al., 2022).

"During training, each tree in a Random Forest uses a bootstrap sample (randomly drawn with replacement)
from the original dataset for training. Moreover, at each tree node, only a random subset of features is
considered for splitting (Baba & Sevil, 2020). This diversity ensures that each tree captures different data
perspectives and patterns. When making predictions, each tree independently classifies input data, and the final
prediction is based on majority voting (for classification) or averaging (for regression). This aggregation
minimizes noise and mitigates individual Decision Trees' biases, enhancing prediction accuracy and stability."

Random Forest has several advantages:

€)) Robustness: The aggregation of multiple Decision Trees reduces the risk of overfitting and makes the
model more resilient to noisy data.

(b) Versatility: Random Forest can handle both categorical and numerical features, as well as missing
values, without requiring extensive data preprocessing.

(© Interpretability: Although Random Forest models may not offer the same level of interpretability as
individual Decision Trees, they can offer insights into feature significance, aiding in the comprehension of
which features wield the most influence in shaping predictions.

Scalability: Random Forest can efficiently handle large datasets and high-dimensional feature spaces.
4, Result and Discussion

Physionet Challenge 2017 Atrial fibrillation database used to detect AF. The sample of these dataset is
represented in fig. 1. The PhysioNet Challenge 2017 Atrial Fibrillation Database, often referred to as the "AF
Challenge 2017," was a competition organized by PhysioNet, an online repository of physiological data. The
challenge aimed to promote research and development in the field of AF identification from ECG recordings.
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The challenge provided a dataset of ECG recordings collected from a variety of sources. The dataset was diverse

in terms of patient demographics, recording conditions, and ECG machine types.
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For cleaning and removal of noise from the initial signal the ECG signals are pre-processed using high pass, low

pass and notch filter. The pre-processed signal is represented in fig. 2.
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Fig. 2: Pre-processed Signal

Further the signal is conditioned by using butter high pass, butter lowpass and notch filter and their resultant is

shown in fig. 3.
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After the conditioning of signal the signal smoothened by converting the conditioned signal into its frequency
domain. This signal is further transverse using IIR filter and the followed steps are shown in fig. 3.
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Fig. 4: Conditioned Signal
After applying the applicable filters, the final variation in the ECG signals is reported and are shown in Fig. 5.

Our comparative study reveals that all five ML approaches excel in detecting AF from ECG signals. Logistic
regression achieved 92.48% accuracy and 91.89% sensitivity, Naive Bayes reached 90.26% accuracy and
89.27% sensitivity, SVM attained 93.87% accuracy and 92.43% sensitivity, Decision tree delivered 93.87%
accuracy and 90.63% sensitivity, and Random Forest outperformed with 95.8% accuracy and 92.88%
sensitivity. Figure 6 illustrates the prediction accuracy levels.

The SVM model demonstrated robust performance, with relatively balanced sensitivity and specificity. Its
ability to find the optimal hyperplane for separating classes and handling non-linear relationships between
features and the target variable contributed to its success in AF detection.

Our comparative study reveals that all five ML approaches excel in detecting AF from ECG signals. Logistic
regression achieved 92.48% accuracy and 91.89% sensitivity, Naive Bayes reached 90.26% accuracy and
89.27% sensitivity, SVM attained 93.87% accuracy and 92.43% sensitivity, Decision tree delivered 93.87%
accuracy and 90.63% sensitivity, and Random Forest outperformed with 95.8% accuracy and 92.88%
sensitivity. Figure 6 illustrates the prediction accuracy levels.

The Random Forest model's ensemble nature provided improved generalization and resilience to overfitting,
leading to competitive results. The model's capability to process large datasets efficiently and handle missing
values makes it an attractive choice for real-world applications. Despite the promising outcomes, some
limitations merit consideration. The comparative study relies on a specific dataset, and performance may vary
with different datasets or sample sizes. Additionally, feature engineering plays a critical role in model
performance; thus, more advanced feature selection techniques could further improve the results.

3396



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

MNoany

Catans

0 ' 2 3 4 5 6 7 8 9 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

0 162 7 ] S 4 1 7 12 Norma

1 28 5 22 257 262 265 2¢ 2 g S 52 52 5 5 5 7 Nomes

2 S5 7 7 1 17 7 7 3 4 2 483 84 Nowr
3 519 ¢ 72 2T 94 ¢ 5 4 @2 Y00 2 2 2 24 2 24 24 AF
4 . 3 1 t 22 1 ¢ AF

2073 1 14 4 1 ) No

2074 1 7 ] 49 ) & 775 84 W7 1 ) » 36 247 ne
2075 1 1 t ‘ Noma
8076 7 7 4 449 S +527 5 ! 7 4 43 48 0 64 7 7 ac 4 Noma
2077 7 0 '} 14 4 44 Norma
heart rate mean rr std rr rmssd qrs_duration Ippower hppower class

(] 0.254977 23531578¢ 8.553563 7 749552 1.148 183938194 4,167841  Normal

1 0 67.778526 1.148 Normal

2 ) 17.824764 4 Normal

3 ) AF

4 0 AF
5544 274 750000 AF
5545 0.230665 260117647 8.337600 13455370 148 173.505130 3740.629067 Normal
5546 1.148 30459947834 Normal
5547 148 47073.710725 Normal
5548 D.206754 250 2000 6155756 7. 750576 1.148 6.62090 18106.544478 Normal

Fig. 5 Proportion of signal variations

True label

Normal

AF Normal
Predicted label

Fig. 6: Detection label

3397



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5. Conclusion

In summary, the utilization of ML techniques in AF detection offers significant promise in reshaping the
landscape of diagnosing and managing this prevalent cardiac arrhythmia. Our study, addressing outlined
challenges and objectives, seeks to contribute to the growing knowledge base that can lead to improved patient
outcomes and more efficient cardiology healthcare practices.

Our comparative study underscores the potential of ML approaches as valuable tools for detecting AF from
ECG signals. Logistic regression, Naive Bayes, SVM, Decision Trees, and Random Forest models all
demonstrate high accuracy and robustness, indicating their potential integration into clinical practice for timely
AF diagnosis. The choice of the most suitable method should consider specific needs, such as interpretability,
computational complexity, and dataset characteristics. Future research could explore combining multiple
classifiers or DL models to enhance AF detection accuracy and further advance automated cardiology diagnosis.
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