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Abstract: The fundamental tools for modelling neural dynamics are time-fractional partial differential 

equations. In order to solve a two-dimensional, time-fractional semilinear parabolic equation under Dirichlet 

boundary conditions, this paper introduces the Crank-Nicolson (C.N.) finite difference methodology. The 

proposed scheme's consistency, stability, and convergence are also thoroughly investigated. Two numerical 

experiments are conducted to support the theoretical results. The effectiveness of the method is carefully 

assessed and analysed in terms of absolute mistakes, order of accuracy, and computational time.  The 

outcomes show that, while being conditionally stable, the suggested scheme may be used successfully with a 

high rate of convergence to calculate numerical solutions for the issue at hand. 
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1. Introduction: 

Fractional  calculus,  a  branch  of  mathematics  concerned with the properties of derivatives and 

integrals of non-integer orders,  has  been  an  area  of  interest  since  the  inception  of classical calculus.  This 

mathematical field specializes in the resolution of time-dependent fractional differential equations, which entail 

fractional derivatives. Regarded as a pivotal tool for the exploration of dynamical systems, fractional calculus  is  

valued  for  its  non-local operators  that  encapsulate  the  historical  progression  of dynamics.  The usage  of  

fractional  calculus  and  fractional processes has become a favored approach when grappling with the  unique  

properties  of  long-term  memory effects  found in multiple domains of applied sciences. These fields range 

from finance  and  economic  dynamics,  biological  systems  and bioinformatics, nonlinear  waves  and 

acoustics, to  image  and signal  processing,  transportation  systems,  geosciences, astronomy, and cosmology 

Since the beginning of classical calculus, there has been interest in the field of fractional calculus, 

which deals with the characteristics of derivatives and integrals of non-integer orders.  This branch of 

mathematics specialises in the solution of fractional derivative-based time-dependent differential equations. 

Fractional calculus is prized for its non-local operators that capture the development of dynamics across time, 

making it a crucial tool for the investigation of dynamical systems.  The use of fractional calculus and fractional 

processes has grown to be a preferred strategy when addressing the distinctive characteristics of long-term 

memory effects seen in numerous applied science disciplines. These disciplines include nonlinear waves and 

acoustics, biological systems and bioinformatics, finance and economic dynamics, image and signal processing, 

and Numerous researchers, including but not limited to Heaviside, Lagrange Riemann, Liouville, Grunwald, 

Euler, Fourier, and Abel, have gradually added to the development of fractional calculus.  The popularity of 

fractional calculus nowadays can be attributed to the differ integral operator's versatility, which combines both 

integer-order derivatives and integrals as special instances. As explained by Podlubny and Kisela, the fractional 

integral, for example, can be used to depict the accumulation of a quantity when the order of integration is 

unknown and can be inferred as a parameter of a regression model. On the other hand, damping is typically 

represented by the fractional derivative.  Other applications include viscoelasticity, electrical networks, 

dynamical processes in self-similar and porous structures, electrochemistry of corrosion, rheology, optics and 
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signal processing, fluid flow, diffusive transport, probability and signal processing, transportation systems, 

geosciences, astronomy, and cosmology statistics. Numerous analytical and numerical techniques have been 

applied in recent years to solve fractional differential equations.  The Fourier transformation method, the 

Laplace transformation method, and the green function method are examples of analytical approaches. 

However, analytical solutions are rarely found for fractional differential equations.  Therefore, it is essential to 

create numerical schemes for these equations.  Time (space) fractional differential equations have been 

successfully solved using techniques including the finite difference approach, the spectral method, and the finite 

element method. The goal of this work is to suggest a high order efficient numerical technique for a two-

dimensional semi-linear time fractional equation with Dirichlet boundary conditions because most mathematical 

models that describe real-world phenomena involve non-linear fractional partial differential equations and the 

majority of prior studies have concentrated on linear types. Specifically, using mathematical induction, we 

propose the linearly implicit Crank-Nicolson finite difference scheme and demonstrate its consistency, 

conditional stability, and convergence. The remainder of this essay is structured as follows: In section two, we 

give a literature overview on the subject under study as well as the mathematical formulation of the temporal 

fractional diffusion equation. The finite difference scheme's derivation, consistency, stability, and convergence 

are discussed in section four of section three.  In the final section, some conclusions are provided. 

 

2. Two-Dimensional Fractional Semilinear Diffusion Equation  

Take into consideration the fractional semi-linear diffusion equation in two dimensions of space and 

time. 

𝜕𝑎𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡𝑎
= 𝑎(𝑥, 𝑦, 𝑡)𝐷𝑥

𝛽
𝑢(𝑥, 𝑦, 𝑡) + 𝑏(𝑥, 𝑦, 𝑡)𝐷𝑦

γ
𝑢(𝑥, 𝑦, 𝑡) + 𝑓(𝑥, 𝑦, 𝑡, 𝑢)   (1) 

0 < 𝑥 < 𝐿𝑥 , 0 < 𝑦 < 𝐿𝑦 , 0 < 𝑡 ≤ 𝑇 

𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑢(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦)                                                        (2) 

Boundary condition 

𝑢(0, 𝑦, 𝑡) = 0 = 𝑢(𝐿𝑥 , 𝑦, 𝑡)                                                                                      (3) 

𝑢(𝑥, 0, 𝑡) = 0 = 𝑢(𝑥, 𝐿𝑦 , 𝑡)                                                                                     (4) 

 

Positive functions are represented by the diffusion coefficients a(x, y, t) and b(x, y, t), respectively. For 

the two-dimensional space-time fractional semi-linear diffusion equation, this model is referred to as the first 

IBVP. 

 

2.1 Implicit Finite Difference Scheme  

Discerning the first IBVP (1) is the focus of this section (4). Define 𝑡𝑘 = 𝑘τ, k = 0,1,2, … n; 𝑥𝑖 =

𝑖∆𝑥, 𝑖 = 0,1,2, … , 𝑙, 𝒴𝑗 = 𝑗∆𝑦, 𝑗 = 0,1,2, … ,𝑚,𝑤ℎ𝑒𝑟𝑒 τ =
𝑇

𝑛
, ∆𝑥 =

𝐿𝑥

𝑙
, ∆𝒴 =

𝐿𝒴

𝑚
 are progressions in time and 

space, respectively. Let𝑢𝑖,𝑗
𝑘  be the approximate value that can be obtained using numbers 

to 𝑢(𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘)𝑎𝑛𝑑 𝑓𝑖,𝑗
𝑘 (𝑢𝑖,𝑗

𝑘 ) = 𝑓 (𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘, 𝑢(𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘)) and the approximation looks like this: 

 

𝑓 (𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘+1, 𝑢(𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘)) = 𝑓 (𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘, 𝑢(𝑥𝑖 , 𝒴𝑗 , 𝑡𝑘)) + 𝑂(𝑡
𝑎)              (5) 

 

Take it further that the nonlinear function 𝑓𝑖,𝑗
𝑘 (𝑢𝑖,𝑗

𝑘 ) is fulfilling the Lipschitz criterion. 

|𝑓𝑖,𝑗
𝑘 (𝑢̅𝑖,𝑗

𝑘 ) − 𝑓𝑖,𝑗
𝑘 (𝑢𝑖,𝑗

𝑘 ) =|𝑢̅𝑖,𝑗
𝑘 − 𝑢𝑖,𝑗

𝑘 | = | ≤ 𝐿|𝜖𝑖,𝑗
𝑘 |                        (6) 

 

Following is an approximation of the time fractional derivatives that we compute here. 

∂𝛼𝑢(𝑥𝑖,𝑦𝑗,𝑡𝑘+1)

∂𝑡𝛼
=

𝜏−𝛼

Γ(2−𝛼)
∑  𝑘
𝑠=0 𝑏𝑠𝛿𝑡𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘−𝑠) + 𝑂(𝜏)             (7) 

Where 𝑏𝑠 = (𝑠 + 1)
𝑎 − 𝑠𝑎 , 𝑠 = 0,1,2, … , 𝑛 𝑎𝑛𝑑 𝛿𝑡  is the operator of the forward difference? In order to 

discretize the space fractional Riemann–Liouville derivatives 𝐷𝑥
𝛽
𝑢(𝑥, 𝒴, 𝑡)𝑎𝑛𝑑 𝐷𝒴

γ
𝑢(𝑥, 𝒴, 𝑡). Following is an 

example of how we implemented the shifted Grunwald formula at level tk+1. 
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𝐷𝑥
𝛽
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1) =

1

ℎ𝛽
∑  𝑖+1
𝑝=0 𝑔𝑝

1𝑢(𝑥𝑖+1−𝑝, 𝑦𝑗 , 𝑡𝑘+1) + 𝑂(ℎ)  (8) 

𝐷𝑦
𝛾
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1) =

1

ℎ𝛾
∑ 

𝑗+1

𝑞=0

𝑔𝑞
2𝑢(𝑥𝑖 , 𝑦𝑗+1−𝑞 , 𝑡𝑘+1) + 𝑂(ℎ) 

Where 

𝑔0
1 = 1, 𝑔𝑝

1 = (−1)𝑝
𝛽(𝛽 − 1)(𝛽 − 2)… (𝛽 − 𝑝 + 1)

𝑝!
, 𝑝 = 1,2,3, … 

𝑔0
2 = 1, 𝑔𝑞

2 = (−1)𝑞
𝛾(𝛾−1)(𝛾−2)…(𝛾−𝑞+1)

𝑞!
, 𝑞 = 1,2,3, …        (9) 

The discretization of the first IBVP occurs as follows: 

𝜏−𝛼

Γ(2 − 𝛼)
∑  

𝑘

𝑠=0

𝑏𝑠𝛿𝑡𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘−𝑠) =
1

ℎ𝛽
∑ 

𝑖+1

𝑝=0

𝑔𝑝
1𝑢(𝑥𝑖+1−𝑝, 𝑦𝑗 , 𝑡𝑘+1) +

1

ℎ𝛾
∑ 

𝑗+1

𝑞=0

𝑔𝑞
2𝑢(𝑥𝑖 , 𝑦𝑗+1−𝑞 , 𝑡𝑘+1) + 𝑓𝑖,𝑗

𝑘 (𝑢𝑖,𝑗
𝑘 )

 

Regarding the rearrangement, we have – 

 

∑  𝑘
𝑠=0 𝑏𝑠𝛿𝑡𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘−𝑠) = 𝑟1 ∑  𝑖+1

𝑝=0 𝑔𝑝
1𝑢(𝑥𝑖+1−𝑝, 𝑦𝑗 , 𝑡𝑘+1) +

𝑟2 ∑  
𝑗+1
𝑞=0 𝑔𝑞

2𝑢(𝑥𝑖 , 𝑦𝑗+1−𝑞 , 𝑡𝑘+1) + 𝜏
𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗

𝑘 (𝑢𝑖,𝑗
𝑘 )

    (10) 

Where 

𝜇1 =
𝜏𝛼

ℎ𝛽
, 𝑟1 = 𝑟1(𝑖, 𝑗, 𝑘) = 𝜇Γ(2 − 𝛼)𝑎𝑖,𝑗

𝑘+1

𝜇2 =
𝜏𝛼

ℎ𝛾
, 𝑟2 = 𝑟2(𝑖, 𝑗, 𝑘) = 𝜇Γ(2 − 𝛼)𝑏𝑖,𝑗

𝑘+1

𝛿𝑡𝑢𝑖,𝑗
𝑘 = 𝑢𝑖,𝑗

𝑘+1 − 𝑢𝑖,𝑗
𝑘

 

𝑓𝑜𝑟 𝑖 =  0, 1, 2, . . . , 𝑙 −  1;  𝑗 =  0, 1, 2, . . . 𝑚 −  1;  𝑘 =  0, 1, 2, . . . 𝑛 −  1. 𝐿𝑒𝑡 

𝐿𝑢𝑖,𝑗
𝑘+1 = 𝑢𝑖,𝑗

𝑘+1 − 𝑟1∑ 

𝑖+1

𝑝=0

𝑔𝑝
1𝑢𝑖+1−𝑝,𝑗

𝑘+1 − 𝑟2∑ 

𝑖+1

𝑞=0

𝑔𝑞
1𝑢𝑖,𝑗−𝑞+1

𝑘+1  

We get 

𝐿𝑢𝑖,𝑗
𝑘+1 = 𝑢𝑖,𝑗

𝑘 −∑  

𝑘

𝑠=1

𝑏𝑠𝑢𝑖,𝑗
𝑘+1−𝑠 +∑  

𝑘

𝑠=1

𝑏𝑠𝑢𝑖,𝑗
𝑘−𝑠 + 𝜏𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗

𝑘 (𝑢𝑖,𝑗
𝑘 ) 

Hence, for k = 0; 

                𝐿𝑢𝑖,𝑗
1 = 𝑢𝑖,𝑗

0 + 𝜏𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗
0 (𝑢𝑖,𝑗

0 )                                 (11) 

for k > 0; 

𝐿𝑢𝑖,𝑗
𝑘+1 = 𝑏𝑘𝑢𝑖,𝑗

0 − ∑  𝑘−1
𝑠=0 (𝑏𝑠 − 𝑏𝑠+1)𝑢𝑖,𝑗

𝑘−𝑠 + 𝜏𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗
𝑘 (𝑢𝑖,𝑗

𝑘 )   (12) 

 

As a result, the full discrete form of the first IBVP, which ranges from 1 to 4, is 

 

𝐿𝑢𝑖,𝑗
1 = 𝑢𝑖,𝑗

0 + 𝜏𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗
0 (𝑢𝑖,𝑗

0 ) 

           𝐿𝑢𝑖,𝑗
𝑘+1 = 𝑏𝑘𝑢𝑖,𝑗

0 −∑  𝑘−1
𝑠=0 (𝑏𝑠 − 𝑏𝑠+1)𝑢𝑖,𝑗

𝑘−𝑠 + 𝜏𝛼Γ(2 − 𝛼)𝑓𝑖,𝑗
𝑘 (𝑢𝑖,𝑗

𝑘 )                     (13) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑢𝑖,𝑗
0 = 𝜙𝑖,𝑗 

Boundary conditions 

                                                                                               𝑢0,𝑗
𝑘 = 0 = 𝑢𝑙,𝑗

𝑘                         (14)        

𝑢𝑖,0
𝑘 = 0 = 𝑢𝑖,𝑚

𝑘  
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𝐿𝑒𝑡 𝑈𝑘 =

(

 

u1
k

u2
k

⋅
u1−1
k )

 , 𝐹𝑘 =

(

 
 
 
 

f1
k

f2
k

⋅
⋅
⋅
f1−1
k )

 
 
 
 

,Φ =

(

 
 

Φ1
Φ2
⋅
⋅

Φ1−1)

 
 

 

where 𝐮𝐢
𝐤 =

(

  
 

𝑢𝑖,1
𝑘

𝑢𝑖,2
𝑘

⋅
⋅

𝑢𝑖,𝑚−1
𝑘

)

  
 
, 𝐟𝐢
𝐤 =

(

 
 
 
 

𝑓𝑖,1
𝑘 (𝑢𝑖,1

𝑘 )

𝑓𝑖,2
𝑘 (𝑢𝑖,2

𝑘 )
⋅
⋅
⋅

𝑓𝑖,𝑚−1
𝑘 (𝑢𝑖,𝑚−1

𝑘 ))

 
 
 
 

,𝚽𝐢 =

(

 
 

𝜙𝑖,1
𝜙𝑖,2
⋅
⋅

𝜙𝑖,𝑚−1)

 
 

 

𝑖 =  1, 2, . . . , 𝑙 −  1;  𝑘 =  0, 1, 2, . . . , 𝑛 

The equation that was just presented can also be represented in matrix form. 

 

{

𝐴𝑈1 = 𝑈0 + 𝜏𝛼Γ(2 − 𝛼)𝐹1

𝐴𝑈𝑘+1 = ∑  𝑘−1
𝑗=0 (𝑏𝑗 − 𝑏𝑗+1)𝑈

𝑘−𝑗 + 𝑏𝑘𝑈
0 + 𝜏𝛼Γ(2 − 𝛼)𝐹𝑘+1

𝑈0 = Φ

               (15) 

 

Where𝐴 = [𝐴𝑖,𝑗] is a matrix containing all of the coefficients? Following is a statement that we derive from the 

equation (15). 

 

2.2 Finite Difference Scheme  

In equation, the discretization of the second order spatial derivative is accomplished by applying the 

difference formula- 

𝑢𝑥𝑥 =
𝑢(𝑥𝑙−1, 𝑡𝑘+1) − 2𝑢(𝑥𝑙 , 𝑡𝑘+1) + 𝑢(𝑥𝑙+1, 𝑡𝑘+1)

2ℎ2

+
𝑢(𝑥𝑙−1, 𝑡𝑘) − 2𝑢(𝑥𝑙 , 𝑡𝑘) + 𝑢(𝑥𝑙+1, 𝑡𝑘)

2ℎ2
O(h2)                   (16) 

Combining equations  

−𝑟𝑙
𝑘+1𝑢𝑙−1

𝑘+1 + (1 + 2𝑟𝑙
𝑘+1)𝑢𝑙

𝑘+1 − 𝑟𝑙
𝑘+1𝑢𝑙+1

𝑘+1 = 𝑟𝑙
𝑘+1𝑢𝑙−1

𝑘 + (1 − 2𝑟𝑙
𝑘+1)𝑢𝑙

𝑘 + 

𝑟𝑙
𝑘+1𝑢𝑙+1

𝑘 −∑  

𝑘

𝑗=1

(𝑢𝑙
𝑘+1−𝑗

− 𝑢𝑙
𝑘−𝑗
)𝑏𝑗
𝑙,𝑘+1 + 𝜏𝛼𝑙

𝑘+1
Γ(2 − 𝛼𝑙

𝑘+1)𝑓𝑙
𝑘(𝑢𝑙

𝑘) 

The Crank-Nicolson finite difference approach is therefore appropriate for the first initial boundary 

value problem 

−𝑟𝑙
𝑘+1𝑢𝑙−1

𝑘+1 + (1 + 2𝑟𝑙
𝑘+1)𝑢𝑙

𝑘+1 − 𝑟𝑙
𝑘+1𝑢𝑙+1

𝑘+1 = 𝑟𝑙
𝑘+1𝑢𝑙−1

𝑘 + (1 − 2𝑟𝑙
𝑘+1)𝑢𝑙

𝑘 +

𝑟𝑙
𝑘+1𝑢𝑙+1

𝑘 − ∑  𝑘
𝑗=1 (𝑢𝑙

𝑘+1−𝑗
− 𝑢𝑙

𝑘−𝑗
)𝑏𝑗
𝑙,𝑘+1 + 𝜏𝑙

𝛼𝑙
𝑘+1

Γ(2 − 𝛼𝑙
𝑘+1)𝑓𝑙

𝑘(𝑢𝑙
𝑘)

    (17) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑢𝑙
0 = 𝑔(𝑥𝑙), 𝑙 = 0,1,2, … ,𝑀                                                                (18) 

𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑢 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑢0
𝑘 = 0 = 𝑢𝑀

𝑘 , 𝑘 = 0,1,2, … , 𝑁                                     (19)  

 

3. Conclusion: 

In  this  paper,  the  Crank-Nicolson  numerical  finite difference  scheme  is  proposed  to  solve  a  

two-dimensional time-fractional  Semilinear  parabolic  equation  with homogeneous  Dirichlet  boundary  

conditions.  We prove  that the  proposed scheme  is  consistent,  conditionally  stable  and convergent.  In 

addition,  in  order  to  support  the  theoreticalIn  this  paper,  the  Crank-Nicolson  numerical  finite difference  

scheme  is  proposed  to  solve  a  two-dimensional time-fractional  Semilinear  parabolic  equation  with 

homogeneous  Dirichlet  boundary  conditions.  We prove that the proposed scheme is consistent, conditionally 

stable  and convergent.  In addition,  in  order  to  support  the  theoretical 

In this study, a two-dimensional time-fractional semi linear parabolic equation with homogeneous 

Dirichlet boundary conditions is solved using the Crank-Nicolson numerical finite difference method. The 
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weighted average finite difference scheme is more general scheme in the study of nonlinear partial differential 

equations. Explicit, implicit and Crank-Nicolson finite difference schemes are the particular cases of weighted 

average finite difference scheme. We demonstrate the consistency, conditional stability, and convergence of the 

suggested scheme.  Additionally, two numerical experiments are taken into consideration to corroborate the 

theoretical findings. The nonlinearity that is being considered is a polynomial of the third order with three 

different roots. The Hirota method allows one to arrive at the correct answer in any given situation. After that, 

this one-of-a-kind solution may be put to work in the development of nonstandard discrete models. It should be 

noted, however, that exact-finite difference schemes for partial differential equations are not expected to exist. A 

comparison will be made between the partial differential equation under consideration and the standard finite-

difference schemes. This comparison will focus on how the solutions of the various nonstandard and standard 

discrete models differ from one another. 
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