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Abstract: In this paper, we get the numerical solution of a singularly perturbed system of boundary layer-
exhibiting parabolic convection-diffusion problems. The backward-Euler method and an upwind finite
difference scheme make up the suggested numerical approach for the time and spatial derivatives,
respectively. For the spatial discretization, we analyse the scheme on a piecewise uniform Shishkin mesh in
order to establish uniform convergence with regard to the perturbation parameters. The stability analysis for
the suggested method is provided, and a parameter-uniform error estimate is generated. We have conducted
some numerical tests to verify the theoretical findings.
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1. Introduction

In this section, we use the difference approach suggested in the previous section to solve the semi-
linear parabolic CD IBVP system:

ou 9% au | 2 o _ 7
E—SE—A(x)a+f(x,t,u)_— 0, (x, t)eQ
U(x, 0) = ug(x), xeQ, 1)
7(0,t) = 0,%(1,¢) = 0, te(0,T]

Where f(x, t, 1) = (f1(x,t,ug, uy), fL(x, t,u;,u,))". We're going to go ahead and presume f; andf, these
operations are sufficiently slick. In addition, we can suppose

oh 9% oh 9% in 0 2
B =yp > O,au2 =yp > O,au2 < O,au1 <0.inQ, X[0,T] xR* (2)
(O L0 O L BY S A 0 inG 2
min {aul + Bu;  Fuy + 6u2} >>0,inQ,x[0.T] xR 3)
The combination of these constraints (1) and (2), as well as the implicit function theorem, ensures that
there is only one solution. #(x,t) € (CZ(Q))? in addition to the problem (3), the solution #(x,t) Contains

boundary layers that overlap along the line x = 0.

First, we shall linearize the semi-linear problem using Newton's quasi-linearization approach (3), and
then we will use this sequence of linear problems to solve the other problems. Whose solutions are we talking
about 1P (x, t) when you make a good first guess 1°(x, t) converge on a single, correct answer u This linear
parabolic IBVP is solved:

oupPtt 92yp+1 P+ N
T o Tt =F(x, tul,uy), (nt) €Q
U(x,0) = Uy(x),x € Q,, 4)

%(0,t) = 0,%(1,t) = 0.t € (0,T].
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Here is the Jacobian matrices, with the reaction coefficient J

(afl(x, tug,uy) afl(x t ui" p)\
(x,6)

Ju,y

z\afz(x,t,ul, ) afz(xtul, )

du,

and the source term F (x, t, u?, ub) = J(x, )u? — f(x,t,u?,ul).. Given in (3) -(4), Therefore, it is safe to say
that J(x, t)is an Lo-1 matrix.
Forp € N, Take into consideration the following stipulations for stopping

[uP*t1(x;, t,) — UP (x;, t,)| < Tol, for (x;,t,) € QVM,p > 0.
Here,T ol denotes the tolerance bound selected by the user The numerical findings of a system of semilinear
IBVP of the forms (3) and (4) are reported in the final portion of this chapter.

Example: Consider the semi-linear parabolic IBVP system shown below. Q = (0; 1)x (0; 1]:
We obtain the following singular perturbation system of linear parabolic IBVP by using Newton's linearization
procedure (3) to Example:

ouy 0%u; Ouy
¥—51W—6—+exp (ul —uz) = 0
ou, 0*u, Ou,
5t "2 5.2 —a—+exp (u; —uy) =0,
1—exp (—x/&) 1 —exp (—x/&3)
u;(x, 0 T oxo (17~ U x,0)=———<—1x,
O e Cazey Y T T e (/)
u,(0,8) =uy(1,t) =0,u,(0,t) =u,(1,t) =0,t € [0,1]
aup+1 62 p+1 aup+1
61t —& 6x2 - 61x +exp (uf - uz)u —exp (uf - uz)up+1
aup+1 62 p+1 aup+1
62t —& 6x2 - 62x —exp (Wb —ub) |l +exp (Wb —ub) |ub™?

= —exp (uf —uf)uf + (exp (uf —uf) — 1)u,
p+1 p+1 —
(x,0) = u;(x,0),u;” (x,0) = uy(x, 0),
u?*0,t) = uf“(1 t) = 0,ub*"(0,£) = ub*(1,£) = 0,t € [0,1].

As a result, we solve the preceding linearized problem for a fixed p using the computational method
presented in Section. We employ the Newton's linearization procedure as a convergence criterion.

max{|Un(p) U"(p Y } <1077

| Un(p) U"(p 1)

”(0) U"( ' = 0as a starting point When we hit the required tolerance bound, we stop

iterating and consider the problem solved.

where, we choose U,

Because the precise solution of Example is also unknown, we will employ the previously described
double-mesh technique to get the precision of the numerical solution as well as to demonstrate the E-uniform
convergence of the suggested scheme.

Demonstrate the numerical solution to Example, which includes boundary layers. The depicts the
monotonically declining behavior of "-uniform errors computed for N = 32; 64; 128; 256; 512, and M = N with
the singular perturbation parameters. S, = {(g;, ;) | (278,27%),(2729,2719)}. The uniform error behaviour
may also be seen in the loglog.

Remark : On account of condition, the arrangement of the limit esteem issue fulfils the measure
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lu(a, t)| < 2(1 —m?) 'max [cglmgx|g(a, t, 0)|,m5glx|<p(a, t)|] ,(a,t) €EG

Here m = m.3). For the component u' (X, t) we get the estimation
lui(a,t)] <m n%ax|u3“'(a, )] + co‘lmgx|gi(a, t,0)| + mgx|goi(a, t),

(a,t) €G,i=12

In the scenario of linear equations, we now provide estimates derived from the primary terms of the

solution's asymptotic expansion. First, we write the problem's answer as the sum of functions.
u(a,t) = U(a,t) + V(a,t),(a,t) €G (5)

where U(a, t) and V(a, t) are the solution decomposition's regular and singular terms. The function U(a, t), (a, t)
€ G is the restriction to G of the function U¢(a,t),(a,t) € G¢,where the set G¢,i.e., the extension of G
beyond the boundary Stincludes G along with its mg-neighbourhood; G¢ = D¢ x [0, T]. The function U®(a, t) is
the solution of the problem
LfU%(a,t) = g°(a,t,U%(a,t)), (a,t)€GE, (6)
U¢(a,t) = p°(a,t), (x,t) € S°¢

Here L¢ and g°(a, t,u), (x,t) € Q are smooth continuations of the operator L) and the function g(a,
t, u) the function ¢¢(a,t), (a,t) € S¢ is chosen sufficiently smooth ¢€(a,t) = ¢(a,t),(a,t) € S,. Assume
that the function g¢(a,t,u) and ¢°(a,t) are equal to zero outside a nearest ms-neighbourhood of the set G
where my < mo. The solution to the problem is the function V(a, t)
Lu2 V(a,t)=g(a, t, U(a, t) + V(a,t)) —g(a, t,U(a,t)) ,(a,t) €G,V(a, ) =d(a, t) —U(a, ) = dv(a, t), (a,t)
€ (7
In the representation, we now estimate the regular component of the problem solution (7). Let's write
U(a, t) as the sum of two functions.
U(a,t) = X, €2kUx(a,t) + v{i(a,t) = U"(a,t) + v{}(a,t),(a,t) € G, 8)
that corresponds to the function's representation U®(a, t), (a,t) € G¢ , Which of the following is the solution to
problem (7):
n
U(a,t) = z €268 (a, ) + V& (a, ), (@, t) € G
k=0

The function U¢(a, t), (a,t) € G¢, i.e, problem solutions are components in the expansion of the regular part of
the solution.

LuinUs(at) = g°(at, Us(a 1)), (a,t) € G°/S§ ©)
Us (a,t) = ¢°(a,t), (a,t)eS¢;
LuinUi(a,t) = 5_2{L(4.14) - L?4_11)}U,f_1(a, t)
k k-1
+e72kige| a,t, Z e#1Ug (at) | -g°| at, Z e*1ug (a,t) | ¢,
k1=0 k1=0

(a,t) € G¢\ S¢
Ui (a,t) =0,(a,t) €S, k>0

Where
Leaay = Ly | e=0 = —C¢(a,t) — P°(a, t)%
For the function vi"(a, t) The following is our estimate:
v (a, t)| < Me*™*2 (a,t) €G
If a condition exists, (4.8), where
[>K~-2,l; >K+2n, (10)

For

3158



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)

n=[(K+1)/2]3,—2, K =>4 (11)
One has U¢ € HX*%(G®) We derive the estimate for the function U (a, t)

ak+k0

U(a, t)| < M[1+eK%2],(a,t) € G k+2ky < K. (12)

k1, k2 5.k
da;~ da,“ at*o

Furthermore, for the components U™ (x, t)and vj;(x, t) we have the estimations

ak+k0

U'(a,t)| < M,

dal* dak? atko
ak

k1 4 kz 5k
da,* da,” dtko

vii(a, t)| < MeX%2 (a,t) € G,k + 2k, < K.

Remark. The function, according to the decomposition (4.13), ¢, (4.12)(a, t) has the illustration
n
2@ t) = ) (@) +oiat) = pfat) + eha 0, (@) €S
k=0
Where
(pOV(a' t) = (p(a' t) - Uy (a' t)' (ka(a' t) =—U, (a, t)' k=1,
oMa,t) = —vj(a,t),(a,t) €S.

Let the decomposition of the singular part of the boundary value issue solution. As the sum of the functions, we
construct the function V (a, t).
V(a,t) = X, €2*Vi(a, t) + vif(a, t) = V*(a, t) + v (a,t), (a, t) € G (13)

The functions V,(a, t), (a,t)e G i.e., Problem solutions are components of the solitary section of the problem
solution.
L) Vo(@, )=g (a, t, Uo(a, t) + Vo(a, 1)) —g(a, t, Uo(a, 1)) , (a t) € G, Vo(a, )=dov(a, 1), (&, 1) € S;

L.18) Vi(a, )=e? {Lu1g) — Luin} Viei(at) (14)
K
+e % <g| a,t, Z e21[Uy (a,t) + Vi, (a,0)]
k1=0
K k-1
-g| at, Z 21U, (a,t) + z g2y, (a,t) |¢, (a,t) €G,
k1=0 k1=0
Vi(a,t) = ppy(a,t), (a,t) ES, k>0
Where
cl@og) o
—(xi(a, t)=— 5
= 2| 9@ 9a, 5 5\ |- C@n-P@v
[ 52 -
0 da, (x1 @t aal)
L(a.18)

We derive the estimate for the conditions (4.7), (4.15), using a technique identical to the one described

gk+ko
_— < M(g7F1 K—k-2 _ -1 r
2 0% ek V(a,t)] sM(E™ +¢ Jexp (—me~'r(a,T)) (15)

(a,t) €G, k+2ky <K
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Here r(a, I') is the distance from the point ‘a’ to the boundary I', and m is an arbitrary constant from the interval
1

(0, mo), where m, = Cg(l - m(4,3))1/2 for cy = Coaz)

Remark. If condition (14) is violated, we pass the problem from the function u(a, t) to the function u * (a, t),
u(a, t) = u = (a, t) exp(a t). We select a value that is sufficiently large to satisfy the criteria.

Wi(a,t;a) = ap, + c(a,t) — gi(a, t) = ¢y,

m¥i(a,t;a) = |[cV(a, )|+ gi(a,t), (@) €G, i,j=12i#],

where co > 0, m is a random constant that fulfils the criterion m < 1 and po = po(23). We return to the function u
after estimating the function u (a, t) and its components (a, t). It is not difficult to demonstrate that the constants
m and M in an estimate of type (15) produced for the function V (a, t) in that case are dependent on a.
Furthermore, the constant m = m (o) can be selected arbitrarily small, and the constant M = M (a) rises as a —
0. As a result, the statement of Theorem is preserved even when condition (4.3b) is violated.

2. Conclusion

Using a parameter-uniform numerical scheme, we have presented the analysis for a class of singularly
perturbed linear and semilinear parabolic convection-diffusion problems in this work. To discretize the domain,
a uniform mesh has been utilised in the temporal direction and a piecewise-uniform Shishkin mesh in the spatial
direction. We introduced the backward-Euler strategy for the time semi-discretization and the upwind difference
technique for the spatial semi-discretization.
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