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Abstract: In this paper, we get the numerical solution of a singularly perturbed system of boundary layer-

exhibiting parabolic convection-diffusion problems. The backward-Euler method and an upwind finite 

difference scheme make up the suggested numerical approach for the time and spatial derivatives, 

respectively. For the spatial discretization, we analyse the scheme on a piecewise uniform Shishkin mesh in 

order to establish uniform convergence with regard to the perturbation parameters. The stability analysis for 

the suggested method is provided, and a parameter-uniform error estimate is generated. We have conducted 

some numerical tests to verify the theoretical findings. 
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1. Introduction 

In this section, we use the difference approach suggested in the previous section to solve the semi-

linear parabolic CD IBVP system: 

 

{

𝜕𝑢⃗⃗ 

𝜕𝑡
− 𝜀

𝜕2𝑢⃗⃗ 

𝜕𝑥2
− 𝐴(𝑥)

𝜕𝑢⃗⃗ 

𝜕𝑥
+ 𝑓 (𝑥, 𝑡, 𝑢⃗ ) = 0⃗ , (𝑥, 𝑡)𝜖𝑄

𝑢⃗ (𝑥, 0) = 𝑢0⃗⃗⃗⃗ (𝑥), 𝑥𝜖Ω𝑥̅̅̅̅

𝑢⃗ (0, 𝑡) = 0⃗ , 𝑢⃗ (1, 𝑡) = 0⃗ , 𝑡𝜖(0, 𝑇] 

               (1) 

Where 𝑓 (𝑥, 𝑡, 𝑢⃗ ) = (𝑓1(𝑥, 𝑡, 𝑢1, 𝑢2), 𝑓2(𝑥, 𝑡, 𝑢1, 𝑢2))
𝑇. We're going to go ahead and presume 𝑓1 𝑎𝑛𝑑𝑓2 these 

operations are sufficiently slick. In addition, we can suppose 

 
∂𝑓1

∂𝑢1
≥ 𝛾𝛽 > 0,

∂𝑓2

∂𝑢2
≥ 𝛾𝛽 > 0,

∂𝑓1

∂𝑢2
< 0,

∂𝑓2

∂𝑢1
< 0. in Ω̅𝑥 × [0, 𝑇] × ℝ

2  (2) 

𝑚𝑖𝑛 {
∂𝑓1

∂𝑢1
+

∂𝑓1

∂𝑢2
⋅
∂𝑓2

∂𝑢1
+

∂𝑓2

∂𝑢2
} ≥ 𝛽 > 0, in Ω̅𝑥 × [0. 𝑇] × ℝ

2       (3) 

 

The combination of these constraints (1) and (2), as well as the implicit function theorem, ensures that 

there is only one solution. 𝑢⃗ (𝑥, 𝑡) ∈ (𝒞0
2(𝑄̅))2 in addition to the problem (3), the solution 𝑢⃗ (𝑥, 𝑡) Contains 

boundary layers that overlap along the line x = 0. 

 

First, we shall linearize the semi-linear problem using Newton's quasi-linearization approach (3), and 

then we will use this sequence of linear problems to solve the other problems. Whose solutions are we talking 

about 𝑢⃗ 𝑃(𝑥, 𝑡) when you make a good first guess 𝑢⃗ 0(𝑥, 𝑡) converge on a single, correct answer u This linear 

parabolic IBVP is solved:  

{
 

 
∂𝑢⃗⃗ 𝑝+1

∂𝑡
− ℰ

∂2𝑢⃗⃗ 𝑝+1

∂𝑥2
− 𝐴(𝑥)

∂𝑢⃗⃗ 𝑝⃗⃗ +1

∂𝑥
+ 𝒥𝑢⃗ 𝑝+1 = ℱ(𝑥, 𝑡, 𝑢1

𝑝
, 𝑢2

𝑝
), (𝑥, 𝑡) ∈ 𝑄

𝑢⃗ (𝑥, 0) = 𝑢⃗ 0(𝑥), 𝑥 ∈ Ω̅𝑥 ,

𝑢⃗ (0, 𝑡) = 0⃗ , 𝑢⃗ (1, 𝑡) = 0⃗ . 𝑡 ∈ (0, 𝑇].

         (4) 
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Here is the Jacobian matrices, with the reaction coefficient J 

𝒥(𝑥, 𝑡) =

(

 
 

∂𝑓1(𝑥, 𝑡, 𝑢1
𝑝
, 𝑢2

𝑝
)

∂𝑢1
    
∂𝑓1(𝑥, 𝑡, 𝑢1

𝑝
, 𝑢2

𝑝
)

∂𝑢2
∂𝑓2(𝑥, 𝑡, 𝑢1

𝑝
, 𝑢2

𝑝
)

∂𝑢1
    
∂𝑓2(𝑥, 𝑡, 𝑢1

𝑝
, 𝑢2

𝑝
)

∂𝑢2 )

 
 

 

 

and the source term ℱ(𝑥, 𝑡, 𝑢1
𝑝
, 𝑢2

𝑝
) = 𝒥(𝑥, 𝑡)𝑢⃗ 𝑝 − 𝑓 (𝑥, 𝑡, 𝑢1

𝑝
, 𝑢2

𝑝
).. Given in (3) -(4), Therefore, it is safe to say 

that 𝒥(𝑥, 𝑡)is an L0-1 matrix. 

For𝑝 ∈ ℕ, Take into consideration the following stipulations for stopping  

|𝑢⃗ 𝑝+1(𝑥𝑖 , 𝑡𝑛) − 𝑢⃗ 
𝑝(𝑥𝑖 , 𝑡𝑛)| ≤ 𝑇𝑜𝑙, for (𝑥𝑖 , 𝑡𝑛) ∈ 𝑄

𝑁,𝑀, 𝑝 ≥ 0. 

Here,𝑇 𝑜𝑙 denotes the tolerance bound selected by the user The numerical findings of a system of semilinear 

IBVP of the forms (3) and (4) are reported in the final portion of this chapter. 

 

Example: Consider the semi-linear parabolic IBVP system shown below. Q = (0; 1)× (0; 1]: 

We obtain the following singular perturbation system of linear parabolic IBVP by using Newton's linearization 

procedure (3) to Example: 

∂𝑢1
∂𝑡

− 𝜀1
∂2𝑢1
∂𝑥2

−
∂𝑢1
∂𝑥

+ exp (𝑢1 − 𝑢2) = 0,

∂𝑢2
∂𝑡

− 𝜀2
∂2𝑢2
∂𝑥2

−
∂𝑢2
∂𝑥

+ exp (𝑢2 − 𝑢1) = 0,

𝑢1(𝑥, 0) =
1 − exp (−𝑥/𝜀1)

1 − exp (−1/𝜀1)
− 𝑥, 𝑢2(𝑥, 0) =

1 − exp (−𝑥/𝜀2)

1 − exp (−1/𝜀2)
− 𝑥,

𝑢1(0, 𝑡) = 𝑢1(1, 𝑡) = 0, 𝑢2(0, 𝑡) = 𝑢2(1, 𝑡) = 0, 𝑡 ∈ [0,1]

 

{
 
 
 
 

 
 
 
 

∂𝑢1
𝑝+1

∂𝑡
− 𝜀1

∂2𝑢1
𝑝+1

∂𝑥2
−
∂𝑢1

𝑝+1

∂𝑥
+ exp (𝑢1

𝑝
− 𝑢2

𝑝
)𝑢1

𝑝+1
− exp (𝑢1

𝑝
− 𝑢2

𝑝
)𝑢2

𝑝+1

∂𝑢2
𝑝+1

∂𝑡
− 𝜀2

∂2𝑢2
𝑝+1

∂𝑥2
−
∂𝑢2

𝑝+1

∂𝑥
− exp (𝑢2

𝑝
− 𝑢1

𝑝
)) 𝑢1

𝑝+1
+ exp (𝑢2

𝑝
− 𝑢1

𝑝
))𝑢2

𝑝+1

= −exp (𝑢2
𝑝
− 𝑢1

𝑝
)𝑢1

𝑝
+ (exp (𝑢2

𝑝
− 𝑢1

𝑝
) − 1)𝑢2

𝑝
,

𝑢1
𝑝+1

(𝑥, 0) = 𝑢1(𝑥, 0), 𝑢2
𝑝+1

(𝑥, 0) = 𝑢2(𝑥, 0),

𝑢1
𝑝+1

(0, 𝑡) = 𝑢1
𝑝+1

(1, 𝑡) = 0, 𝑢2
𝑝+1

(0, 𝑡) = 𝑢2
𝑝+1

(1, 𝑡) = 0, 𝑡 ∈ [0,1].

 

 

As a result, we solve the preceding linearized problem for a fixed p using the computational method 

presented in Section. We employ the Newton's linearization procedure as a convergence criterion. 

𝑚𝑎𝑥 {|𝑈1,𝑖
𝑛(𝑝)

− 𝑈1,𝑖
𝑛(𝑝−1)| , |𝑈2,𝑖

𝑛(𝑝) − 𝑈2,𝑖
𝑛(𝑝−1)|} ≤ 10−7 

 

where, we choose 𝑈1,𝑖
𝑛(0)

− 𝑈2,𝑖
𝑛(0) = 0as a starting point When we hit the required tolerance bound, we stop 

iterating and consider the problem solved. 

 

Because the precise solution of Example is also unknown, we will employ the previously described 

double-mesh technique to get the precision of the numerical solution as well as to demonstrate the E-uniform 

convergence of the suggested scheme. 

Demonstrate the numerical solution to Example, which includes boundary layers. The depicts the 

monotonically declining behavior of "-uniform errors computed for N = 32; 64; 128; 256; 512, and M = N with 

the singular perturbation parameters. 𝑆̂𝑒 = {(𝜀1, 𝜀2) ∣ (2
−18, 2−8), (2−20, 2−10)}. The uniform error behaviour 

may also be seen in the loglog. 

 

Remark : On account of condition, the arrangement of the limit esteem issue fulfils the measure 
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|𝐮(𝑎, 𝑡)| ≤ 2(1 − 𝑚2)−1𝑚𝑎𝑥 [𝑐0
−1𝑚𝑎𝑥

𝐺̅
 |𝐠(𝑎, 𝑡, 𝟎)|,𝑚𝑎𝑥

𝑆
 |𝝋(𝑎, 𝑡)|] , (𝑎, 𝑡) ∈ 𝐺̅ 

 

Here m = m(4.3). For the component ui (x, t) we get the estimation 

|𝑢𝑖(𝑎, 𝑡)| ≤ 𝑚  𝑚𝑎𝑥
𝐺̅

 |𝑢3−𝑖(𝑎, 𝑡)| + 𝑐0
−1𝑚𝑎𝑥

𝐺̅
 |𝑔𝑖(𝑎, 𝑡, 𝟎)| + 𝑚𝑎𝑥

𝑆
 |𝜑𝑖(𝑎, 𝑡)|, 

 

(𝑎, 𝑡) ∈ 𝐺̅, 𝑖 = 1,2 

In the scenario of linear equations, we now provide estimates derived from the primary terms of the 

solution's asymptotic expansion. First, we write the problem's answer as the sum of functions. 

𝑢(𝑎, 𝑡) =  𝑈(𝑎, 𝑡) +  𝑉(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅                                      (5) 

where U(a, t) and V(a, t) are the solution decomposition's regular and singular terms. The function U(a, t), (a, t) 

∈ 𝐺̅ is the restriction to 𝐺̅ of the function U𝑒(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅𝑒 , 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝐺̅𝑒 , 𝑖. 𝑒., the extension of 𝐺̅ 

beyond the boundary 𝑆̅𝐿includes 𝐺̅ along with its m0-neighbourhood; 𝐺̅𝑒 = 𝐷̅𝑒 × [0, 𝑇]. The function U𝑒(𝑎, 𝑡) is 

the solution of the problem 

𝐿𝑒𝐔𝑒(𝑎, 𝑡) = 𝐠𝑒(𝑎, 𝑡, 𝐔𝑒(𝑎, 𝑡)),     (𝑎, 𝑡) ∈ 𝐺𝑒 ,

𝐔𝑒(𝑎, 𝑡) = 𝜑𝑒(𝑎, 𝑡),     (𝑥, 𝑡) ∈ 𝑆𝑒
   (6) 

 

Here 𝐿𝑒  𝑎𝑛𝑑 𝑔𝑒(𝑎, 𝑡, 𝑢), (𝑥, 𝑡) ∈  𝑄̅  are smooth continuations of the operator L(4.2) and the function g(a, 

t, u) the function 𝜑𝑒(𝑎, 𝑡), (𝑎, 𝑡) ∈  𝑆𝑒 is chosen sufficiently smooth 𝜑𝑒(𝑎, 𝑡) = 𝜑(𝑎, 𝑡), (𝑎, 𝑡)  ∈  𝑆0. Assume 

that the function 𝑔𝑒(𝑎, 𝑡, 𝑢) 𝑎𝑛𝑑 𝜑𝑒(𝑎, 𝑡) are equal to zero outside a nearest m1-neighbourhood of the set 𝐺̅ 

where m1 < m0. The solution to the problem is the function V(a, t) 

L(4.2) V(a, t) = g (a, t, U(a, t) + V(a, t))  − g (a, t, U(a, t))  , (a, t) ∈ G, V(a, t) = ϕ(a, t) − U(a, t) ≡ ϕV(a, t),    (a, t) 

∈                                     (7) 

In the representation, we now estimate the regular component of the problem solution (7). Let's write 

U(a, t) as the sum of two functions.  

𝐔(𝑎, 𝑡) = ∑  𝑛
𝑘=0 𝜀

2𝑘𝐔𝑘(𝑎, 𝑡) + 𝐯𝐔
𝑛(𝑎, 𝑡) ≡ 𝐔𝑛(𝑎, 𝑡) + 𝐯𝐔

𝑛(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅, (8) 

that corresponds to the function's representation 𝐔𝑒(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅𝑒 , Which of the following is the solution to 

problem (7): 

𝐔𝑒(𝑎, 𝑡) = ∑  

𝑛

𝑘=0

𝜀2𝑘𝐔𝑘
𝑒(𝑎, 𝑡) + 𝐯𝐔

𝑒𝑛(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅𝑒 

 

The function 𝑈𝑘
𝑒(𝑎, 𝑡), (𝑎, 𝑡) ∈  𝐺̅𝑒, i.e, problem solutions are components in the expansion of the regular part of 

the solution. 

𝐿(4.14)𝑈0
𝑒(𝑎, 𝑡) = 𝑔𝑒(𝑎, 𝑡,   𝑈0

𝑒(𝑎, 𝑡)),                    (𝑎, 𝑡) ∈ 𝐺̅𝑒/𝑆0
𝑒                         (9) 

𝑈0
𝑒  (𝑎, 𝑡) = 𝜑𝑒(𝑎, 𝑡),                         (𝑎, 𝑡)𝜖𝑆0

𝑒; 

𝐿(4.14)𝑈𝑘
𝑒(𝑎, 𝑡) = 𝜀−2{𝐿(4.14) − 𝐿(4.11)

𝑒 }𝑈𝑘−1
𝑒 (𝑎, 𝑡) 

+𝜀−2𝑘 {𝐠𝑒 (𝑎, 𝑡, ∑  

𝑘

𝑘1=0

𝜀2𝑘1𝐔𝑘1
𝑒 (𝑎, 𝑡))−𝐠𝑒 (𝑎, 𝑡, ∑  

𝑘−1

𝑘1=0

𝜀2𝑘1𝐔𝑘1
𝑒 (𝑎, 𝑡))} ,

(𝑎, 𝑡) ∈ 𝐺̅𝑒 ∖ 𝑆0
𝑒

𝐔𝑘
𝑒(𝑎, 𝑡) = 𝟎, (𝑎, 𝑡) ∈ 𝑆0

𝑒, 𝑘 > 0

 

 

Where 

𝐿(4.14) − 𝐿(4.11)
𝑒 │𝜀=0 = −𝐶

𝑒(𝑎, 𝑡) − 𝑃𝑒(𝑎, 𝑡)
𝜕

𝜕𝑡
 

For the function 𝑣𝑈
𝑒𝑛(𝑎, 𝑡) The following is our estimate: 

|𝐯𝐔
𝑒𝑛(𝑎, 𝑡)| ≤ 𝑀𝜀2𝑛+2, (𝑎, 𝑡) ∈ 𝐺̅ 

If a condition exists, (4.8), where 

       𝑙 ≥ K − 2, 𝑙1 ≥ K + 2n,                                                  (10) 

For  
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                              𝑛 = [(𝐾 + 1)/2]3.2 − 2,         𝐾 ≥ 4                                        (11) 

One has 𝐔𝑒 ∈ 𝐻𝐾+𝛼(𝐺̅𝑒)  We derive the estimate for the function U (a, t) 

 

|
∂𝑘+𝑘0

∂𝑎1
𝑘1 ∂𝑎2

𝑘2 ∂𝑡𝑘0
𝐔(𝑎, 𝑡)| ≤ 𝑀[1 + 𝜀𝐾−𝑘−2], (𝑎, 𝑡) ∈ 𝐺̅, 𝑘 + 2𝑘0 ≤ 𝐾.     (12) 

 

Furthermore, for the components 𝑈𝑛(𝑥, 𝑡)𝑎𝑛𝑑 𝑣𝑈
𝑛(𝑥, 𝑡) we have the estimations 

 

|
∂𝑘+𝑘0

∂𝑎1
𝑘1 ∂𝑎2

𝑘2 ∂𝑡𝑘0
𝐔𝑛(𝑎, 𝑡)| ≤ 𝑀, 

|
∂𝑘

∂𝑎1
𝑘1 ∂𝑎2

𝑘2 ∂𝑡𝑘0
𝐯𝐔
𝑛(𝑎, 𝑡)| ≤ 𝑀𝜀𝐾−𝑘−2, (𝑎, 𝑡) ∈ 𝐺̅, 𝑘 + 2𝑘0 ≤ 𝐾. 

 

Remark. The function, according to the decomposition (4.13), 𝜑𝑣(4.12)(𝑎, 𝑡) has the illustration 

𝜑𝐕(𝑎, 𝑡) = ∑  

𝑛

𝑘=0

𝜀2𝑘𝜑𝑘𝐕(𝑎, 𝑡) + 𝜑𝐯
𝑛(𝑎, 𝑡) ≡ 𝜑𝐕

𝑛(𝑎, 𝑡) + 𝜑𝐯
𝑛(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝑆 

Where 

𝝋0𝐕(𝑎, 𝑡) = 𝜑(𝑎, 𝑡) − 𝐔0(𝑎, 𝑡), 𝝋𝑘𝐕(𝑎, 𝑡) = −𝐔𝑘(𝑎, 𝑡), 𝑘 ≥ 1, 

𝜑𝐯
𝑛(𝑎, 𝑡) = −𝐯𝐔

𝑛(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝑆. 

 

Let the decomposition of the singular part of the boundary value issue solution. As the sum of the functions, we 

construct the function V (a, t). 

𝐕(𝑎, 𝑡) = ∑  𝑛
𝑘=0 𝜀

2𝑘𝐕𝑘(𝑎, 𝑡) + 𝐯𝐕
𝑛(𝑎, 𝑡) ≡ 𝐕𝑛(𝑎, 𝑡) + 𝐯𝐕

𝑛(𝑎, 𝑡), (𝑎, 𝑡) ∈ 𝐺̅  (13) 

 

The functions 𝑉𝑘(𝑎, 𝑡), (𝑎, 𝑡)𝜖 𝐺̅ i.e., Problem solutions are components of the solitary section of the problem 

solution.  

L(4.18) V0(a, t)=g (a, t, U0(a, t) + V0(a, t))  − g (a, t, U0(a, t))  , (a, t) ∈ G, V0(a, t)=ϕ0V(a, t), (a, t) ∈ S; 

L(4.18) Vk(a, t)=ε−2  {L(4.18)) − L(4.12)} Vk−1(a,t)                                     (14) 

+𝜀−2𝑘 {𝐠(𝑎, 𝑡, ∑  

𝑘

𝑘1=0

  𝜀2𝑘1[𝐔𝑘1(𝑎, 𝑡) + 𝐕𝑘1(𝑎, 𝑡)]) 

−𝐠𝑒 (𝑎, 𝑡, ∑  

𝑘

𝑘1=0

 𝜀2𝑘1𝐔𝑘1(𝑎, 𝑡) + ∑  

𝑘−1

𝑘1=0

  𝜀2𝑘1𝐕𝑘1(𝑎, 𝑡))} ,  (𝑎, 𝑡) ∈ 𝐺, 

𝐕𝑘(𝑎, 𝑡) = 𝜑𝑘𝐕(𝑎, 𝑡),  (𝑎, 𝑡) ∈ 𝑆,  𝑘 > 0 

Where  

≡ 𝜀2

(

 
 

∂

∂𝑎1
(𝑥1

1(𝑎, 𝑡)
∂

∂𝑎1
) 0

0
∂

∂𝑎1
(𝑥1

2(𝑎, 𝑡)
∂

∂𝑎1
)
)

 
 
− 𝐶(𝑎, 𝑡) − 𝑃(𝑎, 𝑡)

∂

∂𝑡
 

L(4.18)  

 

We derive the estimate for the conditions (4.7), (4.15), using a technique identical to the one described 

 

|
∂𝑘+𝑘0

∂𝑎1
𝑘1 ∂𝑎2

𝑘2 ∂𝑡𝑘0
𝐕(𝑎, 𝑡)|  ≤ 𝑀(𝜀−𝑘1 + 𝜀𝐾−𝑘−2)exp (−𝑚𝜀−1𝑟(𝑎, Γ))

(𝑎, 𝑡) ∈ 𝐺‾,  𝑘 + 2𝑘0 ≤ 𝐾

 (15) 
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Here r(a, Γ) is the distance from the point ‘a’ to the boundary Γ, and m is an arbitrary constant from the interval 

(0, m0), where 𝑚0 = 𝑐0

1

2(1 − 𝑚(4.3))
1/2 𝑓𝑜𝑟 𝑐0 = 𝑐0(4.3) 

 

Remark. If condition (14) is violated, we pass the problem from the function u(a, t) to the function u ∗ (a, t), 

u(a, t) = u ∗ (a, t) exp(α t). We select a value that is sufficiently large to satisfy the criteria. 

Ψ𝑖(𝑎, 𝑡; 𝛼) ≡ 𝛼𝑝0 + 𝑐
𝑖𝑖(𝑎, 𝑡) − 𝑔𝑖

𝑖(𝑎, 𝑡) ≥ 𝑐0,

𝑚Ψ𝑖(𝑎, 𝑡; 𝛼) ≥ |𝑐𝑖𝑗(𝑎, 𝑡)| + 𝑔𝑗
𝑖(𝑎, 𝑡),    (𝑎, 𝑡) ∈ 𝐺‾,  𝑖, 𝑗 = 1,2,  𝑖 ≠ 𝑗,

 

 

where c0 > 0, m is a random constant that fulfils the criterion m < 1 and p0 = p0(2.3). We return to the function u 

after estimating the function u (a, t) and its components (a, t). It is not difficult to demonstrate that the constants 

m and M in an estimate of type (15) produced for the function V (a, t) in that case are dependent on α. 

Furthermore, the constant m = m (α) can be selected arbitrarily small, and the constant M = M (α) rises as α → 

∞. As a result, the statement of Theorem is preserved even when condition (4.3b) is violated. 

 

2. Conclusion 

Using a parameter-uniform numerical scheme, we have presented the analysis for a class of singularly 

perturbed linear and semilinear parabolic convection-diffusion problems in this work. To discretize the domain, 

a uniform mesh has been utilised in the temporal direction and a piecewise-uniform Shishkin mesh in the spatial 

direction. We introduced the backward-Euler strategy for the time semi-discretization and the upwind difference 

technique for the spatial semi-discretization. 
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