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Abstract:-This paper presents an innovative sequence-to-sequence machine translation system that leverages the 

state-of-the-art Transformer neural network architecture to translate sentences from Singlish to English. 

Notably, this marks the first Singlish-to-English machine translation system developed utilizing deep neural 

networks. The user-input sentence undergoes a systematic transformation, encompassing vectorization, 

positional embedding, and translation through the self-attention mechanisms, an innovation introduced by 

Google in 2017. Unlike dominant sequence transduction models reliant on intricate traditional recurrent or 

convolutional neural networks featuring encoders and decoders, the proposed model adopts the Transformer 

architecture, which relies exclusively on attention mechanisms. This innovative approach eschews the need for 

traditional recurrent and convolutional layers, offering enhanced translation quality, improved parallelization, 

and significantly reduced training time.  The primary objective of this translator is to facilitate seamless 

translation, bridging the linguistic gap for both local and international users, thus dismantling language barriers. 

Impressively, the system demonstrates the capability to translate sentences containing over 20 tokens in less 

than one seconds. This achievement was made possible through the use of a minimal set of language rules and 

vocabulary for both the source and target languages. 

Keywords: Sinhala to English translator, English, Singlish, Sinhala, transformer neural network, self-attention 

mechanism. 

 

1. Introduction 

Sinhala is a language with a rich history and cultural value that is mostly spoken in Sri Lanka. It is an essential 

part of the nation's social, political, and economic fabric and has over sixteen million native speakers. However, 

English, an Indo-European language with its roots in England, has become well-known as the world's lingua 

franca and is recognized as an official language in many nations. Sinhala and English are both Indo-European 

languages, despite their linguistic distinctions. The growing globalization and Sri Lanka's incorporation into the 

international community have created a need for accurate and contextually aware translation between Sinhala 

and English. English proficiency has become essential in several fields, including trade, diplomacy, academia, 

and technology [1]. 

Existing translation methods often fail to capture the subtleties of Sinhala expression, resulting in translations 

that may lack grammatical correctness and cultural relevance. The central problem this study addresses is the 

development of a translation system that can effectively convert Singlish sentences into grammatically sound 

English sentences while preserving the original meaning and cultural context. When translating from Singlish to 

English, translators‟ efficiency and accuracy are not satisfied. There are some limitations based on the inputs 

and translator; the sentence count is restricted. 
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The research aims to bridge the communication gap faced by many Sri Lankans who, despite proficiency in 

Sinhala, encounter challenges when expressing their ideas and perspectives in English. It responds to a pressing 

need for accurate and culturally sensitive translation tools in Sri Lanka, where proficiency in English is 

increasingly crucial for participation in the global economy and academia. It contributes to the broader field of 

natural language processing (NLP) and machine translation by exploring the complexities of translating between 

languages with distinct linguistic roots and cultural contexts. To facilitate effective communication and 

intercultural understanding, a system capable of translating Singlish into grammatically sound English is 

developed. Moreover, this research showcases the adaptability and versatility of sequence-to-sequence 

transformers in addressing the unique challenges posed by non-standard languages and dialects.  

Developing a sequence-to-sequence machine translation model using Keras [2] utilizing a transformer neural 

network that has been specially designed to handle the complexities of Singlish-to-English translation is what 

this study's specific goals are. Deep neural networks called transformers replace CNNs and RNNs with self-

attention [3]. Accordingly, neural networks for machine translation typically include an encoder that reads the 

input sentence and creates a representation of it. 

An encoder reads the input language in neural networks for machine translation and creates a representation of 

it. The output sentence is then created word by word by a decoder while reviewing the encoder's representation. 

For each word, the Transformer first creates initial representations or embeddings. Then, employing self-

attention, it compiles data from every other word, creating a new representation for each word that is influenced 

by the complete context, represented by the filled balls. Then, for each word, this phrase is repeated numerous 

times in parallel to produce new representations one after the other. 

The decoder then uses the encoder's representation to create the output sentence word by word.  For each word, 

the Transformer first creates initial representations or embeddings. Transformers may thus easily transport data 

across input sequences while collecting data from all the other words, creating a new representation for each 

word that is informed by the overall context, which is represented by the filled balls. step is then iterated over 

and again in parallel for each word to produce successively different representations [4]. Training and 

assessment of the model's ability to convert Sinhala sentences into grammatically sound English sentences. 

Examine the translations' cultural adequacy and contextual accuracy. Examine the system's practical 

applications in a variety of fields, including commerce, academia, and diplomacy, in the Sri Lankan setting. 

Comparing the created sequence-to-sequence transformer model to current approaches will greatly increase the 

accuracy and cultural relevance of Sinhala-to-English translations. The technique will improve Sinhala speakers' 

ability to speak English fluently, especially in business and international settings. The system's implementation 

will benefit collaboration between English- and Sinhala-speaking individuals and cross-cultural understanding. 

This study will give a summary of the related work in the areas of machine translation and linguistic analysis 

that is pertinent to Singlish and English. The process that was utilized to create and train the Singlish-to-English 

translation model. Finally, a summary of contributions will be provided, the limitations of the study will be 

acknowledged, and avenues for future research in the domain of machine translation for culturally rich and 

diverse languages like Sinhala will be proposed. 

2. Literature Review 

Language translation has garnered considerable attention in an increasingly interconnected world, holding the 

potential to bridge linguistic gaps and facilitate cross-cultural interactions. Machine translation has emerged as a 

pivotal field of innovation within this landscape. 

While translation tools exist for language families like Indo-European, Indo-Aryan, and Sino-Tibetan, the 

unique structural differences between Sinhala and English present challenges. As a result, creating effective 

translation systems for the Sinhala-English language pair has faced limitations. 

Recent research has introduced a range of translation systems aimed at addressing these challenges. Particularly 

noteworthy is the Example-Based Machine Translation System, tailored for governmental use in Sri Lanka [5]. 
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This system achieved remarkable accuracy in English-to-Sinhala translation, boasting BLEU scores [6] ranging 

from 0.17 to 0.26. These scores were determined through a 3-gram analysis with a single reference translation. 

The system's approach revolves around a bilingual corpus of English-Sinhala sentences, serving as its 

knowledge base. When presented with a source phrase, it retrieves English sentences along with their 

corresponding Sinhala sentences (Intra-Language Matching). Subsequently, a scoring algorithm is applied to the 

retrieved Sinhala sentences to identify the most frequently occurring Sinhala phrase, deemed the most likely 

translation candidate (Inter-Language Matching). 

In another study [7], impressive accuracy in English-to-Sinhala translation was demonstrated, achieving an 89% 

success rate in tests with a diverse set of two hundred sentences. This system also exhibited commendable 

efficiency in morphological generation, effectively handling 85 grammar rules for Sinhala nouns and 36 for 

verbs. However, it faced challenges when confronted with more complex language elements, such as multi-word 

expressions, idioms, and compound sentences. Additionally, it grappled with limitations tied to its reliance on 

limited lexical resources. 

Source [8] introduced a machine translation system tailored to convert grammatically accurate Sinhala sentences 

into English. It also featured valuable components like a built-in dictionary, a Sinhala based grammar checker, 

and more. Employing the Transfer-based machine translation approach, the study achieved a commendable 75% 

accuracy rate based on a meticulously selected set of 150 well-structured Sinhala sentences. 

Furthermore, a rule-based machine translation system [9] stands out with bidirectional translation capabilities 

between Sinhala and English. This pioneering system includes unique features like a Sinhalese font translator 

and an English grammar checker. Users input translations by providing Sinhala in Singlish and English in 

English. This system aims to eliminate language barriers by providing smooth translations for both locals and 

foreigners. With an 87% accuracy rate, it translated 500 well-structured Sinhala sentences into English and 150 

English sentences into Sinhala. It can process around 70 sentences per minute, showcasing its efficiency in 

bridging language gaps. 

Moreover, another study [10] introduces a novel approach to addressing Sinhala-English translation challenges 

by leveraging Evolutionary Algorithms (EA). Unlike traditional methods, EA focuses on identifying the correct 

meaning of Sinhala text and subsequently translating it into English. Given the limited digital text available in 

Sinhala, EA proves to be a promising solution for deriving accurate translations. The methodology involves 

passing Sinhala text through the EA to discern its meaning and then executing the translation into English. The 

translated text undergoes a grammatical refinement process to ensure linguistic accuracy, showcasing promising 

outcomes in terms of translation precision. This innovative approach has the potential to overcome the 

challenges posed by the unique linguistic characteristics of Sinhala, opening new avenues for effective and 

accurate machine translation. 

Existing literature consistently highlights the importance of accommodating diverse sentence structures. Various 

tools, such as the Unicode Converter [11] and the Google Transliteration IME [12], shed light on the complexity 

of language conversion, particularly the intricate transition from Singlish to Sinhala. 

Comprehensive dictionaries, exemplified by the Madura dictionary [13], play a pivotal role in enriching the 

translation landscape. These dictionaries serve as invaluable resources, offering English meanings for Sinhala 

words and vice versa. Their contributions extend beyond mere translation, significantly enhancing language 

comprehension and overall usability. 

Recent strides have introduced sophisticated models like the sequence-to-sequence Transformer, showcasing 

their proficiency in language translation tasks, including English-to-Spanish translation [2]. These models, 

grounded in the Transformer architecture, excel at handling sequential data, rendering them ideal for machine 

translation. They leverage attention mechanisms to heighten accuracy and fluency. The machine translation 

process involves several critical steps, encompassing text vectorization with the Keras Text Vectorization layer, 

the implementation of Transformer Encoder and Transformer Decoder layers within the Transformer 

architecture, meticulous data preparation (including tokenization), and the deployment of these trained models 
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for real-world translation tasks. In English-to-Spanish translation, these advanced models promise higher 

translation quality, encompassing the understanding of sentence structures, idiomatic expressions, and 

contextual nuances for linguistically accurate and contextually meaningful translations. 

ChatGPT [14], a leading conversational AI model also based on the Transformer architecture, processes natural 

language sequentially, capturing word relationships through self-attention mechanisms. In language translation, 

it efficiently uses an encoder-decoder framework. During pre-training on diverse internet texts, the model 

predicts the next word, acquiring a broad understanding of language. Incorporating natural language processing 

techniques like lemmatization and stemming enhances its ability to handle language variations. Lemmatization 

reduces words to their base form, refining comprehension while stemming captures common linguistic roots. In 

fine-tuning, ChatGPT adapts to tasks like language translation, excelling in generating context-aware responses. 

Ongoing research and improvements, including curriculum learning and reinforcement learning, drive the 

continuous evolution of models like ChatGPT, enhancing their versatility in conversational AI systems. 

3. Methodology 

A sequence-to-sequence transformer neural network model [15] implemented with Keras [2] was used to design 

the Singlish-to-English language translator. The system uses encapsulation to hide its complexity from the users. 

The entire task is done on behalf of the user with a single button click. What the user wants to know is what the 

input format is that the user should enter, and which button should be clicked to get the output. To address this 

concern, the input format for Singlish sentences was defined, utilizing [11], which effectively converts Sinhala 

sentences into their corresponding English text. The work was carried out using the Google Co-Lab 

environment and the Python Flask framework for building the interface. The Singlish-to-English language 

translator consists of five main categories: 

1. Convert active voice from Singlish to English. 

2. Transform passive voice from Singlish to English. 

3. Change interrogative Singlish to English. 

4. Adapting non-living subject Singlish sentences into relevant English sentences. 

5. Convert double-entendre Singlish to English. 

The Transformer architecture, introduced in the „Attention is all you need‟ paper [15], does not appear to have 

been written with the intent of serving as the foundation for Bert GPT or language models. The emphasis in this 

paper has been less on the architecture itself and more on achieving the specific task of language translation. In 

this paper, attention will also be directed toward the same architecture for language translation from a language 

called Sinhala to a language called English. 

The transformer architecture is comprised of two parts: an encoder and a decoder. During training, Singlish 

words from the sentence are simultaneously taken by the encoder, and word vectors are generated concurrently. 

Word vectors are eventually used as context before continuing to train the Transformer, owing to the attention 

mechanism. The decoder handles English words simultaneously while also receiving a start token to indicate the 

beginning of the sentence and an end token to signify the sentence's conclusion.  

The Singlish vectors that were generated by the encoder are fed into the decoder, and the translation is shifted to 

the left by the forward-labeled output of the decoder.  

In the context of translating the Singlish to English. A batch size of 30 is assumed, whereby 30 sentences are 

passed once through the network simultaneously to update the weights of the entire network at once. It is noted 

that both languages have a shared maximum sentence length of 50 words. 
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Fig.  1   The Encoder of the transformer 
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Fig.  2   The Decoder of transformer 
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The words are transformed into embeddings; specifically, embeddings are represented as vectors, each 

consisting of 512 dimensions. The cube structure, denoted as (A in “Fig. 1”), is essentially a large tensor that 

will be of size 30*50*512. (Includes a batch dimension of 30, a word count of 50 words in the sentence, and 512 

dimensions for each word representation.) Then a positional encoding of the same shape is added (B in “Fig.1”).  

These positional encodings are generated using sine and cosine functions involving numbers ranging from -1 to 

+1. The existence of positional encoding is due to the simultaneous intake of words by the encoder, where the 

order of these words holds significance. The ordering, or positional encoding, is defined by a positional encoder. 

Subsequently, the final tensor (C in “Fig. 1”) is obtained after positional embeddings and passed through a 

feedforward network to derive Query vectors, Key vectors, and Value vectors. Each word generates three 

vectors: a Query vector, a Key vector, and a Value vector. 

Every word is represented by three vectors. The 512-dimensional word vector is converted into a 512-times-

three matrix, resulting in a 1536-dimensional representation. Then a breakdown is undertaken to facilitate multi-

head attention. A set of large, stacked white blocks denoted as (D in “Fig. 1”) has been implemented according 

to transformer architecture. Eight of these stacked blocks are placed on top of each other, demonstrating 

extensive multi-head self-attention. 

Self-attention is employed to analyze the context and establish context within the same sentence. Self-attention 

is now transformed into a multi-head structure with eight layers. Additionally, it has been masked because many 

sentences do not have a length of 50 words, and as a result, padding tokens need to be added. The logic 

observed within one grid (D in “Fig. 1”) is intended for a single attention head, and similarly, eight parallel 

processes are concurrently conducted. 

The 1536-dimensional word (E in “Fig. 1”) vector for every single word is going to be divided into eight pieces. 

The query part (E1 in “Fig. 1”), key part (E2 in “Fig. 1”), and value part (E3 in “Fig. 1”) are divided into eight 

pieces as well. Each piece is essentially transformed into a 64-dimensional vector. The 64 dimensions of the 

Query, Key, and Value are then stacked in a certain way to obtain a 192-dimensional vector representing every 

word for one head. 

Then the query vector (F in “Fig. 1”) is taken along with the key vector (G in “Fig. 1”) and multiplied by them. 

(i.e., 30*50*64 and 30*50*64). After the matrix multiplication is completed, a 30*50*50 matrix (H in “Fig. 1”) 

is obtained. It is observed that every word in a Singlish sentence that constitutes the Query vector interacts with 

every word in the same Singlish sentence‟s Key vectors, forming a self-attention matrix. 

According to architecture, the attention matrix should be scaled and masked. Typically, before the padding mask 

is added (J in “Fig. 1”) some sort of scaling is performed to prevent values there (H in “Fig. 1”) from 

experiencing excessive multiplication, resulting in either excessively high or very low numbers. This scaling 

also serves to stabilize the training process. 

 Scaling simply means dividing every value in the self-attention tensor by a constant value. The value that has 

been used in the main paper [15] is the square root of the key dimension size vector for one head. It ensures that 

the activation values are neither too large nor too small.  

After scaling, the padding mask should be added. A padding mask will prevent the padding tokens from 

propagating values. After applying the padding mask (K in “Fig. 1”), the SoftMax activation is applied, and then 

an attention matrix is generated (L in “Fig. 1”). The attention matrix is a 30*number of words*number of words 

matrix and serves as a probability distribution for each row. Each value in the matrix quantifies how much 

attention should be paid by each word to every other word. 

Subsequently, the Value matrix computed at the beginning (E3 in “Fig. 1”) is applied to obtain 30*50*64-

dimensional value tensors, denoted as (M in “Fig. 1”) (output of just one attention head). These value tensors 

exhibit high contextual awareness. The output comprises not only a single attention head but also includes eight 

attention heads. Upon concatenating them sequentially, a total of 64 times 8 of these value tensors (N in “Fig. 
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1”) are generated, resulting in 512 value tensors. The concatenated tensor is now a highly contextually aware 

tensor. 

Now, a residual tensor is introduced. During the process of backpropagation, the loss value is propagated in a 

backward direction to update the weights. The most significant changes are observed towards the end of the 

network. Skip connections or residual connections assist in improving the propagation of inputs in the forward 

direction and the loss in the backward direction. It has been observed extensively in research involving deep 

convolutional neural networks, as demonstrated in [16]. 

After the addition of the residual tensor, a new tensor is obtained (P in “Fig. 1”) which is expected to carry out 

the activations and the weight updates. Subsequently, layer normalization is performed. The objective of 

normalization is to ensure stable training, ensuring that activations during the forward phase and gradient 

updates during the backpropagation phase do not exhibit excessive magnitudes. Mathematically, normalization 

involves subtracting the values from the mean and dividing them by the standard deviation. 

In batch normalization, values are normalized across the batch, which has a dimension of 30. However, in layer 

normalization, values are normalized across the feature layer, which has a dimension of 512. For layer 

normalization, each value of the tensor is subtracted from the layer mean and divided by the layer standard 

deviation. 

Now, the output tensor (Q in “Fig. 1”)  is taken and passed through a feedforward layer. It is then passed back 

through another feedforward layer to capture additional information. Next, the same addition of the residual 

tensor (R in “Fig. 1”)  and layer normalization is performed to finally obtain a set of 512-dimensional tensors for 

every single word (S in “Fig. 1”) (S is the output of the entire encoder architecture). Each of them will be highly 

contextually aware. Then, the contextually aware items are going to be passed through a feedforward network, 

and Key and Value vectors will be extracted (T in “Fig. 1”). 

For decoder input, sentences will be passed with a start token followed by the sentence values, an end token, and 

then a bunch of padding tokens following the same procedure as before. Then positional encoding will be added. 

Once the positional encoding has been added, the tensor (A in “Fig. 2”) will be passed through a feedforward 

network to obtain Query, Key, and Value vectors. Next, Mass multi-head self-attention will be applied to the 

same dimensions. The Query, Key, and Value vectors will be split into 8 different heads, and the Query (B in 

“Fig. 2”) will be multiplied by the Key (C in “Fig. 2”) tensor. An attention matrix will then be created (D in 

“Fig. 2”). That tensor will be scaled before a mask is added.  

However, in this case, there is no need to add a padding mask. A look-ahead mask also needs to be added. The 

look-ahead mask will ensure that the decoder is not cheating during the generation phase. The decoder is 

required to start translating sentences without having access to future English words or future target language 

words.   

Therefore, a mask needs to be applied during training to ensure that it does not look ahead of its current self. 

The third word in the sentence cannot be considered the fourth word to determine what it can attend to. Any 

contextual information cannot be derived during the training phase.  

The look-ahead mask will be added along with the padding mask (E in “Fig. 2”). Then, SoftMax will be applied 

to obtain attention values and probability distribution-like values for every single word, indicating how much 

attention it needs to pay to every other word in that sentence. Then the attention matrix (F in “Fig. 2”) will be 

multiplied by the value matrix. (G in “Fig. 2”). Then a tensor will be obtained (H in “Fig. 2”), which can be 

concatenated across all eight batches to get the final concatenated tensor (J in “Fig. 2”). Next, a residual tensor 

is added to ensure that information will be propagated, and layer normalization is applied. 

Now the batch is obtained (K in “Fig. 2”). Referred to as 'Q,' a set of Query tensors will now be used as input for 

the Mass Multi-Head Cross-Attention layer (L in “Fig. 2”) to perform cross-attention, which involves 

connecting every word in the target English sentence to every source word in the Singlish sentence. The Query 

represents essentially “What am I looking for?” That is kind of what would want to output. The English words 
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will be referred to as the Query tensors. An arrow is observed (U in “Fig.1”), indicating its origin from the 

encoder component, which supplies concatenated tensors (S in “Fig. 1”). 

A feed-forward network will be employed to map 512-dimensional tensors (S in “Fig. 1”) to 1024-dimensions. 

Each word will be represented by 512 and 512-dimension Key and Value tensors (T in “Fig. 1”). The 

information encoded in Singlish (T in “Fig. 1”) will be incorporated into the English vectors. Subsequently, an 

appropriate English translation will be generated based on the information provided by the Singlish translation. 

The Query will originate from the English sentence, while the Key and Value vectors will be derived from the 

Singlish sentence. Multi-head cross-attention will then be performed. Resembling the self-attention mechanism 

was observed in other cases. But here, clearly, the source of the Query is different, and the Key and Values are 

different as well. 

To obtain an attention matrix (P in “Fig. 2”) the Query (M in “Fig. 2”) and Key (N in “Fig. 2”)  vectors are 

multiplied, which will be scaled as before to ensure numerical stability. A padding mask (Q in “Fig. 2”) is also 

needed. Every single English word is permitted to be exposed to the entire Singlish word sentence. Because, 

during the translation phase, everything is contained within the encoder and all of the Singlish words have 

already been translated. A padding mask needs to be added solely to zero out any padding information from 

excessive tokens. Afterwards, a SoftMax operation is performed to obtain a probability distribution of how 

much attention each English word should be paid to a Singlish context (R in “Fig. 2”). 

Subsequently, similar value tensors (S in “Fig. 2”)  are obtained by concatenating them across the eight heads. 

Results in a 512-dimensional vector for every single English word (T in “Fig. 2”). Each English word now has 

some Singlish context embedded in it as information. A residual tensor is added to ensure that extra propagated 

information is present throughout the network because it is a very deep network. After performing some layer 

normalization to stabilize the values and gradients, the feed-forward layer will end up with a 512-dimensional 

tensor (U in “Fig. 2”). 

The final English tensors, which have Singlish context embedded, can be passed into a feedforward layer to 

expand the size of the English vocabulary. The vocabulary represents the number of possible words that can be 

seen and predicted by the model. Transformer architecture has been designed for predicting words.  

In this case, a vector of the size of the English dictionary will be generated for every single batch and every 

single word. After applying a SoftMax function to it (V in “Fig. 2”), a probability distribution across all English 

words is obtained. To select the word most likely to align with the prediction, it will be compared with the labels 

(W in “Fig. 2”). Based on those labels and predictions, a cross-entropy loss will be computed, and then 

backpropagation will be performed throughout the network. 

The methodology comprises several key steps, including data preprocessing, model architecture, training, 

deployment, and the development of a user-friendly web interface for translation. The following subsections 

provide a comprehensive explanation of each step. 

 

3.1. Data Collection and Preprocessing 

 

3.1.2. Data Collection 

The foundation of any machine translation model is the quality and quantity of the training data. In this research, 

a Singlish-to-English parallel corpus for training was acquired. The data collection process involved obtaining a 

Singlish text corpus and aligning it with its corresponding English translation. The Singlish text corpus was 

sourced from a file containing Singlish-English sentence pairs separated by a period. 

3.1.2. Data Preprocessing 

3.1.2.1. Sentence Segmentation 

Sentences were split using the period (".") as a delimiter to extract both the Singlish and English sentences.The 

Singlish sentence was stripped of leading and trailing spaces.The English sentence was preprocessed by adding 
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special tokens "[start]" and "[end]" to denote the beginning and end of the sentence, respectively.The processed 

sentence pairs were stored as (Singlish, and English) tuples. 

The dataset was then randomly shuffled to ensure an unbiased distribution. A portion of the dataset was set aside 

for validation and testing, with approximately 15% of the data used for validation and the rest for training. 

3.2. Text Vectorization 

To input the textual data into the model, text vectorization should be employed. Two separate Text 

Vectorization layers were used for the Singlish and English text: 

3.2.1. Source Vectorization (Singlish)  

This layer tokenizes and converts Singlish sentences into sequences of integers. It has the following 

characteristics: 

 Maximum vocabulary size is 500. 

 Output mode is set to „int‟ for integer sequence output. 

 Output sequence length set to 50 to limit sequence length. 

3.2.2. Target Vectorization (English)  

This layer performs similar tokenization and integer sequence conversions for English sentences. It includes 

additional standardization to remove punctuation and special tokens. The characteristics are: 

 Maximum vocabulary size is 500. 

 Output mode is set to „int‟ for integer sequence output. 

 Output sequence length is set to 51 (one token longer than the source) for sequence prediction. 

 Both vectorization layers were adapted to the training data to ensure consistent tokenization. 

3.2.2.1. Custom Standardization 

To standardize and preprocess English text, a custom standardization function based on [17] was utilized. This 

function converts text to lowercase.  

3.3. Model Architecture 

3.3.1. Transformer Architecture 

The model is built on the Transformer architecture, a groundbreaking neural network architecture introduced in 

„Attention Is All You Need‟[15]. This architecture has revolutionized sequence-to-sequence tasks, including 

machine translation. The model comprises two main components: 

1. Transformer Encoder  

2. Transformer Decoder 
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Fig.  3   The transformer neural network architecture [18] 

3.3.2. Transformer Encoder 

With a transformer encoder, it is possible to pass all the words of the Sentence (which were previously 

vectorized) simultaneously to determine word embeddings. The encoder‟s primary function is to capture 

meaningful representations of the source language sentences. The Transformer Encoder is responsible for 

encoding the input Singlish sentences. It consists of the following components: 

3.3.2.1. Multi-Head Self-Attention 

The concept of multi-head self-attention is fundamental to the Transformer Encoder. This mechanism, as 

described in [15], enables the model to capture contextual information effectively by attending to different parts 

of the input sequence simultaneously. It involves answering what part of the input should be focused on. 

 

Fig.  4   The attention vector 
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When translating Singlish to English, it is necessary to perform self-attention, which involves paying attention 

to oneself. The relevance of the „i
th

‟ word in a Sinhala sentence to other words in the same Sinhala sentence is 

computed within the attention block. An attention vector is generated for every word, capturing contextual 

relationships between words in the same sentence. 

By using attention every word can have its vector better incorporate the context both before and after it. 

Essentially, each input word to Transformer will be associated with three vectors: a Query vector, indicating 

„What am I looking for‟; a Key vector, specifying „What can I offer‟; and a Value vector, denoting „What I 

actually offer.‟ 

Query (Q), Key (K), and Value (V) are abstract vectors that extract different components of an input word. Q, 

K, and V vectors are computed for each word, and these vectors are used to calculate the attention vectors for 

every word using the following formula  (1). 

𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  
𝑄.𝐾𝑇

 𝑑𝑘
+ 𝑀 𝑣 (1) 

„T’ denotes transpose , and „dk‟ signifies dimensionalKey vector 

 

This product (Q.K
T
) results in the generation of an input sequence length by input sequence length matrix. The 

extent of its proportionality is determined by the level of attention that is wished to be allocated to each word. 

The square root of the dimension of Q and K is employed to reduce variance and stabilize the values within the 

Q.K transpose vector. 

An input sentence is transformed into an embedding to convey its meaning and a positional vector is added to 

contextualize each word within the sentence. Subsequently, the attention block computes attention vectors for 

each word. While it is true that the attention vector for each word can be strong, it becomes less valuable when 

the word heavily weights its relationship with itself. 

Attention vectors exhibit a higher interest in interacting with different words and are utilized to derive 

approximately 8 such vectors per word. These vectors are then subjected to a weighted averaging process to 

calculate the final attention vector for each word. Since it has been used multiple attention vectors, name it as 

multi-headed attention block. 

The word vector is located here (A in “Fig.5 ”). It could be considered one of the words in the sentence 

“sudulamayairakandiyi.” The net vector for the word 'lamaya' could be introduced by it. It is a 512-dimensional 

vector that is broken down into three component vectors. Each word is assigned a Query Vector, a key vector, 

and a Value vector. Each vector is divided into eight parts (B in “Fig.5”), and each part contributes to the 

creation of an attention head.  

There are eight attention heads in total. Each attention unit then processes one, along with other words as well. 

All other words in the sentence are broken down in a very similar way and passed to an attention unit. For each 

head, an attention matrix is generated (C in “Fig.5 ”), which is a sequence of the same length as the input 

sequence. Each row of these matrices sums up to one because they represent a probability distribution.  
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Fig.  5   The Multi-Headed Attention 

There will be eight such attention matrices because there are eight attention heads in this multi-headed attention 

system. Then, other output vectors are generated, which are concatenated in order to produce vectors that 

possess a high level of contextual awareness. 

3.3.2.2. Dense Projections and Layer Normalization 

The use of dense projections and layer normalization after each sub-layer in the Transformer Encoder is in line 

with best practices for stabilizing training, as detailed in [15]. 

Batch normalization is typically applied to smooth out the loss surface, making it easier to optimize when using 

larger learning rates. However, layer normalization can be employed, which normalizes across each feature 

instead of each sample, offering better stabilization.  

The attention networks are processed through a feedforward network one vector at a time. Each attention 

network operates independently, allowing for efficient parallelization. This facilitates the simultaneous 

processing of all words within the encoder block, resulting in a set of encoded vectors for each word. 

3.3.3. Transformer Decoder 

During the training phase for Singlish to English, it is necessary to feed output English sentences to the decoder. 

Computers do not get languages they get numbers vectors and matrices. Therefore, before process input 

embedding is required to get the vector form of the word. Then it is need to add a positional vector to get the 

position of context of the word in a sentence. Finally, pass the vector into a decoder block.  

The Transformer Decoder takes the encoded Singlish sentences and generates the target English sentences. It 

includes the following components: 

3.3.3.1. Causal Attention Mask 

The inclusion of a causal attention mask in the Transformer Decoder, inspired by [15], ensures that during 

decoding, each token attends only to previous tokens, preventing information leakage from the future. This 

mechanism is critical for autoregressive sequence generation. 
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3.3.3.2. Multi-Head Self-Attention (Decoder Input) 

Multi-head self-attention for the decoder input allows the model to attend to itself while generating the output 

sequence, as explained in [15]. 

3.3.3.3. Multi-Head Attention (Encoder-Decoder Attention) 

The multi-head attention mechanism between the encoder and decoder, as outlined in [15], enables the model to 

focus on relevant source information during the decoding process. 

Mask multi-headed attention block of decoder generates attention vectors for each word in the English sentence 

to represent how much each word is related to every word in the same sentence.These attention vectors and 

vectors from the encoder are passed into another attention block. 

 

Fig.  6   The encoder-decoder Attention 

Overall, the next word is predicted by the decoder, and execution occurs over multiple time steps until the end 

of the sentence token is generated. 

Since each word in the English and Singlish sentences is represented by a vector, the determination of the 

degree of relatedness between each word vector with respect to each other is accomplished by the attention 

block (A in “Fig.6”), where the primary Singlish-to-English word mapping takes place. The output of this block 

consists of attention vectors for every word in the English and Singlish sentences, with each vector representing 

the relationships with other words in both languages. 

3.3.3.4. Dense Projections and Layer Normalization 

Similar to the encoder, two dense layers project the attention output to the desired embedding dimension. Layer 

normalization is applied after each sub-layer to stabilize training. A dense layer with a Softmax activation 

function produces the output probabilities for each token in the vocabulary.  

3.3.4. Positional Embedding 

To provide positional information to the model, as described in[15], plays a crucial role in providing the model 

with information about the sequential order of tokens within sentences. A Positional Embedding layer is applied 

to both the encoder and decoder input sequences.  

3.3.4.1. Input Embedding/Token embedding 

The idea is to map every word to a point in space where similar words and meanings are physically closer to 

each other. The space in which they are present is called embedding space. Embedding space map, a word to a 

vector. The concept involves the mapping of each word to a point in space where similar words and meanings 

are physically closer to each other. The space in which they are located is referred to as the embedding space, 

where a word is mapped to a vector. 
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Fig.  7  Input Embedding 

But the same words in different sentences may have different meanings. Positional encoders come into play.  

Positional Encoder provides a context-based vector indicating the position of words in a sentence. It is a vector 

that contains information about the distances between words and the sentence. Sin and cosine functions are 

employed to generate this vector (A in “Fig.8”). After the Singlish sentence is passed through the input 

embedding and positional encoding is applied, a vector with positional information is obtained, which represents 

the context. 

 

Fig.  8 Position-encoded vector 

3.3.4.2. Positional Encoding 

 

Fig.  9   Positional Encoding 

Transformer architectures will generate word pieces, sub-words, or byte pair encodings, which are similar to 

broken-down versions of words rather than complete words. However, in this research paper, a word-level 

language model is employed. 

First, the sentence intended for input in Singlish is, „sudulamayairakandiyi.‟ To ensure a consistently passed 

fixed-length matrix, the remainder of words not present is padded with a dummy character or dummy sequence 

input (the maximum length of the sequence is determined by the maximum allowable number of words in the 

transformer). Each of these words is then one-hot encoded. The vocabulary size represents the number of words 

in the dictionary, i.e., the number of possible input words.Next, the data is passed into the feed-forward layer, 

where each vector is mapped to a 512-dimensional vector, and the parameters are learned through 

backpropagation. The number of parameters to be learned is the vocabulary size multiplied by 512. The output 
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consists of a set of 512-dimensional vectors, one for each input in the sequence. Additionally, positional 

encoding of the same size is added to the output. 

The formulas for computing positional encoding as (2) and (3) are presented here. 

𝑃𝐸 𝑝𝑜𝑠 ,2𝑖 = sin(
𝑝𝑜𝑠

10000 2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) (2) 

 

𝑃𝐸 𝑝𝑜𝑠 ,2𝑖+1 = cos(
𝑝𝑜𝑠

10000 2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)     (3) 

„pos’ represents the position of the word in the sequence, „i’ denotes the index of the dimension, and „dmodel‟ 

signifies the dimensional length, which is set at 512. The rationale behind the formulation of positional 

embedding in this manner is now being explored. 

3.4. Dataset Preparation 

The dataset preparation pipeline follows the best practices outlined in [19], which include batching, 

parallelization, and prefetching to optimize data loading and processing. To train the model, it has been created 

a dataset pipeline using TensorFlow. The pipeline involves the following steps: 

 Data pairs (Singlish and English) were formatted using the previously defined source and target 

vectorization layers. 

 Batches of data were created, each containing a fixed number of samples (batch_size = 50). 

 Parallelization and prefetching were used to optimize data loading and processing. 

3.5. Model Training 

3.5.1. Optimizer and Loss Function 

The choice of the RMSprop optimizer and sparse categorical cross-entropy loss function aligns with established 

practices for training sequence-to-sequence models [20] [21]. 

3.5.2. Training Epochs 

The decision to train the model for 60 epochs is based on empirical experimentation and convergence analysis. 

During this, the model learned to map Singlish sentences to English sentences. The validation dataset was used 

to monitor model performance and prevent overfitting. 

3.6. Model Deployment 

The trained model was deployed for practical use through a web-based interface. The deployment involved the 

following steps: 

3.6.1. Google Drive Integration and Flask web application with Ngrok Integration 

The model was saved to Google Drive for easy access and sharing, allowing for easy version control, and 

sharing. The development of a Flask web application for model deployment is inspired by the framework‟s 

simplicity and flexibility [22]. It provides a user-friendly interface for translation. Ngrok was selected for 

exposing the Flask app to the internet due to its ease of use and reliability [23]. It ensures that the translation 

service is accessible online. 

3.6.2. Loading the Model  

The model was loaded using TensorFlow‟s „saved_model.load‟ function. 

3.7. User-Friendly Web Interface 

The user-friendly web interface design and functionality draw inspiration from best practices in web 

development. It aims to provide a seamless and intuitive experience for users seeking translations. The web 
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interface enables users to input Singlish sentences and receive English translations. It includes the following 

features: 

 Input Form: Users can enter Singlish sentences for translation. 

 Translation: The model generates English translations and displays them in the output text area. 

 Exit Option: Users can terminate the translation session by entering "exit." 

3.8. Evaluation 

3.8.1. Evaluation Metrics 

The choice of evaluation metrics, including BLEU score, METEOR, and ROUGE follows industry standards for 

assessing machine translation model performance [6]. These metrics assess the quality of the generated 

translations by comparing them to reference translations. 

4. Results 

Acquiring knowledge of and improving sequence-to-sequence Transformer models relies heavily on performing 

statistical analyses and visualizations. Loss curves and learning curves help evaluate model convergence and 

identify potential overfitting, while attention heatmaps reveal where the model concentrates its attention during 

sequence generation. Sequence length analysis exposes how the model handles varying input and output lengths, 

while BLEU and ROUGE scores provide quantitative evaluation metrics.  Word frequency distributions and 

error analysis can both be used to identify weak points in a model. Using the right statistical tests and 

comparisons with baselines provides context for performance increases. ROC and Precision-Recall curves are 

helpful for classification tasks while embedding visualizations provide information about word representations 

[4]. 

5. Discussion 

Sequence-to-sequence Despite being quite good at many different tasks involving natural language processing, 

transformer models have many difficulties. The model needs a large amount of parallel data set for training and 

takes a large amount of computer resources [2]. When getting efficient output from this model, it could be used 

for a long duration. Due to the quadratic complexity, overfitting can happen with small datasets, and they may 

have trouble with very long sequences. The Sinhala language has various kinds of patterns of character, words, 

and complex structured approaches in that situation to provide accurate output from using all things in Sinhala 

which is a much more complex task. Sinhala is spread over a large area. Furthermore, extending these models to 

multimodal data and coping with lengthy training times add to the complexity of working with sequence-to-

sequence Transformers. 

6. Conclusion 

The study provides a thorough methodology for creating and using a deep neural network sequence-to-sequence 

transformer model-based Singlish-to-English translator, which helps remove the language barrier between 

Sinhala and English. The system consists of an English present, past, and future tense translator as well as a 

Singlish-to-English language translator that can translate sentences in active voice, passive voice, and 

questionnaire sentences. The first sequence transduction model is based solely on attention, using multi-headed 

self-attention instead of the conventional recurrent layers in encoder-decoder designs. In the Singlish-to-English 

translation challenge, the intention is to increase the training dataset from 20,000 to 100,000 sentences to 

enhance the model's accuracy. It has been demonstrated that expanding the dataset has a considerable positive 

impact on the model's performance. Anticipate that the model will produce more precise and trustworthy 

translation results as the data is scaled up. Research findings indicate that this Singlish-to-English translator can 

create reliable translations that are pertinent to the situation, which will help language learners and those who 

want to interact more successfully in a global setting. 
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