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Abstract: Let G = (V,E) be asimple graphand M = {vy, v,,...,v} © V (G) be an ordered setand v €
V (G). The representation mr(v/M) of v with respect to M is the k-tuple
(dm (w,v),dy, (v, v3),...,d, (v, vk)) . Then M is called a monophonic resolving set if different vertices of
G have different representations with respect to M. A monophonic resolving set of minimum number of
elements is called a minimum monophonic set for G and its cardinality is known as the monophonic metric
dimension of G, represented by mdim(G). In this article, we determined the monophonic metric dimension
of degree splitting graph.
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1. Introduction

Let G = (V,E) be a simple undirected connected graph. The order and size of G are denoted by n and
m respectively. The length of the shortest u — v path in G is the distance d(u, v) between vertices u and v in a
connected graph G. A u — v path with length d(u,v) is referred to as an u — v geodesic. For basic graph
theoretic terminology, we refer [1]. A path P’s chord is an edge that connects two of its non-adjacent vertices. If
a path between two vertices u and v in a connected graph G lacks chords, it is referred to as monophonic path.
The length of the longest u — v monophonic path in G is the monophonic distance d,, (u, v) between uand v.
These concepts were studied in [3-6].

Let W = {w;, w,,...,w,} © V (G) be an ordered set and v € V (G) . The representation r(v/W) of
v with respect to W is the k-tuple (d(v, wy),d(v, wy),...,d(v, wk)). Then W is called a resolving set if
different vertices of G have different representations with respect to W. A resolving set of minimum number of
elements is called a basis for G and the cardinality of the basis is known as the metric dimension of G,
represented by dim(G). These concepts were studied in [2]. In this article, we study a new metric dimension
called the monophonic metric dimension of a graph. For M < V(G)for each v € V the monophonic resolving set
is mr (v/M) = (dp,v1), dp (v, 1) ... dyy(v, 1)) , Where M = {v;, v, .... v }. M is said to be a monophonic
resolving set of G, if mr(v/M) = mr(u/M) for every u,v € V, where u # v. The minimum cardinality of a
monophonic resolving set is called the monophonic dimension of G. It is denoted by mdim(G) . Any
monophonic resolving set of cardinality mdim(G) is called mdim-set of G.

Degree splitting graph: Definition:1.2

Let G = (V,E) beagraphwithV =5, US, US; U .S, UT where each S; is a set of vertices having
at least two vertices of the same degree and T = V — U S;. The degree splitting graph of G denoted by DS(G) is
obtained from G by adding vertices wy, w,, ..., w; and joining w; to each vertex of S; for 1 <i < t.
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Example:1.3 In Figure 1.1, a graph G and the degree splitting graph DS(G) are shown

®
w

2

DS(G)

Figure 1

Here,S; = {vy, vs}.S; = {12, 17, 6}.53 = {v3, v4}.T = .

2. Monophonic Metric Dimension of Degree Splitting Graph

Let us find monophonic metric dimension of degree splitting graph DS(G) of the graphs path, cycle, star,
fan, comlete bipartite, wheel, and bistar graph.
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Theorem: 2.1 For the Path graph G = B, (n > 3),mdim DS(K,,) = 2.

Proof: Let P,:vy,v,, v, ..., v, be a path of order n.Since deg(v;) = deg(v,) = 1land deg(v;) = 2;2<i <
n—1,letS, ={v,,vsv,,..,v,_1}and S, = {v,,v,} be the two partition of G. To obtain DS(P;) from P; we
add u,, which corresponds to S, also P; is isomorphic to C, and to obtain DS(B,) for n = 4 we add a new
vertex u, and u,, which corresponds to S; and S, respectively. As a result, V(DS(P3)) = {uy, vy, v,,v35} and

V(DS(B)) = {uy, Uz, V1, V3, o, Un ), where [V(DS(B))|=n+2 for n>4

Case (i) nis even
Let M = {v,,v3}, n = 4. Then
mr(v, /M) = (1,n —1)mr(v,/M) = (0,1), mr(vy/M) = (1,0), mr(v,/M) = (n—1,1), ..., mr(v,_, /M) =
n-2,n—1),mr(v,/ M) =(n—-2,n-2),mr(uy /M) =n—-1,n-2), mrtu,/M) =(1,1) .
Since each representations are distinct, M is a monophonic resolving set of G, so that mdim(DS(Pn)) =2.
Case(ii) n is odd

Let M = {v,,v3}, n = 4. Then
mr(v, /M) = (1,n — 1) mr(vy,/M) = (0,1), mr(vg/M) = (1,0), mr(v,/M) = (n — 1,1) ,mr(vs/M) =
n-2,n—-1)..,mr(v,_/M)=mn-3,n-2),mr(v,/M)=(mn-2,n—-3), mr(u, /M) = (n—1,n—2),
mr(u,/M) = (1,1) .
Since each representations are distinct, M is a monophonic resolving set of G, so that mdim(DS(Pn)) = 2.

Theorem: 2.2 For the cycle graph G = C,, (n = 3), then mdim DS(C,) = 2.

Proof : Let vy, vy, ...., v, be the cycle C,. To obtain mdimDS(C,,) for n > 3. We add a vertex

u, , which is adjacent to every vertices in C,,. As a result (DS(Cn)) = {uy, vy, vy, V3, ... U}, Where

| V(DS(C,))| =n + 1 forn > 3. Clearly DS(C,) is isomorphic to the wheel graph W,.

Let M = {v,, v,}, we have the following cases,

Case( i) niseven. Then

mr(u /M) = (1,1),mr (v, /M) = (0,1),mr(v,/M) = (1,0), mr(vs/M) = (n — 2,1),

mr(v,/M) =(n—3,n—2)mr(vs/M) =(n—2,n—3),,...mr(v,_./M) = (n—2,n—3), mr(v,/M) =
(1,n-2).

Since each representations are distinct, M is a monophonic resolving set of G, so that mdim(DS(Cn)) =2.
Case (ii) n is odd. Then

mr(u, /M) = (1,1),mr (v, /M) = (0,1),mr(v,/M) = (1,0),

mr(vg/M) = (n—2,1),mr(v,/M) =(n—-3,n—2)mr(vs/M) =(n—3,n—3),
mr(vg/M)=(mn—-2,n—-3),...mr(v,_4/M) =mn—-2,n—-3),mr(v, /M) = (1,n—2).

Since each representations are distinct, M is a monophonic resolving set of G, so that mdim(DS(Cn)) =2.

Theorem:2.3 For the complete bipartite graph ¢ = K, , (n = 3).Then
mdimDS (Kpp,) =m+n— 2.
Proof : Consider Ky, , With V (K, ,) = {u;, v;/1 < i <m,1<j <n}. LetX = {x;,%,, ..., X} and Y =
{y1, ¥2, V3, ..., Vo } be two bipartite sets of G. Now we consider the following two cases.
Case (i)=n.

In this case each vertex of same degree and so let u; be the added vertex, which is adjacent to u; and
v, 1 <i<m,and 1 < j < n. Thus we obtain the graph DS(K,, ). Then DS(Ky, ) = {u;,v;/1 < i <m,1 <
j<n}andso DS(Ky,)=m+n+1.

Let M = {xq, x5, X3, ... Xn—1, Y1, Y2, Y3 -» Yn—1}- Then

mr(u, /M) = (1,1,1,...,1,1,1 ..., 1), mr(x, /M) = (0,2,2....,2,1,1 ...,1),
mr(x,/M) = (2,0,2, ...,2,1,1, ....,1), mr(xs /M) = (2,2,0, ...,2,1,1, ...,1),
mr(x,_./M) = (2,2,..,2,01,1, ...,.1), mr(x,, /M) = (2,2, ....,2,1,1, ...,1),
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mr(y;/M) = (1,1...,1,0,2,2 ..., 2) mr(y,/M) = (1,1, ....,1,2,0,2, ...,2),
mr(y;/M) = (1,1,..,1,2,2,0,...,2) , ..., mr(y,_/M) = (1,1,..,1,2,2, ....,2,0)
mr(y,/M) = (1,1,...,1,2,2, ....,2,2) .

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a
monophonic resolving set of G, so that mdim DS(Kp,m) < 2m — 2. We prove that mdim DS(Ky,m) = 2m —
2.0n the contrary, suppose that mdim DS(Km,m) < 2m — 3. Then there exist a mdim-set M’ of DS(K, )
such that |[M'| < 2m — 3 . Then there exists at least 2 elements x;, y; € G, such that x;,y; ¢ M'. Then mr(x;/
M") = mr(y;/M'"), Which is a contradiction. Therefore mdimDS (K, ) = 2m — 2.

Case (i) # n.

In this case each vertex u; is of same degree and each vertex v; is of same degree where deg(u;) #
deg (v;)), 1<i<m,and1<j<n soletu, and u, be the added vertex, where u; is adjacent to every u; and
u_2 is adjacent to every v;. Thus we obtain the graph DS(K, ). Then DS(Ky, ) = {u;, vj,u_l,u 2/1 <i <
m1l<j Sn}andsoDS(Km_n) =m+n+2

Let M = {xy, x5, X3, .. Xn—1, Y1, Y20 V35 e0» Yn—1}- Then (u /M) = (1,1,1,...,1,1,1 ...,1) ,
mr(uy/M) = (2,2,2,...,2,1,1...,1) ,mr(x, /M) = (0,2,2 ...,2,1,1 ...,1),
mr(x,/M) = (2,0,2,..,2,1,1, ....,1), ... . mr(xp_y/M) = (2,2,...,0,2,1,1, ...,1),
mr(xpm—1/M) = (2,2,..2,0,1,1,...,1) , mr(x, /M) = (2,2, ...2,2,1,1, ...,1),
mr(y, /M) = (1,1...,1,0,2,2 ...,2), mr(y,/M) = (1,1, ....,1,2,0,2, ...,2),
mr(ys/M) = (1,1, ...,1,2,2,0, ...,2), mr(y,_,/M) = (1,1, ...,1,2,2, ...,0,2) ,
mr(yp_./M) = (1,1,...,1,2,2, ....,2,0) , mr(y,/M) = (2,2, ..2,2,1,1, ...,1).

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a
monophonic resolving set of G, so that mdim DS(K,,) < m + n — 2. We prove that mdim DS(K,, ) = m +
n — 2. On the contrary, suppose that

mdim DS(K,,,) <m +n— 3. Then there exist a mdim-set M’ of S(K,,,) , such that [M'| < m +
n — 3. Then there exists at least 2 elements y;,y; € G such that y;,y; € M'.

Then(y;/M") = mr(y;/M') , which is a contradiction. Therefore mdimDS (K, ,) =m +n — 2.

Theorem:2.4 For the star graph G = K; , (n = 3), mdim Ds(KLn) = 3.
Proof: Let vy,v,,vs,...,v,_qare the end vertices and x is the full vertex of the star K; ,_; and y be the
corresponding vertex which is added to obtain the graph Ds(K,,,). Then

V (DS(Kyn)) = (6,01, 0, Vg, .., s, ¥} Clearly|V (DS(Ky ) ) | =+ 2.

Let M; = {x,u,}. Then

mr(x/M) = (0,2) , mr(u, /M) = (2,0), mr(v,/M) = (1,1) , mr(v,/M) = (1,1)
mr(vg/M) = (1,1) .

Since mr(v,/M;) = mr(v,/M;) = (1,1) , M; is not a monophonic resolving set of G.
Let M, = {x,v,}.Then

mr(x/M) = (0,1),mr(u, /M) = (2,1), mr(vy/M) = (1,0) , mr(v,/M) = (1,2),
mr(vs/M) = (1,2) .

Since (v,/M,) = mr(vs/M,) = (1,2) , M, is not a monophonic resolving set of G.
Let M3 = {v;,v,}.Then

mr(x/M) = (1,1),mr(u,/M) = (1,1),mr(v, /M) = (0,2),

mr(vy/M) = (2,0), mr(vs/M) = (2,2).

Since mr(x/Ms3) = mr(u,/M3) = (1,1),

M, is not a monophonic resolving set of G. Therefore mdim(G) = 3

Let M = {x,v,,v,}.Then

mr(x/M) = (0,1,1),mr(u, /M) = (2,1,1),mr(v,/M) = (1,0,2),

mr(vy/M) = (1,2,0), mr(vs /M) = (1,2,2).
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Since each representations are distinct,M is a monophonic resolving set of G, so that mdimDS(KLn) =3.

Theorem:2.5 For the Wheel graph G = W,, (n = 3), mdim DS(W,,) = 3.
Proof: Let G be a wheel graph with central vertex x and {v,, v,,vs,...,v,,} be the degree 3  vertices. To
obtain DS (W) for > 4 , we add a new vertex u,. Clearly|V(DS(W,))| = n + 2.

Let ={v,,v,,x} n=5 Then mr(v,/M)=(0,1,1)mr(v,/M) = (1,0,1), mr(vs/M) = (n —
2,1,1),mr(vy/M)=(n-3,n—-21),... mr(v,_4/M)=(n—-1n-2,1), mr(v, /M) =(1,n—
2,0), mr(x/M) = (1,1,0), mr(u, /M) = (1,1,2) .

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a
monophonic resolving set of G, so that mdim DS(W,,) < 3.We prove that mdim DS(W,) = 3. On the
contrary, suppose that mdim DS(W,) < 2.Then there exist a mdim-set M' of DS(W,) such that [M'| < 2. Then
there exists at least 2 elements x, u, € G such that x,u; € M'.

Then mr(x/M) = mr(u, /M) ,which is a contradiction . Therefore mdimDS(W,) = 3.

Theorem:2.6 For the bistar graph G = B, ¢(n > 3).Then mdim (DS(BT_S)) =r+s+1.

Proof:Consider the bistar graph B, s with V(B,s) = {u,v,u;,v;/1 < i < 1,1 <j < s}. Here u; and vjare the
vertices adjacent withu and v. G = DS(B, ;). Let x,y be the corresponding vertices which are added to obtain

DS(By) . Then (DS(B,)) = {w,v,u;, v, x,y/1 <i<r,1<j<s},r>25=>2andso |V (Ds(Bm))| =

r+s+4.

Let M = {x,v,,v,, ..., Uy, Uy, Uy, ..., Ug ;. TheN
mr(x/M) = (0,44, ...,4,4,4, ....4), mr(y/M) = 3,1,1...,1,1,1, ...,1)
mr(u/M) =(1,33,..,3,1,1,..,1), mr(v/M) = (1,1, ...,1,3,3, ...,3) ,
mr(u, /M) = (4,3,...,3,0,2,2, ...,2) ,mr(u,/M) = (4,3,3, ...,3,2,0,..,2),
mr(vy/M) = (40,2 ...2,3,3, ...,3) mr(vy,/M) = (4,2,0 ...,2,3,3, ...,3).

Since each representations are distinct, M is a monophonic resolving set of G, so that mdim(G) < r +

s + 1.We prove that mdim(G) = r + s + 1. On the contrary, suppose that mdim(G) < r + s. Then there exis t
mdim set-M' of DS(G),such that |M'| <r +s.Then M’ is not a monophonic resolving set, which is
contradiction. Therefore mdim(G) =r + s + 1.

Theorem: 2.7 Let G be the fan graph F, = K; + P,,_; (n = 4) . Then mdim(DS(G)) = 3.
Proof: Let G be the fan graph F, (n > 5) . Let V(K,) = x and V(P,_1) = {v1,V,,..,v,_1}.Then (DS(F,)) =
{X, 01, V5, ..,V Uy, up) . Clearly,|V(DS(F))| = n + 3.
Let us assume that M = {v,, v,,u;}. Then mr(x/M) = (1,n — 1,2),mr (v, /M) = (0,1,1),mr(v,/M) =
(1,0,n—1),mr(vg/ M) =(n—1,1,n—1),mr(v,/M) =(n—-2,n—1,n-2),..mr(v,_,/M) =
(n=-2n-2,n—-1),mr(v,_/M)=(n—-1n-21),mr(u, /M) = (1,n — 1,0) , mr(u,/M) = (4,1,3).
Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a
monophonic resolving set of G, so that mdim DS(F,) <3 . We prove that mdim DS(F,) = 3. On the
contrary, suppose that mdim DS(F,) < 2. Then there exist a mdim-set M’ of DS(FE,) such that [M’| < 2. Then
there exists at least 2 elements x,u, € G such that x,u; € M'.Then r(x/M) = mr(u,/M) , which is a
contradiction . Therefore mdimDS(F,) = 3.
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