The Monophonic Metric Dimension of Degree Splitting Graph

[1]J. Suji Priya, [2] T. Muthu Nesa Beula

^[1]Research Scholar,(Reg. No:20113162092014),
Department of Mathematics,
Women's Christian College, Nagercoil.

^[2] Assistant Professor, Department of Mathematics,
Women's Christian College, Nagercoil.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti,
Tirunelveli- 627 012

E-mail: [1] sujimrthy@gmail.com, [2] tmnbeula@gmail.com

Abstract: Let G = (V, E) be a simple graph and $M = \{v_1, v_2, \dots, v_k\} \subset V(G)$ be an ordered set and $v \in V(G)$. The representation mr(v/M) of v with respect to M is the k-tuple $(d_m(v, v_1), d_m(v, v_2), \dots, d_m(v, v_k))$. Then M is called a monophonic resolving set if different vertices of G have different representations with respect to M. A monophonic resolving set of minimum number of elements is called a minimum monophonic set for G and its cardinality is known as the monophonic metric dimension of G, represented by mdim(G). In this article, we determined the monophonic metric dimension of degree splitting graph.

Keywords: chord, monophonic path, monophonic distance, metric dimension, monophonic metric dimension. degree splitting graphs.

AMS Subject Classification: 05C12, 05C38.

1. Introduction

Let G = (V, E) be a simple undirected connected graph. The *order* and *size of G* are denoted by n and m respectively. The length of the shortest u - v path in G is the distance d(u, v) between vertices u and v in a connected graph G. A u - v path with length d(u, v) is referred to as an u - v geodesic. For basic graph theoretic terminology, we refer [1]. A path P's chord is an edge that connects two of its non-adjacent vertices. If a path between two vertices u and v in a connected graph G lacks chords, it is referred to as $monophonic\ path$. The length of the longest u - v monophonic path in G is the monophonic distance $d_m(u, v)$ between u and v. These concepts were studied in [3-6].

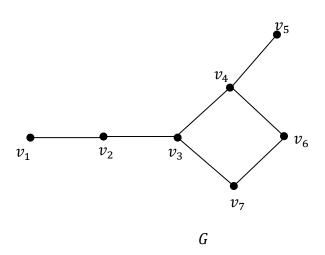
Let $W = \{w_1, w_2, ..., w_k\} \subset V(G)$ be an ordered set and $v \in V(G)$. The representation r(v/W) of v with respect to W is the k-tuple $(d(v, w_1), d(v, w_2), ..., d(v, w_k))$. Then W is called a *resolving set* if different vertices of G have different representations with respect to W. A resolving set of minimum number of elements is called a *basis* for G and the cardinality of the basis is known as the *metric dimension* of G, represented by dim(G). These concepts were studied in [2]. In this article, we study a new metric dimension called the *monophonic metric dimension* of a graph. For $M \subseteq V(G)$ for each $v \in V$ the monophonic resolving set is $mr(v/M) = (d_m(v, v_1), d_m(v, v_2) \dots d_m(v, v_k))$, where $M = \{v_1, v_2, \dots, v_k\}$. M is said to be a monophonic resolving set of G, if $mr(v/M) \neq mr(u/M)$ for every $u, v \in V$, where $u \neq v$. The minimum cardinality of a monophonic resolving set is called the monophonic dimension of G. It is denoted by mdim(G). Any monophonic resolving set of cardinality mdim(G) is called mdim-set of G.

Degree splitting graph: Definition:1.2

Let G = (V, E) be a graph with $V = S_1 \cup S_2 \cup S_3 \cup ... S_t \cup T$ where each S_i is a set of vertices having at least two vertices of the same degree and $T = V - \cup S_i$. The degree splitting graph of G denoted by DS(G) is obtained from G by adding vertices $w_1, w_2, ..., w_t$ and joining w_i to each vertex of S_i for $1 \le i \le t$.

Vol. 44 No. 4 (2023)

Example:1.3 In Figure 1.1, a graph G and the degree splitting graph DS(G) are shown



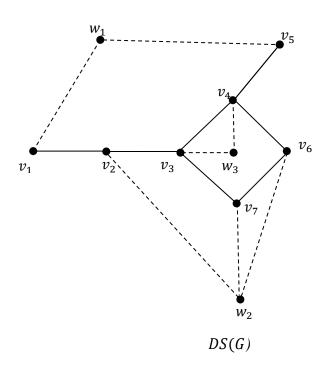


Figure 1

Here,
$$S_1 = \{v_1, v_5\}, S_2 = \{v_2, v_7, v_6\}, S_3 = \{v_3, v_4\}, T = \varphi$$
.

2. Monophonic Metric Dimension of Degree Splitting Graph

Let us find monophonic metric dimension of degree splitting graph DS(G) of the graphs path, cycle, star, fan, comlete bipartite, wheel, and bistar graph.

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Theorem: 2.1 For the Path graph $G = P_n$ $(n \ge 3)$, $mdim\ DS(K_{1,n}) = 2$.

Proof: Let $P_n: v_1, v_2, v_3, ..., v_n$ be a path of order n. Since $\deg(v_1) = \deg(v_n) = 1$ and $\deg(v_i) = 2$; $2 \le i \le n-1$, let $S_1 = \{v_2, v_3, v_4, ..., v_{n-1}\}$ and $S_2 = \{v_1, v_n\}$ be the two partition of G. To obtain $DS(P_3)$ from P_3 we add u_1 , which corresponds to S_2 also P_3 is isomorphic to C_4 and to obtain $DS(P_n)$ for $n \ge 4$ we add a new vertex u_1 and u_2 , which corresponds to S_1 and S_2 respectively. As a result, $V(DS(P_3)) = \{u_1, v_1, v_2, v_3\}$ and $V(DS(P_n)) = \{u_1, u_2, v_1, v_2, ..., v_n\}$, where $|V(DS(P_n))| = n + 2$ for $n \ge 4$.

Case (i) n is even

Let $M = \{v_2, v_3\}, n \ge 4$. Then

$$mr(v_1/M) = (1, n-1), mr(v_2/M) = (0,1), mr(v_3/M) = (1,0), mr(v_4/M) = (n-1,1), ..., mr(v_{n-1}/M) = (n-2, n-1), mr(v_n/M) = (n-2, n-2), mr(u_1/M) = (n-1, n-2), mr(u_2/M) = (1,1).$$

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdim(DS(P_n)) = 2$.

Case(ii) n is odd

Let $M = \{v_2, v_3\}, n \ge 4$. Then

$$mr(v_1/M) = (1, n-1), mr(v_2/M) = (0,1), mr(v_3/M) = (1,0), mr(v_4/M) = (n-1,1), mr(v_5/M) = (n-2, n-1)..., mr(v_{n-1}/M) = (n-3, n-2), mr(v_n/M) = (n-2, n-3), mr(u_1/M) = (n-1, n-2), mr(u_2/M) = (1,1).$$

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdim(DS(P_n)) = 2$.

Theorem: 2.2 For the cycle graph $G = C_n$ $(n \ge 3)$, then $mdim\ DS(C_n) = 2$.

Proof: Let $v_1, v_2, ..., v_n$ be the cycle C_n . To obtain $mdimDS(C_n)$ for $n \ge 3$. We add a vertex u_1 , which is adjacent to every vertices in C_n . As a result $(DS(C_n)) = \{u_1, v_1, v_2, v_3, ... v_n\}$, where $|V(DS(C_n))| = n + 1$ for $n \ge 3$. Clearly $DS(C_n)$ is isomorphic to the wheel graph W_n .

Let $M = \{v_1, v_2\}$, we have the following cases,

Case(i) n is even. Then

$$mr(u_1/M) = (1,1), mr(v_1/M) = (0,1), mr(v_2/M) = (1,0), mr(v_3/M) = (n-2,1),$$

 $mr(v_4/M) = (n-3,n-2), mr(v_5/M) = (n-2,n-3), ..., mr(v_{n-1}/M) = (n-2,n-3), mr(v_n/M) = (1,n-2).$

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdim(DS(C_n)) = 2$.

Case (ii) n is odd. Then

```
mr(u_1/M) = (1,1), mr(v_1/M) = (0,1), mr(v_2/M) = (1,0),
mr(v_3/M) = (n-2,1), mr(v_4/M) = (n-3,n-2), mr(v_5/M) = (n-3,n-3),
mr(v_6/M) = (n-2,n-3), ..., mr(v_{n-1}/M) = (n-2,n-3), mr(v_n/M) = (1,n-2).
```

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdim(DS(C_n)) = 2$.

Theorem:2.3 For the complete bipartite graph $G = K_{m,n}$ $(n \ge 3)$. Then $mdimDS(K_{m,n}) = m + n - 2$.

```
Proof : Consider K_{m,n} with V(K_{m,n}) = \{u_i, v_j/1 \le i \le m, 1 \le j \le n\}. Let X = \{x_1, x_2, ..., x_m\} and Y = \{y_1, y_2, y_3, ..., y_n\} be two bipartite sets of G. Now we consider the following two cases. Case (i) = n.
```

In this case each vertex of same degree and so let u_1 be the added vertex, which is adjacent to u_i and v_j , $1 \le i \le m$, and $1 \le j \le n$. Thus we obtain the graph $DS(K_{m,n})$. Then $DS(K_{m,n}) = \{u_i, v_j/1 \le i \le m, 1 \le j \le n\}$ and so $DS(K_{m,n}) = m + n + 1$.

```
Let M = \{x_1, x_2, x_3, \dots x_{m-1}, y_1, y_2, y_3, \dots, y_{n-1}\}. Then mr(u_1/M) = (1,1,1,\dots,1,1,1\dots,1), mr(x_1/M) = (0,2,2\dots,2,1,1\dots,1), mr(x_2/M) = (2,0,2,\dots,2,1,1,\dots,1), mr(x_3/M) = (2,2,0,\dots,2,1,1,\dots,1), mr(x_{m-1}/M) = (2,2,\dots,2,0,1,1,\dots,1), mr(x_m/M) = (2,2,\dots,2,1,1,\dots,1),
```

Vol. 44 No. 4 (2023)

```
\begin{split} &mr(y_1/M) = (1,1\dots,1,0,2,2\dots,2), mr(y_2/M) = (1,1,\dots,1,2,0,2,\dots,2), \\ &mr(y_3/M) = (1,1,\dots,1,2,2,0,\dots,2) \;, \; \dots \;, \; mr(y_{n-1}/M) = (1,1,\dots,1,2,2,\dots,2,0) \;, \\ &mr(y_n/M) = (1,1,\dots,1,2,2,\dots,2,2) \;. \end{split}
```

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a monophonic resolving set of G, so that $mdim\ DS(K_{m,m}) \leq 2m-2$. We prove that $mdim\ DS(K_{m,m}) = 2m-2$. On the contrary, suppose that $mdim\ DS(K_{m,m}) \leq 2m-3$. Then there exist a mdim-set M' of $DS(K_{m,m})$ such that $|M'| \leq 2m-3$. Then there exists at least 2 elements $x_i, y_j \in G$, such that $x_i, y_j \notin M'$. Then $mr(x_i/M') = mr(y_j/M')$, Which is a contradiction. Therefore $mdimDS(K_{m,m}) = 2m-2$.

Case (i) $\neq n$.

In this case each vertex u_i is of same degree and each vertex v_j is of same degree where $deg(u_i) \neq deg(v_j)$, $1 \leq i \leq m$, and $1 \leq j \leq n$ so let u_1 and u_2 be the added vertex, where u_1 is adjacent to every u_i and u_2 is adjacent to every v_j . Thus we obtain the graph $DS(K_{m,n})$. Then $DS(K_{m,n}) = \{u_i, v_j, u_1, u_2/1 \leq i \leq m, 1 \leq j \leq n\}$ and so $DS(K_{m,n}) = m + n + 2$.

```
 \begin{array}{l} \operatorname{Let} M = \{x_1, x_2, x_3, \dots x_{m-1}, y_1, y_2, y_3, \dots, y_{n-1}\}. \ \operatorname{Then} \ (u_1/M) = (1,1,1,\dots,1,1,1\dots,1) \ , \\ mr(u_2/M) = (2,2,2,\dots,2,1,1\dots,1) \ , mr(x_1/M) = (0,2,2\dots,2,1,1\dots,1), \\ mr(x_2/M) = (2,0,2,\dots,2,1,1,\dots,1), \dots \ , mr(x_{m-2}/M) = (2,2,\dots,0,2,1,1,\dots,1), \\ mr(x_{m-1}/M) = (2,2,\dots,2,0,1,1,\dots,1) \ , mr(x_m/M) = (2,2,\dots,2,2,1,1,\dots,1), \\ mr(y_1/M) = (1,1\dots,1,0,2,2\dots,2), mr(y_2/M) = (1,1,\dots,1,2,0,2,\dots,2), \\ mr(y_3/M) = (1,1,\dots,1,2,2,0,\dots,2), mr(y_{n-2}/M) = (1,1,\dots,1,2,2,\dots,0,2), \\ mr(y_{n-1}/M) = (1,1,\dots,1,2,2,\dots,2,0) \ , mr(y_n/M) = (2,2,\dots,2,1,1,\dots,1). \end{array}
```

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a monophonic resolving set of G, so that $mdim\ DS(K_{m,n}) \le m+n-2$. We prove that $mdim\ DS(K_{m,n})=m+n-2$. On the contrary, suppose that

 $mdim\ DS(K_{m,n}) \le m+n-3$. Then there exist a mdim-set M' of $S(K_{m,n})$, such that $|M'| \le m+n-3$. Then there exists at least 2 elements $y_i, y_j \in G$ such that $y_i, y_j \notin M'$.

Then $(y_i/M') = mr(y_i/M')$, which is a contradiction. Therefore $mdimDS(K_{m,n}) = m + n - 2$.

```
Theorem:2.4 For the star graph G = K_{1,n} (n \ge 3), mdim Ds(K_{1,n}) = 3.
```

Proof: Let $v_1, v_2, v_3, ..., v_{n-1}$ are the end vertices and x is the full vertex of the star $K_{1,n-1}$ and y be the corresponding vertex which is added to obtain the graph $Ds(K_{1,n})$. Then

```
V(DS(K_{1,n})) = \{x, v_1, v_2, v_3, ..., v_n, y\}. \text{ Clearly} |V(DS(K_{1,n}))| = n + 2.
Let M_1 = \{x, u_1\}. Then
mr(x/M) = (0,2), mr(u_1/M) = (2,0), mr(v_1/M) = (1,1), mr(v_2/M) = (1,1)
mr(v_3/M) = (1,1).
Since mr(v_1/M_1) = mr(v_2/M_1) = (1,1), M_1 is not a monophonic resolving set of G.
Let M_2 = \{x, v_1\}. Then
mr(x/M) = (0,1), mr(u_1/M) = (2,1), mr(v_1/M) = (1,0), mr(v_2/M) = (1,2),
mr(v_3/M) = (1,2).
Since (v_2/M_2) = mr(v_3/M_2) = (1,2), M_2 is not a monophonic resolving set of G.
Let M_3 = \{v_1, v_2\}. Then
mr(x/M) = (1,1), mr(u_1/M) = (1,1), mr(v_1/M) = (0,2),
mr(v_2/M) = (2,0), mr(v_3/M) = (2,2).
Since mr(x/M_3) = mr(u_1/M_3) = (1,1),
M_3 is not a monophonic resolving set of G. Therefore mdim(G) \geq 3
Let M = \{x, v_1, v_2\}. Then
mr(x/M) = (0,1,1), mr(u_1/M) = (2,1,1), mr(v_1/M) = (1,0,2),
mr(v_2/M) = (1,2,0), mr(v_3/M) = (1,2,2).
```

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdimDS(K_{1,n}) = 3$.

Theorem:2.5 For the Wheel graph $G = W_n$ $(n \ge 3)$, $mdim\ DS(W_n) = 3$.

Proof: Let G be a wheel graph with central vertex x and $\{v_1, v_2, v_3, ..., v_n\}$ be the degree 3 vertices. To obtain $DS(W_n)$ for ≥ 4 , we add a new vertex u_1 . Clearly $|V(DS(W_n))| = n + 2$.

```
Let =\{v_1,v_2,x\} n\geq 5. Then mr(v_1/M)=(0,1,1), mr(v_2/M)=(1,0,1), mr(v_3/M)=(n-2,1,1), mr(v_4/M)=(n-3,n-2,1),..., mr(v_{n-1}/M)=(n-1,n-2,1), mr(v_n/M)=(1,n-2,0), mr(x/M)=(1,1,0), mr(u_1/M)=(1,1,2).
```

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a monophonic resolving set of G, so that $mdim\ DS(W_n) \le 3$. We prove that $mdim\ DS(W_n) = 3$. On the contrary, suppose that $mdim\ DS(W_n) \le 2$. Then there exist a mdim-set M' of $DS(W_n)$ such that $|M'| \le 2$. Then there exists at least 2 elements $x, u_1 \in G$ such that $x, u_1 \notin M'$.

Then $mr(x/M) = mr(u_1/M)$, which is a contradiction. Therefore $mdimDS(W_n) = 3$.

Theorem:2.6 For the bistar graph $G = B_{r,s} (n \ge 3)$. Then $mdim(DS(B_{r,s})) = r + s + 1$.

Proof: Consider the bistar graph $B_{r,s}$ with $V(B_{r,s}) = \{u, v, u_i, v_j / 1 \le i \le r, 1 \le j \le s\}$. Here u_i and v_j are the vertices adjacent with u and v. $G = DS(B_{r,s})$. Let x, y be the corresponding vertices which are added to obtain

$$DS(B_{r,s})$$
. Then $(DS(B_{r,s})) = \{u, v, u_i, v_j, x, y/1 \le i \le r, 1 \le j \le s\}$, $r \ge 2$, $s \ge 2$, and so $|V(DS(B_{r,s}))| = r + s + 4$.

```
Let M = \{x, v_1, v_2, \dots, v_r, u_1, u_2, \dots, u_s\}. Then mr(x/M) = (0,4,4,\dots,4,4,4,\dots,4), mr(y/M) = (3,1,1\dots,1,1,1,\dots,1) mr(u/M) = (1,3,3,\dots,3,1,1,\dots,1), mr(v/M) = (1,1,\dots,1,3,3,\dots,3), mr(u_1/M) = (4,3,\dots,3,0,2,2,\dots,2), mr(u_2/M) = (4,3,3,\dots,3,2,0,\dots,2), mr(v_1/M) = (4,0,2\dots,2,3,3,\dots,3), mr(v_2/M) = (4,2,0\dots,2,3,3,\dots,3).
```

Since each representations are distinct, M is a monophonic resolving set of G, so that $mdim(G) \le r + s + 1$. We prove that mdim(G) = r + s + 1. On the contrary, suppose that $mdim(G) \le r + s$. Then there exis t mdim set-M' of DS(G), such that $|M'| \le r + s$. Then M' is not a monophonic resolving set, which is contradiction. Therefore mdim(G) = r + s + 1.

```
Theorem: 2.7 Let G be the fan graph F_n=K_1+P_{n-1} (n\geq 4). Then mdim(DS(G))=3. Proof: Let G be the fan graph F_n (n\geq 5). Let V(K_1)=x and V(P_{n-1})=\{v_1,v_2,...,v_{n-1}\}. Then \left(DS(F_n)\right)=\{x,v_1,v_2,...,v_n,u_1,u_2\}. Clearly, \left|V\left(DS(F_n)\right)\right|=n+3. Let us assume that M=\{v_1,v_2,u_1\}. Then mr(x/M)=(1,n-1,2), mr(v_1/M)=(0,1,1), mr(v_2/M)=(1,0,n-1), mr(v_3/M)=(n-1,1,n-1), mr(v_4/M)=(n-2,n-1,n-2),...,mr(v_{n-2}/M)=(n-2,n-2,n-1), mr(v_{n-1}/M)=(n-1,n-2,1), mr(u_1/M)=(1,n-1,0), mr(u_2/M)=(4,1,3).
```

Since each representations are distinct, M is a monophonic resolving set of G. Hence M is a monophonic resolving set of G, so that $mdim\ DS(F_n) \leq 3$. We prove that $mdim\ DS(F_n) = 3$. On the contrary, suppose that $mdim\ DS(F_n) \leq 2$. Then there exist a mdim-set M' of $DS(F_n)$ such that $|M'| \leq 2$. Then there exists at least 2 elements $x, u_1 \in G$ such that $x, u_1 \notin M'$. Then $r(x/M) = mr(u_1/M)$, which is a contradiction. Therefore $mdimDS(F_n) = 3$.

Reference

- [1] F. Buckley, and F. Harary, *Distance in graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] G. Chartrand, L. Eroh, M.A. Johnson and O. R. Oellermann, Re solvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1-3), (2000),99-113.
- [3] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, Complexity results related to monophonic convexity, *Discrete Applied Mathematics*, 158, (2010), 1268 1274.

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

- [4] J.John, The forcing monophonic and forcing geodetic numbers of a graph, *Indonesian Journal of Combinatorics*, 4 (2) (2020), 114–125.
- [5] J. John and S. Panchali, The upper monophonic number of a graph, *International Journal of Mathematical Combinatorics*, 4, (2010), 46-52.
- [6] E. M. Paluga, and S. R. Canoy Jr., Monophonic numbers of the join and Composition of connected graphs, *Discrete Mathematics*, 307, (2007), 1146–1154.
- [7] R.Ponraj, and S.Somasundaram, On the degree splitting graph of a graph, *National Academy Science Letters*, 27(7-8), (2004), 275-278.
- [8] Selvam Avadayappan, and M.Bhuvaneshwari and Rajeev Gandhi, Distance in degree splitting graphs, *Journal of Engineering Research and Applications*, 7, (2017), 14-21.