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Abstract: In this paper, our mains focus is on exploring the concept of hybrid nil rapid fuzzy bi-ideals of near
rings, including an investigation of their properties. We also delve into the hybrid intrinsic product of these bi-
ideals and establish relevant theorems. Our contribution lies in advancing the field of hybrid nil rapid fuzzy bi-
ideals in near rings by deepening our understanding of these concepts.
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Introduction: 1A

In [1] M. Himaya Jaleela Begum and Jeyalakshmi, has proposed the developed the concept of
Institutions Q Fuzzy bi-ideals in near-rings. [5] L.A.Zadeh developed and investigated fuzzy sets. [2] Kasi
Porselvi, Ghulam Muhiuddin, Balasubramanian Elavarasan and Abdullah Assiry introduced and concept of
Hybrid nil radical of a ring. [4] Young Bae Jun, Mehmet Ali Ozturk and Chul Hwan Park introduced and
developed the oncept of Intuitionistic nil raricals of intuitionistic fuzzy ideals and Eulidea intuitionistic fuzzy
deals in rings. [3] Elavarasn B and Jun Y.B has introduced the topic of Regularity of semigroups in terms of
hybrid ideals and hybrid bi-ideals. In this paper, we introduce the concept of hybrid nil rapid fuzzy bi-ideals of
near rings, including an investigation of their properties.

Preliminaries: 2B
Definion 1[2]

A set R (= ¢) together with two binary operation ‘+” and .’ is said to be a ring if it fulfills the
following assertions.

(M R is an abelian group under ‘+’,
(i) R is associative under ‘.,
(iii) c.(u+k)=c.u+c.k and (c+u).k=c.k+u.k for all ¢, u, k € R.
Throughout this paper, unless stated otherwise, R denotes a ring and P(X), the power set of a set X.

Definition 2[2]
Let I be the unit interval and U be an initial universal set. Consider a mapping
jp =(J,u):R>PU)xI,x —>(j (Xl),,u(Xl)), where j:R —> P(U) and z:R—>1. Then, jﬂis

described as a hybrid structure in R over U.
Let all the hybrid structures collected in R over U be described by H (R). An order << in H (R) is

outlines as follows : For every L, |~7€ H(R), j ul yifand only if T(w) =1~ (w)and z(w)=»(w) for
all weR. For any X,X,€R, L(Xl)zl; (X,) if and only if L(Xi) <<I;(x2)andI;(x2)<< L (%)

Additionally, L <<l andl, << L if and only if L =1, 1tis noted that (H(R), <<) is a poset.
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Definition 3[4]

Let R be a ring and S a non-empty subset of R that is closed under the operations of addition and
multiplication in R. If S is itself a ring under these operations then S is called a subring of R. A subring | of a
ring R is a left ideal provided.

reRand Xel =>rxel
I is a right ideal provided
reRand Xel = xrel

I is an ideal it is both a left and right ideal. Note that non-empty subset | of a ring R is a left (resp. right) ideal if
and only if forall a,belandreR:

(i) a,bel)a-bel;
(i) ael, reR=rael (resp.ar 1).
Main Results :

Definion: 3.1
Let ;z, eH (N) is a hybrid fuzzy bi-ideals in N. Then, the hybrid nil rapid of 7 is the hybrid structure in N

over U, represented by \//7_1 =(\/ﬁ,ﬁ) Where\/ﬁ(X)ZSUpﬁ(XY)n and \/Z(x):infl l(xy)n for
n>1 nz

X, ye N andsomene N.

Example:3.2

Let zz, « H(N)overU =[0,1] be given by

- [0,0.5]if xe N

H(X) = .
[0,0.1]if xe N

ideals of near rings.

and a mapping A: N —1 be constant. Then , is a hybrid nil rapid fuzzy bi-

Prepositions:3.3

Let /71,777 eH (N) be hybrid fuzzy bi-ideals in N. Then, the following assertions hold:

(i) &, <<JB, (i), <<it, =i, << 7, i)z, =i,

Proof:

Let t,se N, Then, \/Z(S):SUp/](St)k Q,Zl(St)k Qﬁ(St)kfor some ke N and
k>1

ﬁ(s):ig ASt)€ <A(st)* <A(st)* so, 71, << /T,

(i) Let se N, Then, \/z(s) =3Upﬁ(5t)k QSUpﬁ(St)k =17(st) and
k>1 k>1

JA(s)=inf A" 27(s)* =7 (5). so. 7, << 7.

i) V7 (5) =sup 7 (st)" = supsup{(((st))" | = sup u(st)™ = [z (5)anc

k>1 r>1

Wi (s) =inf A (st)* =inf inf ()] = inf A(st)" = VA (8)s0.\\E; =i,

Theorem:3.4
For any hybrid fuzzy bi-ideal of N. wlﬁi = (\/ﬁ, \/Z) is a hybrid fuzzy bi-ideal of N.
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Proof :
Let v,u e N. Then, for any positive integers t, r we have

min {7 (v). 2 )} =min {sup 7 (v)" sup 7 ()’ | =sup|supfin{ i(vs)', Z(uw)' 3}
and max /2 (v), /4 (u) {= max {up;; JA(vs)'inf 72 (uw)" = inf {igi; {max{A(vs)", 2(uw) 3
Since N is commutative, all the terms in (V+U )" contain either V' OF U" as a factor. Hence there exist
c,deN (vs+uw)™ =c(vs) +d(uw)'. Thus min {ﬁ(vs)t (uw)’ }g
min {mase{7i(vs)', 1(c)}, maxa(uw)', i(d Y < min {z(c(vs)' letvs)' )<
zlc(vs) +d(uw)" )= ji(vs +uw)"" csup 71 (vs +uw) = \[72(vs +uw)
max A(v5)", AUw)" |2 max{min {A(vs)", A(c),}min {A(uw)", A(d)}}>
max{/l(c(vs)t , A(c(vs)t ))}2 ﬂ(c(vs)t +duw)" ): A(Vs+uw)" >inf,, A(vs +Uuw)* = A (vs +uw)
Now, for a positive integer e,

max {\/ﬁ(vs), \/ﬁ(uw)}: max {sulo 1(vs)*, Slﬂoﬁ(uw)e } = Sti|1o{max{ﬁ(vs)e : [z(uw)e}}
min /2 (vs), /& (uw) }= min {.m; A(vs)* inf A(uw)® = inf {min £A(v8)*, A(uw)°3}

win o) o) |< s be) )= allos)mfoc) <
supl(os)(uw)(be))* = JE(vs)uw)be)

max{A(vs), Albe) 2 A((vs) u w) (be) )= A(vs)uw)(oe)f >
nkny«vs)( w)(be)) =V (v )( w) (be)
e, VA(S) (W) (o) 2 min{a(os), o) |
and VA(vS) (uw)(be)<max fi(vs), Albe) |

And hence " s is a hybrid fuzzy bi —ideals in N.

Definition : 3.5
ﬁﬂ’ﬁy’é/b' € H(N)

hybrid structure in N stated as below: For W € N, define

(1% 7% ¢ Jw)= maX{lLr}ESmm{(ﬂ(a )b )E(C)3 b, )c, =w for some S N}

i=1

((2 * 7); 5Xw) = min {sup{(;t(ai ), 7(0.)5(c )i(aibI ), =w for some s e N}

1<i<s i=1

<=
7,55 is the

Let be hybrid fuzzy bi — ideals in N. Then the hybrid intrinsic product Ha

o)
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W= abc eN ahc #0
If we can express Z ' for some a0G where each '
*7

Otherwise, we define (

(7, *7,)%Z, e H(N)

is commutative if N is commutative.

Theorem : 3.6
Let 22,.,77,,¢ 5 € H(N ) be hybrid fuzzy bi — ideals in N. Then

Ja 737,72, = @ i) & =i n i, Az

Proof :

and Iethzk:]'(a' % where abe, iO
e M0 (270, (6 E(ay) < (s, )C)and
max{4(a ) 7(0).5(c )} = (@)= A(ab)e,) Aab k) ), 1<i<

LetWeN

Egvr;{mm{u() 70)206 )< min k)< 7 35wtk |7
minmex (a1 (e )} 2 ma A )= 4 Sl o) | = 4

So, (( ) XW ) W) 4o (( * ) 5("")2/1(""))

/UA 777<</Ua 777 4/5

777 similarly, we can show that Cﬁ

<<
Hence ,u 4 gb

oo, (%7 Z ) < min o) 7w S )} = (3 A7) A E ), (2% )% 500)>

max{A(w), »(w), s(w)i = (2 v 7)v S)w)

(@ =7 )5Z, <@~ )~
Therefore by proposition 3.3 Ha ™)™ 65 << (,u/lmny)mé'g

Let WE N, Then V (ﬁ * ’7); E(Wik) - SUpeﬂ((ﬁ * 77); CEXWik)e = ((/7 * 77); 5XWik)3n =

min a(wik)", 7 (wik )", & (wik)' = (2A7)AS Jwik) ns1,
A%y )xs(wik)=inf, (1% 7)% s )wik) < (2% 7)* 5 )wik)" <
max (wik ),y (wik ', S(wik)' |= (Av y v SYwik)' . ns1

Therefore \/([1/1 N, )m 55 - \/(ﬁﬂ * 7, ); 55
Now, by Proposition (ii) we have

J@, ni S, << i, nfi, A,

Conversely, Let W€ N Then, for any two positive integers t, r we have

and KeN
) {XW and ((A * 7/)* 5XW):1 obviously the product
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(\/ﬁ F\/ﬁXW) = min {suptZl a(wi),sup,., z(wi)' } sup{sup{mln{ (wi)', 77 (wi) }}}

(Fm 2o )=supfsupfo. 20 (/7 737 o=
suspfn (. 0}

(ﬂ v \/;): max{inft _, Awi)inf o, p(wi) }: inf {i'rlfl{max{i(wi)t ,y(wi)' }}}
similarly

7 &) ()= i o o ., (5 v V7 )= e, o, | i

Now,

~a(wi 7w f i) 7w f= G A7) < sup,, (7 AT i) =
JaAmmw) (\/ﬂ_m/_XWg ﬁarﬂ)

similarly (\/—ﬁfkw C\/i ( ﬁ\/—XW g EF\/'] (W)
Additionally, {ﬂ“(W') 7(wi) } { }= (Avywi) >

inf (72 A7)wi) =2V 7 (W)= W2 vy ) W)z v 7 )W)

k=1

Similarly (\/;V\/—XW = 7\/5 ) (\/_ \/_X )C\/(avﬂ)( )
o VI N, NN, = mﬂmﬂéﬁ;

Corollary : 3.7

i,.7,,Cs e H(N
Let 11y Ca ( )beahybrid fuzzy bi —ideals in N. Then

\/U?y\/?:\/z for all nmil>1

AR ~
gb‘ _gé*;ﬁ (1 times)

Proof :

NTRENANGA

~h o~ o~ ~m e
where i TH ""uﬂ(n times) Hy = ny(m times)

1 = n = 1 ~ 5 x5 = /~
Taking =T =Hs 40 above theorem we have iz T = A
=== [z ,—_ = _
&5 65 =Ny by mathematical induction principle. Put n =1 TN by mathematical
[~ n _ [~ 1 =
induction principle. Putn =1 i TNH2 T NHa Therefore it is result is true for n = 1. Assume if it is true
[~k =
forn=k, so o =NH
Vi, =\ iy =N i =
To prove the result if true forn =k + 1 VY y 4 4 4 4
[=1 _ [= [=m _ | =
Hence it is true for k+1. Similarly it is true for T =N and &5 =6

tz
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Corollary: 3.8

~

.7, e H(N 0" << <<( "<
Let Koty 65 €H )beahybridfuzzybi—ideals in N if *7 T, <<6s and S5 <My for some K,

JE<<J7’7’7, 1, <<\/Z,\/Z<< ;.

I, m then
Proof :

\/ﬁ_;:\/ﬁ_w\/ﬁ_y'\/?:‘/zforallk,l,mzj-
m:m'ﬁ:ﬁ’V55m:szorallk,l,le

By applying corollary
Then by Proposition (ii) we get
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