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Abstract 

In this paper, we establish a new theorem to find the Degree of Approximation of signals (Functions) 

 )(, tLr   class by new ),)(2,( EC  product summability method of conjugate series of Fourier 

series. 
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1. Introduction 

It became very interesting to find the estimation of errors of functions by using various product summability 

means. Now a days people are working in the direction of error estimation of functions belongignt to different 

spaces by using various summability methods. Rhoads [4], Leindler [18], Sahney and Goel [9] and many more 

have estimated the error of functions belonging to Lipschitz class and other classes by Cesàro, Nörlund and 

Euler methods. later on Nigam and Sharma ([2], [15]), recently Kushwaha et al. ([3], [5], [19]),  and various 

investigators ([20]-[27]) have estimated interesting results on degree of approximation of functions by Nörlund-

Euler, (C, 2)(E, 1) and Euler-Matrix product summability means of Fourier series and conjugate series of 

Fourier series respectively. Till now no work seems to have been done so for to find the estiomation of signals 

(functions) by using  2,C  ,E   summability means of conjugate series of Fourier series. In tis paper we 

have used second order Cesàro means along with Euler means to obtain the product mean  2,C  ,E  which 

is very new in present days. 

2. Definitions and Notations 

Let 


0

u be a given  infinite series with }{ s for it’s 
th partial sum.  
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        Let   E

  denote the sequence of     EE ,  means of the sequence }{ s . If the  ,E  transform of  

}{ s  is defined as  

                        ssx
E











 



 










 




0)1(

1
;  as                                         (2.1) 

Then the series 


0

u  is said to be summable to the number s by  ,E  method. (Hardy [1]) 

         Let   2C

  denote the sequence of    22, CC   means of the sequence }{ s .If the  2,C  

 transform of  }{ s  is defined as  

                sxsx
C




 


;)1(
)2)(1(

2
;

0

2 









  as                        (2. 2) 

Then the series 


0

u  is said to be summable to the number s by the  2,C  method. (Cesàro) 

Thus if  2,C  transform of   ,E  transform defines  2,C  ,E  transformation and denoted by 

 EC .2

. 

Then if  
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k
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1
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2
;2  as       (2.3) 

where  EC2

  denotes the sequence of EC2  means that is  2,C  ,E  product means of the sequence 

}{ s . 

Then the series 


0

u  is said to be summable to the number ‘s’ by the  2,C  ,E  method. 

We know that   2,C  ,E  method is regular. Let   be 2 -periodic, lebesgue integrable function on 

],[   then its Fourier series associated with a point x  is defined by 

                       









01

0 ,sincos
2

1
)(







  NAxbxaax                               (2.4) 

and the series  

                                        









01

)(cossin






  xTxbxa                                                (2.5) 

is called the conjugate series of the Fourier series with 
th  partial sum );(

~~

xs  . 

We use following notations through out the paper 
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                                                         )()()( txtxtx    
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and  rL -norm is defined by 

                                                    1,)(

/1
2
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












  rdxx

r

r

r



  

 and the estimation of errors which is known as degree of approximation of a function  given by Zygmund 

[17] 

                                  
r

xxE )()(min)(     

where )(x  is some 
th  degree trigonometric polynomial. This method of approximation is called the 

trigonometric Fourier approximation. 

A function  Lip  if  

                                         )()()(


 tOxtx   for  .0,10  t  

and  the function ),( rLip   if 
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Given a positive increasing function )(t and an integer 1r ,  rtLip ),(  if  
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If 
 tt )( then  rtLip ),(  class coincides with the ),( rLip  class and if r then ),( rLip   

class reduces to Lip  class. 

A function  )(, tLW r   if 

                                 )()2/(sin)()(
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where )(t  is increasing function of t . 

We observe that  
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   )(,),(),( tLWrtLiprLipLip r      for  .1,10  r  

Kushwaha [5] has proved a theorem on approximation of function by (C, 2)(E, 1) product summability method 

as following- 

Theorem:-  If RRf :  is 2  periodic, Lebesgue integrable on ],[   and belonging to ),( rLip   

class then the error estimation of function (signals) by the (C, 2)(E, 1) product means of Fourier series f  

satisfies  
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of its Fourier series is given by  
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is the (C, 2)(E,1) means of the Fourier series (2.4). 

3. Main Theorem 

If a function   be a 2  periodic, Lebesgue integrable on ],[   and belonging to  )(, tLW r   class then 

the estimate error of signals (functions)   by the ),)(2,( EC product means of conjugate series of Fourier 

series of   satisfies 
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provided that )(t  satisfies following conditions given below- 
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where   is an arbitrary positive number such that 01)( s , 1
11


sr
,  r1 . These 

conditions (3.2) and (3.3) hold in 

 EC 2

 that is ),)(2,( EC  means of the conjugate series of Fourier series. 

4.Lemmas 

To prove theorem, we need the following lemma: 
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Proof   For   


 t
1

; by applying Jordan’s lemma /)2/(sin tt  and .1sin nt . 
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5. Proof of the Theorem  

Following Titchmarsh [6] and using Riemann-Lebesgue theorem );(
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Now, denoting ),)(2,( EC transformation of );(
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xs  is given by 
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Using Hölder’s Inequality and the fact that  )(,)( tLWt r
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Since  )(t  is a positive increasing function and using second mean value theorem for integrals- 
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Since  )(t  is a positive increasing function and using second mean value theorem for integrals- 
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Combining 1I and 2I  yields- 
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6. Particular Cases Some  

1.  If 0  then  )(, tLW r   class reduces to }),({ rtLip  class 1r , then the estimation of error of the 

signals (functions) by ),)(2,( EC means is given by  
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2. If 10,)(   tt in case (1) then }),({ rtLip  , 1r  class reduces to ),( rLip  class, then the 

estimation of the error of signals (functions) by ),)(2,( EC means is given by  
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3. If 1 in case (1) then the estimation of error of the signals (functions) belonging to }),({ rtLip   class by 

),)(2,( EC means is given by 
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4. If r in case (2), then ),( rLip   class reduces to the class Lip , then the estimation of error of the 

signals (functions) by ),)(2,( EC means is given by 
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