Level Set of Direct Product of Intuitionistic Fuzzy BG-ideals in BG-algebra

[1] R. Rashma, [2] K. R. Sobha

[1]Research scholar, Reg. No:21113182092001

Sree Ayyappa college for Women, Chunkankadai, Nagercoil-629001, Tamil Nadu, India. ^[2]Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai, Nagercoil.

[Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.]

E-mail: [1] rashmamariagiri@gmail.com, [2] vijayakumar.sobha9@gmail.com

Abstract: In this paper, we investigate some properties of level set of direct product of intuitionistic fuzzy BG-ideals in BG-algebra.

Keywords: BG-algebra, fuzzy BG-ideal, intuitionistic fuzzy BG-ideal, direct product of intuitionistic fuzzy BG-ideals, level set.

1. Introduction:

The idea of intuitionistic fuzzy set was first published by Atanassov [4] as a generalization of the notion of fuzzy set. In 1966, Imai and Iseki introduced the two classes of abstract algebra, viz., BCK/BCI-algebra. It is known that the class of BCK-algebra is a proper sub-class of the class of BCI-algebras. Negger and kim[8] introduced a new notion, called B-algebra which is related to several classes of algebras of intrest such as BCI/BCK-algebras. Cho and kim[5] discussed further relation between B-algebra and other topic especially quasigroups. Kim and kim[6] introduced the notion of BG-algebra, which is a generalization of B-algebra. Ahn and Lee fuzzified BG-algebra. Muthuraj et al.[7] investigated properties of fuzzy BG-ideals in BG-algebra. Senapati et al. presented the concept and basic properties of intuitionistic fuzzy BG-subalgebras. In 2005, Zarandi and Saeid[10] introduced the new concept called intuitionistic fuzzy ideals of BG-algebra and investigate some of their properties. In 2021 R.Angelin Suba and K.R.Sobha[2] introduced upper and lower level sets of absolute direct product of doubt intuitionistic fuzzy k-ideals of BCK/BCI-algebra. In this paper, we investigate some properties of level sets of direct product of intuitionistic fuzzy BG-ideals in BG-algebra.

2. Preliminaries

Definition:2:1

A BG-algebra is a non empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(i)
$$x * x = 0$$

(ii)
$$x * 0 = x$$

(iii)
$$(x * y) * (0 * y) = x \forall x, y \in X$$
.

For brevity we also call X BG-algebra. A binary relation ' \leq ' on X can be defined by $x \leq y$ if and only if x * y = 0.

A non-empty set S of a BG-algebra X is called a BG-subalgebra of X if $x * y \in S \forall x, y \in S$.

Definition:2.2

A fuzzy set μ in X is called a fuzzy BG-ideal of X if it satisfies the following condition:

- $(i) \mu(0) \ge \mu(x)$
- $(ii)\mu(x) \ge min\{\mu(x * y), \mu(y)\} \forall x, y \in X.$

Definition:2.3

If $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ is an intuitionistic fuzzy sets of BG-Algebra $X \times Y$ is said to be a intuitionistic fuzzy BG-ideal of $X \times Y$ if it satisfies the following axioms

- (i) $\mu_{A\times B}(0,0) \ge \mu_{A\times B}(x_1, y_1)$
- (ii) $\mu_{A\times B}(x_1, y_1) \ge \min\{\mu_{A\times B}((x_1, y_1) * (x_2, y_2)), \mu_{A\times B}(x_2, y_2)\}$
- (iii) $\mu_{A\times B}((x_1, y_1) * (x_2, y_2)) \ge \min\{\mu_{A\times B}((x_1, y_1)), \mu_{A\times B}((x_2, y_2))\}$
- (iv) $\gamma_{A\times B}(0,0) \le \gamma_{A\times B}(x_1,y_1)$
- $(\mathrm{v})\,\gamma_{A\times B}(x_1,y_1) \leq \max\{\gamma_{A\times B}\big((x_1,y_1)*(x_2,y_2)\big),\gamma_{A\times B}(x_2,y_2)\}$
- $(\text{vi}) \, \gamma_{A \times B}((x_1, y_1) * (x_2, y_2)) \le \max \{ \gamma_{A \times B}((x_1, y_1)), \gamma_{A \times B}(x_2, y_2) \} \, \, \forall \, x_1, x_2, y_1, y_2 \in X.$

Definition:2.4

let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets in X and Y respectively. Then the direct product of intuitionistic fuzzy sets A and B is defined by $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ where $\mu_{A \times B} : X \times Y \to [0,1]$ is given by

$$\mu_{A\times B}(x,y) = \min \{\mu_A(x), \mu_B(y)\}\$$
and $\gamma_{A\times B}: X\times Y\to [0,1]$ is given by $\gamma_{A\times B}(x,y) = \max \{\gamma_A(x), \gamma_B(y)\}\$ for all $(x,y)\in X\times Y$.

3. Level Set of Direct Product of Intuitionistic Fuzzy BG-Ideals

Let $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ be a intuitionistic BG-ideals of a BG-algebra $X \times Y$ and $\alpha, \beta \in [0,1]$ then α – level cut of μ and β – level cut of γ of $A \times B$ is as follows

$$\mu_{A \times B, \alpha} = \{(x, y) \in X \times Y / \mu_{A \times B}(x, y) \ge \alpha\} \text{ and }$$

$$\gamma_{A \times B, \beta} = \{(x, y) \in X \times Y / \mu_{A \times B}(x, y) \le \beta\}$$

Theorem 3:1

If $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ is a intuitionistic fuzzy BG-ideal of $X \times Y$, then $\mu_{A \times B, \alpha}$ and $\gamma_{A \times B, \beta}$ are BG-ideal of $X \times Y$ for any $\alpha, \beta \in [0, 1]$. Solution:

Let
$$A \times B = (\mu_{A \times B}, \gamma_{A \times B})$$
 be a intuitionistic fuzzy BG-ideal of $X \times Y$ and Let $\alpha \in [0,1]$

Then we have(i) $\mu_{A\times B}(0,0) \ge \mu_{A\times B}(x,y) \forall (x,y) \in X \times Y$

By definition,
$$\mu_{A\times B}(x,y) \ge \alpha \ \forall (x,y) \in \mu_{A\times B,\alpha}$$

So $\mu_{A\times B}(0,0) \ge \alpha$

Therefore $(0,0)\epsilon\mu_{A\times B,\alpha}$

(ii) Let (x_1, y_1) , $(x_2, y_2) \in X \times Y$ be such that $(x_1, y_1) * (x_2, y_2) \in \mu_{A \times B, \alpha}$

and
$$(x_2, y_2) \in \mu_{A \times B, \alpha}$$

Then
$$\mu_{A \times B}[(x_1, y_1) * (x_2, y_2)] \ge \alpha$$

$$\mu_{A\times B}[(x_2,y_2)]\geq \alpha$$

Since $\mu_{A\times B}$ is a intuitionistic fuzzy BG-ideal of $X\times Y$ it follows that

$$\mu_{A \times B}\{(x_1, y_1) * (x_2, y_2)\} \ge \min \{\mu_{A \times B}(x_1, y_1), \mu_{A \times B}(x_2, y_2)\}$$

$$\ge \min \{\alpha, \alpha\}$$

Therefore $\mu_{A \times B} \{ (x_1, y_1) * (x_2, y_2) \} \ge \alpha$

Hence
$$(x_1, y_1) * (x_2, y_2) \in X \times Y$$

Therefore $\mu_{A\times B,\alpha}$ is a intuitionistic fuzzy BG-ideal in BG-algebra.

(iii)Clearly, $\mu_{A\times B}$ is a intuitionistic fuzzy BG-ideal of $X\times Y$ it follows that

$$\mu_{A \times B}\{(x_1, y_1)\} \ge \min \{\mu_{A \times B}((x_1, y_1) * (x_2, y_2)), \mu_{A \times B}(x_2, y_2)\}$$
 $\ge \min \{\alpha, \alpha\}$
 $> \alpha$

Hence $\mu_{A\times B,\alpha}$ is a intuitionistic fuzzy BG-ideal in BG-algebra.

Similiarly,

let
$$\beta \in [0,1]$$

Also we have (iv)
$$\gamma_{A \times B}(0,0) \le \gamma_{A \times B}(x,y) \forall (x,y) \in X \times Y$$

By definition,
$$\gamma_{A\times B}(x,y) \le \alpha \ \forall \ (x,y) \in \mu_{A\times B,\alpha}$$

So
$$\gamma_{A\times B}(0,0) \leq \alpha$$

Therefore $(0,0)\epsilon \gamma_{A\times B,\beta}$

(v)Let
$$(x_1, y_1)$$
, $(x_2, y_2) \in X \times Y$ be such that $(x_1, y_1) * (x_2, y_2) \in \gamma_{A \times B, \beta}$

and
$$(x_2, y_2) \epsilon \gamma_{A \times B, \beta}$$

Then
$$\gamma_{A \times B}[(x_1, y_1) * (x_2, y_2)] \le \beta$$

$$\gamma_{A \times B}[(x_2, y_2)] \le \beta$$

Since $\gamma_{A \times B}$ is a intuitionistic fuzzy BG-ideal of $X \times Y$ it follows that

$$\gamma_{A \times B} \{ (x_1, y_1) * (x_2, y_2) \} \le \max \{ \gamma_{A \times B} (x_1, y_1), \gamma_{A \times B} (x_2, y_2) \}$$

 $\le \max \{ \beta, \beta \}$

Therefore $\gamma_{A\times B}\{(x_1, y_1) * (x_2, y_2)\} \le \beta$

Hence
$$(x_1, y_1) * (x_2, y_2) \in X \times Y$$

Therefore $\gamma_{A \times B, B}$ is a intuitionistic fuzzy BG-ideal in BG-algebra.

(iii)Clearly, $\gamma_{A\times B}$ is a intuitionistic fuzzy BG-ideal of $X\times Y$ it follows that

$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max\{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\}$$

$$\le \max\{\beta, \beta\}$$

Therefore $\gamma_{A \times B, \beta}$ is a intuitionistic fuzzy BG-ideal in BG-algebra.

Hence $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are intuitionistic fuzzy BG-ideals in BG-algebra.

Theorem 3:2

Solution:

An intuitionistic fuzzy set $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ is a intuitionistic fuzzy BG-ideal of $X \times Y$ iff for all $\alpha, \beta \in [0,1], \mu_{A \times B,\alpha}$ and $\gamma_{A \times B,\beta}$ are either empty or BG-ideals of $X \times Y$.

Assume that $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are either empty or BG-ideals of $X\times Y$ for $\alpha,\beta\in[0,1]$

For any $(x, y) \in X \times Y$

(i) Let
$$\mu_{A\times B}(x,y) = \alpha$$
 and

$$\gamma_{A\times B}(x,y)=\beta$$

Then $(x, y) \in \mu_{A \times B, \alpha}$ and $\gamma_{A \times B, \beta}$, so $\mu_{A \times B, \alpha} \neq \emptyset \neq \gamma_{A \times B, \beta}$

Since $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are BG-ideals of $X\times Y$

Therefore $(0,0)\epsilon\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$

Hence $\mu_{A\times B}(0,0) \geq \alpha$

$$=\mu_{A\times B}(x,y)$$

Also
$$\gamma_{A\times B}(0,0) \leq \beta$$

$$= \gamma_{A \times B}(x, y)$$
 where $(x, y) \in X \times Y$

Hence condition (i) satisfy

(ii) If there exist (x_1, y_1) , $(x_2, y_2) \in X \times Y$ be such that

$$\mu_{A\times B}\{(x_1,y_1)\} < \min \{\mu_{A\times B}((x_1,y_1)*(x_2,y_2)), \mu_{A\times B}(x_2,y_2)\}$$

Then by taking

$$\alpha_0 = \frac{1}{2} (\mu_{A \times B}(x_1, y_1)) + \min \{ \mu_{A \times B}((x_1, y_1) * (x_2, y_2)), \mu_{A \times B}(x_2, y_2) \}$$

We have
$$\mu_{A\times B}(x_1, y_1) < \alpha_0 < \min \{\mu_{A\times B}((x_1, y_1) * (x_2, y_2)), \mu_{A\times B}(x_2, y_2)\}$$

Hence $(x_1, y_1) \notin \mu_{A \times B, \alpha_0}$

$$(x_1, y_1) * (x_2, y_2) \epsilon \mu_{A \times B, \alpha_0}$$
 and $(x_2, y_2) \epsilon \mu_{A \times B, \alpha_0}$

That is, $\mu_{A\times B,\alpha_0}$ is not a BG-ideals of $X\times Y$.

Which is a contradiction

$$\mu_{A\times B}\{(x_1,y_1)\} \ge \min\{\mu_{A\times B}((x_1,y_1)*(x_2,y_2)), \mu_{A\times B}(x_2,y_2)\} \,\forall (x_1,y_1), (x_2,y_2)\in X\times Y$$

Similiarly,

By taking

$$\beta_0 = \frac{1}{2} (\gamma_{A \times B}(x_1, y_1)) + \max \{ \gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2) \}$$

We have
$$\gamma_{A\times B}(x_1, y_1) > \beta_0 > \max\{\gamma_{A\times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A\times B}(x_2, y_2)\}$$

Hence $(x_1, y_1) \notin \gamma_{A \times B, \beta_0}$

$$(x_1, y_1) * (x_2, y_2) \epsilon \gamma_{A \times B, \beta_0}$$
 and $(x_2, y_2) \epsilon \gamma_{A \times B, \beta_0}$

That is, $\gamma_{A\times B,\beta_0}$ is not a BG-ideals of $X\times Y$.

Which is a contradiction

Therefore

$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max \{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\} \ \forall \ (x_1, y_1), (x_2, y_2) \in X \times Y.$$
(iii) Clearly

$$\mu_{A\times B}\{(x_1,y_1)*(x_2,y_2)\} \ge \min \{\mu_{A\times B}(x_1,y_1),\mu_{A\times B}(x_2,y_2)\} \ \forall \ (x_1,y_1),(x_2,y_2) \epsilon X \times Y.$$

$$\gamma_{A \times B} \{ (x_1, y_1) * (x_2, y_2) \} \le \max \{ \gamma_{A \times B} (x_1, y_1), \gamma_{A \times B} (x_2, y_2) \}$$

$$\forall (x_1, y_1), (x_2, y_2) \in X \times Y.$$

Conversely,

Assume
$$A \times B = (\mu_{A \times B}, \gamma_{A \times B})$$
 is a intuitionistic fuzzy BG-ideal of $X \times Y$

To prove: $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are either empty or BG-ideals of $X\times Y$

Suppose that $\mu_{A\times B,\alpha} \neq \emptyset$ for any α , $\beta \in [0,1]$

It is clear that $(0,0)\epsilon\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$

Since
$$\mu_{A\times B}(0,0) \ge \mu_{A\times B}(x,y) \ge \alpha$$

Also
$$\gamma_{A\times B}(0,0) \le \gamma_{A\times B}(x,y) \le \beta$$

(ii) Let
$$(x_1, y_1) * (x_2, y_2) \in \mu_{A \times B, \alpha}$$
 and $(x_2, y_2) \in \mu_{A \times B, \alpha}$

$$\mu_{A\times B}\{(x_1, y_1) * (x_2, y_2)\} \ge \alpha$$
 and

$$\mu_{A\times B}\{(x_2,y_2)\} \ge \alpha$$

$$\mu_{A \times B}\{(x_1, y_1)\} \ge \min \{\mu_{A \times B}((x_1, y_1) * (x_2, y_2)), \mu_{A \times B}(x_2, y_2)\}$$

$$\mu_{A\times B}\{(x_1,y_1)\} \geq \alpha$$

Therefore $(x_1, y_1) \in \mu_{A \times B, \alpha}$

Hence $\mu_{A\times B,\alpha}$ are BG-ideals of $X\times Y$.

Also
$$(x_1, y_1) * (x_2, y_2) \epsilon \gamma_{A \times B, \beta}$$
 and $(x_2, y_2) \epsilon \gamma_{A \times B, \beta}$

$$\gamma_{A \times B} \{ (x_1, y_1) * (x_2, y_2) \} \le \beta$$
 and

$$\gamma_{A\times B}\{(x_2,y_2)\}\leq \beta$$

$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max\{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\}$$

$$-5(r, v,) < 6$$

$$\gamma_{A\times B}\{(x_1,y_1)\} \leq \beta$$

Therefore $(x_1, y_1) \epsilon \gamma_{A \times B, \beta}$

Hence $\gamma_{A \times B, \beta}$ are BG-ideals of $X \times Y$.

Therefore $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are BG-ideals of $X\times Y$.

(iii) Clearly,

$$\mu_{A \times B}\{(x_1, y_1)\} \ge \alpha \text{ and } \mu_{A \times B}\{(x_2, y_2)\} \ge \alpha$$

$$(x_1, y_1) * (x_2, y_2) \in \mu_{A \times B, \alpha}$$

That is $,\mu_{A\times B}\{(x_1,y_1)*(x_2,y_2)\} \ge \min \{\mu_{A\times B}(x_1,y_1),\mu_{A\times B}(x_2,y_2)\}$

Hence $\mu_{A\times B\alpha}$ are BG-ideals of $X\times Y$.

Similiarly,

$$\gamma_{A \times B}\{(x_1, y_1) * (x_2, y_2)\} \le \max\{\gamma_{A \times B}(x_1, y_1), \gamma_{A \times B}(x_2, y_2)\}$$

Therefore $\gamma_{A \times B, \beta}$ are BG-ideals of $X \times Y$.

Hence $\mu_{A\times B,\alpha}$ and $\gamma_{A\times B,\beta}$ are intuitionistic fuzzy BG-ideals of $X\times Y$.

Theorem 3:3

For any intuitionistic fuzzy set $A \times B = (\mu_{A \times B}, \gamma_{A \times B})$ is a intuitionistic fuzzy BG-ideal of $X \times Y$ iff the non-empty upper α – level cut $\mu_{A \times B}$: α and the non-empty lower β – level cut of $\gamma_{A \times B}$: β are ideals of $X \times Y$ for any $\alpha, \beta \in [0,1]$

Solution:

Let
$$A \times B = (\mu_{A \times B}, \gamma_{A \times B})$$
 be a intuitionistic fuzzy BG-ideal of $X \times Y$.

(i)
$$\mu_{A \times B}(0,0) \ge \mu_{A \times B}((x_1, y_1))$$
 and

$$\gamma_{A\times B}(0,0) \le \gamma_{A\times B}((x_1,y_1)) \forall (x_1,y_1)\epsilon X \times Y$$

(ii)
$$\mu_{A\times B}\{(x_1, y_1)\} \ge \min \{\mu_{A\times B}((x_1, y_1) * (x_2, y_2)), \mu_{A\times B}(x_2, y_2)\}$$

and

$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max \{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\}$$

for any
$$\alpha$$
, $\beta \in [0,1]$, if $\mu_{A \times B} \{ (x_1, y_1) \} \ge \alpha$

That is,

$$\min \{ \mu_{A \times B}((x_1, y_1) * (x_2, y_2)), \mu_{A \times B}(x_2, y_2) \} \ge \alpha$$

This implies
$$(x_1, y_1) \in \mu_{A \times B, \alpha}$$

Clearly
$$(x_1, y_1) * (x_2, y_2) \epsilon \mu_{A \times B, \alpha}$$

$$(x_2, y_2) \in \mu_{A \times B, \alpha}$$

Now
$$\mu_{A\times B}\{(x_1,y_1)\} \ge \min\{\mu_{A\times B}((x_1,y_1)*(x_2,y_2)), \mu_{A\times B}(x_2,y_2)\}$$

$$\geq \min \{\alpha, \alpha\}$$

$$\geq \alpha$$

This implies $(x_1, y_1) \in \mu_{A \times B, \alpha}$

Thus $\alpha \in [0,1]$, is a intuitionistic fuzzy BG-ideal of $X \times Y$.

Clearly, if
$$\gamma_{A \times B}(x_1, y_1) \le \beta$$

Then

$$\max \{ \gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2) \} \le \beta$$

This implies $(x_1, y_1) \in \gamma_{A \times B, B}$

Clearly
$$(x_1, y_1) * (x_2, y_2) \epsilon \gamma_{A \times B, \beta}$$

$$(x_2, y_2) \epsilon \gamma_{A \times B, \beta}$$

Now
$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max\{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\}$$

 $\le \max\{\beta, \beta\}$

$$\leq \beta$$

This implies $(x_1, y_1) \epsilon \gamma_{A \times B, \beta}$

Thus $\beta \in [0,1]$, is a intuitionistic fuzzy BG-ideal of $X \times Y$.

Hence α , $\beta \in [0,1]$ is a intuitionistic fuzzy BG-ideal of $X \times Y$.

Conversely,

Let (x_1, y_1) , $(x_2, y_2) \in X \times Y$ such that

$$\mu_{A\times B}\big((x_1,y_1)\big)=\alpha$$

$$\gamma_{A\times B}((x_1,y_1))=\beta$$

This implies $(x_1, y_1) \in \mu_{A \times B, \alpha}$ and $(x_1, y_1) \in \gamma_{A \times B, B}$

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Therefore

$$\mu_{A \times B}((x_1, y_1)) \ge \alpha$$
$$\gamma_{A \times B}((x_1, y_1)) \le \beta$$

This gives

$$\mu_{A\times B}\{(x_1,y_1)\} \geq \min \{\mu_{A\times B}((x_1,y_1)*(x_2,y_2)), \mu_{A\times B}(x_2,y_2)\}$$

and

$$\gamma_{A \times B}\{(x_1, y_1)\} \le \max\{\gamma_{A \times B}((x_1, y_1) * (x_2, y_2)), \gamma_{A \times B}(x_2, y_2)\}$$

Hence $A \times B$ is a intuitionistic fuzzy BG-ideal of $X \times Y$.

Reference

- [1] Ahn,S.S., Lee,H.D. Fuzzy subalgebras of BG-algebra. Commun.Korean Math.Soc.19(2),243-251(2004).
- [2] R.Angelin suba and K.R.Sobha, Upper and Lower level sets of absolute direct product of doubt intuitionistic fuzzy K-Ideal of BCK/BCI-algebra, International Journal of Research in engineering and Science volume 9 Issue 3/2021/pp.12-15.
- [3] R.Angelin suba and K.R.Sobha, Absolute direct product of doubt intuitionistic fuzzy K-ideals in BCK/BCI-algebras,International journal of applied engineering research,ISSN 0973-4562 volume 14, Number 8, 2019.
- [4] Atanassov.K.T, (1986); Intuitionistic fuzzy sets, Fuzzy sets and systems, 20:87.
- [5] Cho.J.R, Kim.H.S. On B-algebra and quasigroup. Quasigroups Relat. Syst. 8,1-6(2001).
- [6] C.B.Kim and H.S.Kim, On BG-algebras, Demonstraction Mathematica 41 (2008) 497-505.
- [7] Muthuraj.R, Sridharan, Sitharselvam, P.M.: Fuzzy BG-ideals in BG-algebra.Int. J. Comput. Appl. 2(1), 26-30(2010).
- [8] J.Neggers, H.S.Kim, On B-algebra, Math. Vensik 54 (2002) 21-29.
- [9] L.A.zadeh, Fuzzy sets, information and Control 8 (1965) 338-353.
- [10] A.Zarandi, A.B.Saeid, On intuitionistic fuzzy ideals of BG-algebra, World Academy of Sciences Engineering an Technology 5 (2005) 187-189.