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Abstract 

Air pollution has grown significantly as a threat to the environment during the past few decades. It has had a 

profound effect on the ecosystem, public health, and safety. For government agencies to design plans for 

pollution prevention, predicting the extent of air pollution becomes essential for maintaining the environment 

and environmental protection. One of the efficient approaches to solving the problem of predicting the level of 

air pollutants is time series analysis. The drawbacks of conventional machine learning algorithms in time series 

analysis are solved by employing deep learning algorithms in a variety of ways. Deep Learning models learn 

features and dynamics exclusively and directly from the data, in contrast to Machine Learning models, such as 

autoregressive models (AR) or exponential smoothing, where feature engineering is conducted manually and 

frequently certain parameters are adjusted while taking domain expertise into account. To forecast the level of 

pollution in the following hour using the current hour's weather and pollution levels, a Recurrent Neural 

Network (RNN) model based on Long Short Term Memory (LSTM) units has been trained, tested, and 

optimized. The predictive model has been developed with both uni-variate, which takes into account only one 

feature, and multi-variate, which takes into account many features. To improve the performance of the model on 

long input sequences attention mechanism has been implemented. 

Keywords: Recurrent Neural Network, Long Short Term Memory (LSTM) Units, Deep Learning, Machine 

Learning Algorithms, Time Series Analysis, Attention Mechanism. 

1. Introduction 

One of the most significant public health issues is air pollution, particularly in metropolitan areas where most of 

industry and traffic flow. Both the environment and human health are impacted by it. Today, the environment of 

Earth is also in danger from air pollution [1]. The mortality rate from air pollution is a major public health issue, 

and by 2050, this number is predicted to have doubled [2]. The World Health Organisation (WHO) recently 

announced that over ninety percent of the global population are exposed to air that is hazardous and exceeds 

recommended limits, which is the primary cause of the high prevalence of early mortality and 

illness.Additionally, 4.6 million individuals pass away each year from conditions directly linked to 

environmental pollution [3]. Depending on the type of chemical present and the length of exposure, health 

issues worsen. In light of this, we may define a number of types of pollutants that fall into two categories: 

primary and secondary, depending on their sources. The first group of air pollutants includes those that are 

passed on directly from an atmospheric source. The pollutants that result from the chemical reactions of the 

primary pollutants in the atmosphere make up the secondary group [4]. By enabling citizens, families, 

businesses, and governmental bodies to prepare ahead, accurate air quality forecasts can have significant social 
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and economic benefits. For predicting air quality, a variety of analytical models are put forth, both conventional 

(based on statistical models) and non-conventional (using AI) methods. 

The time-series approach is typically utilized in the field of air quality forecasting to comprehend association of 

cause-and-effect. In the traditional forecast approaches Auto-regressive and moving average algorithms were 

employed in either long term or short term prediction of air pollutants. Deep Learning has become an essential 

component of the present-day version of time series analysis models due to a growing amount of data and 

computer power in recent years, producing excellent results. In case of conventional machine learning 

approaches such as autoregressive models (AR) or exponential smoothing, the feature engineering is manually 

carried out and frequently some parameters are optimized based on the domain knowledge. The term ARIMA 

refers for Autoregressive (AR) and Moving Average (MA) techniques combined in the construction of a 

composite time series model. Despite its simplicity, this model might produce useful findings. In order to handle 

the embedded autocorrelation in the data, it provides parameters to take seasonality, long-term trend, 

autoregressive, and moving average factors into account. Similar to ARIMA models, forecasts using exponential 

smoothing are based on weighted averages; however, in this case, each observation is given a different 

diminishing weight, and as time goes on, the significance of each observation decreases. Conventional ML 

algorithms suffer from the fact that missing values can significantly impact how well the models perform; they 

are unable to identify intricate patterns in the data; and they often perform better for short-term forecasts rather 

than for long-term projections. The drawbacks of conventional machine learning are overcome by the use of 

deep learning for prediction of time series in a variety of ways. 

Time series forecasting has long been a very important topic of research in many domains as numerous domain 

data are collected and processed as time series. The following are the components of a time series data; 

▪ Trend - The overall trajectory of the data, as determined by excluding any short-term impacts like seasonal 

changes or noise, is known as the long-term trend. 

▪ Seasonality - It describes recurring, cyclical oscillations throughout the course of a time series. 

▪ Stationarity - Time series have the crucial quality of stationarity. If a time series' mean, variance, and 

covariance don't change much over time, it is considered to be stationary. There are numerous 

transformations that can be used to extract stationary segments from a non-stationary process. 

▪ Noise - Each time series includes noise, which is defined as erratic variations brought on by issues in the 

data collection or aggregation process. 

▪ Autocorrelation - In order to detect seasonality and trend in time series data, autocorrelation, which is the 

correlation among the raw time series and a time delayed version of the series, is used. 

With world’s economy and industrialization expanding quickly in recent years, environmental pollution is 

becoming a more severe issue [6]. In particular, air pollution is important. The American Heart Association 

came to the conclusion that breathing in air contaminated with particulate matter (PM) increases the risk of 

cardiovascular morbidity and death [7]. Elevated daily mortality is especially linked to particle mass 

components present in the aerodynamic diameter size range below 2.5 um [9], [10], and PM2.5 is one of the 

primary components of haze [8]. The management of the environment and human health depend greatly on 

monitoring and forecasting PM2.5 concentration. Due to several complicated aspects, such as nonlinear features 

in both space and time, which will have a significant influence on the forecast accuracy [12], the mechanics and 

procedure of PM2.5 production are quite complex [11]. Therefore, a thorough analysis is crucial. This 

information on air quality has a clear periodicity and is tightly tied to time, making it a time series data [13]. The 

timely nature of the data has made time series prediction a popular subject [14]. 

Because of the unknowable variations in air pollution level patterns and circumstances, anticipating time-related 

data is a challenging challenge. In this study, we looked for the solutions that would provide the greatest results 

in terms of less prediction mistakes. With this objective, the LSTM-RNN deep learning model has been 

employed to predict the level of air pollutant. 
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2. Literature Survey 

Researches in the area of Image analysis, speech recognition, and text processing have all benefited from the 

widespread usage of deep learning, which has emerged as one of the most significant approaches in the area of 

machine learning. Convolutional neural networks (CNN) [26], recurrent neural networks (RNN), and self-

encoders networks are some of the most widely used deep learning algorithms. CNN has the benefit of feature 

extraction, while RNN excels in mining time series data. Various established time series prediction techniques 

exist, such as ARMA [15], ARIMA [15], SARIMA [16], SVR [17], Backpropagation neural network [18], 

Probabilistic network [19], and others [27, 28]. These approaches, however, can no longer satisfy the real need 

owing to an excessive length of training time as the volume and complexity of the collected data rise. The time 

series model enables the prediction of PM2.5 with the advancement of deep learning.  

To forecast PM2.5 contamination, the authors of [20] suggested using a long short-term memory-fully 

connected (LSTM-FC) neural network. The feasibility and applicability of the CNN-LSTM model to forecast 

PM2.5 concentration were confirmed by the work in [21, 25]. In [22], a CNN-LSTM hybrid model was created 

to forecast the 8-h average ozone level in Beijing City for the following day. However, the requirement for 

forecasting PM2.5 in everyday life couldn't be satisfied by existing approaches because to their low accuracy 

and lengthy predictability. Meanwhile, it is critical to create an improved model for predicting PM2.5 

concentration due to the complexity of PM2.5 generation, the exceptional precision and efficiency need for 

prediction, and the challenge of deep learning network model in stability.  

In order to anticipate the PM2.5 concentration for the following day (the next 24 hours), a RNN-LSTM model is 

developed.  Attention mechanism is incorporated into the model in order to further improve prediction accuracy. 

Uni-variate LSTM model and the multivariate LSTM model are constructed with single and multiple attributes, 

and their performance were compared and examined to see which model is the performing better for PM2.5 

prediction. Finally, mean absolute error (MAE) and root mean square error (RMSE), two performance 

indicators, are used to assess the models. 

3. Overview of Lstm Rnn Architecture  

Deep Learning algorithms learn features and patterns exclusively from the temporal sequence data and they are 

capable of learning more complex patterns. Each input in a gated recurrent unit, long short-term memory, or 

recurrent neural network correlates to an output generated at the same time step. Although there isn't always a 

link between each input and each output, in many real-world situations it is requiredto output a sequence given 

an input series of varying length. The sequence-to-sequence mapping models were addressed by the Encoder-

Decoder model for Recurrent Neural Networks. An encoder-decoder receives a series of data as input and 

outputs the most likely following sequence. Two sub-models make up the model; the decoder, which is in 

charge of moving through the output time steps while reading from the context vector, and the encoder, which is 

responsible for encoding the entire sequence into a fixed length vector called a context vector. 

The encoder is made up of a stack composed of multiple recurrent units, which can be GRU cells, LSTM cells, 

or basic RNNs. Each unit receives a single input sequence element, gathers data from that element, and 

propagates it to subsequent elements. The function of the selected recurrent unit is used to calculate the hidden 

state vector h(t). The input vector x(t)and the prior hidden state h(t − 1) are both subjected to the function with 

the proper weights: 

h(t) = f(Wh(t − 1) + Ux(t)) Eq. 1 

h(t) encompasses all essential information encoded from the previous inputs and hidden representation. The 

context vector, which serves as the starting hidden state for the decoder, is the resultant hidden state obtained 

from the encoder of the model. In order to aid the decoder in producing precise forecasts, it incorporates the 

information for all input segments.The decoder is made up of an array made up of recurrent units. A hidden state 

s(t − 1) generated by the preceding unit is accepted by each recurrent unit, which then generates an output y(t) 
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and a hidden state s(t) of its own.The function of the selected recurrent unit is used to calculate the hidden state 

s(t): 

s(t) = f(Wh(t − 1)) Eq. 2 

A probability vector is produced by computing the output y(t) of the softmax function utilising the hidden state 

at the present time step s(t) and the appropriate weight: 

ŷ(t) = softmax(Vs(t)) Eq. 3 

Since the inputs and outputs have no association and their lengths might vary, this model's strength resides in its 

ability to map sequences of various lengths to one another. As a result, an entirely new set of issues can now be 

resolved utilizing such architecture which is shown in Fig. 1.When the sequence length increases, it becomes 

very difficult to condense a long sequence into one vector, and the model frequently forgets the early parts of 

the input sequence when analyzing the latter parts. This strategy works well for short sequences. This explains 

why numerous investigations demonstrate that as sequence size increases, this model performs worse. 

 

Figure 1 Schematic view of Encoder-Decoder Architecture [5] 

3.1 Attention Mechanism 

The Encoder-Decoder Model was developed to perform better on extended input sequences, and the Attention 

Mechanism is one of the fundamental frontiers in Deep Learning. The fundamental goal is to enable the decoder 

to access encoder data selectively when decoding. This is accomplished by creating a unique context vector for 

each time step of the decoder, computing it in function of the most recent hidden state and of all the hidden 

states of the encoder, and assigning trainable weights to each of them (shown in Fig. 2).  

 

Figure 2 Schematic view of Encoder-Decoder Architecture with Attention [5] 
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In this way, the attention mechanism provides the various input sequence components varying degrees of 

priority while paying closer attention to the inputs that are more pertinent.The fundamental distinction between 

the Attention mechanism and the Encoder-Decoder model is the computation of a unique context vector c(t) for 

each decoder time step t. 

These steps were followed to determine the context vector c(t) for time step t. First, the so-called alignment 

scores e(j, t) are calculated with the following weighted sum for each combination of time steps j of the encoder 

and t of the decoder: 

e(j, t) =  Va tanh(Uas(t − 1) + Wah(j)) Eq. 4 

Wa, Ua, and Va are trainable weights in this equation that are referred to as attention weights. The hidden states 

of an encoder are related with the weights Wa, those of a decoder are associated with the weights Ua, and the 

function used for calculating the alignment score is defined by the weights Va.The scores e(j, t) are normalised 

using the softmax function over the encoder time steps j to provide the attention weights (j, t) for each time step 

t: 

 

α(j, t) =  
exp (e(j, t))

∑ exp (e(j, t))M
j=1

 
Eq. 5 

 

The relevance of the input from time step j for decoding the output from time step t is captured by the attention 

weight (j, t). The weighted total of all the encoder's hidden values derived using the attention weights is the 

context vector, or c(t): 

c(t) =  ∑ α(j, t)h(j)

T

j=1

 

Eq. 6 

By using this context vector, it is possible to focus more on the inputs in the input sequence that are more 

pertinent. 

3.1.1 Decoder 

The decoder is now given the context vector c(t), and it determines the probability distribution of the following 

output. Each time step in the input is subject to this decoding operation. Then, using the context vector c(t), the 

hidden state s(t − 1) and output y(t − 1) from the previous time step as inputs, the recurrent unit function is 

used to compute the current hidden state s(t): 

s(t) = f(s(t − 1), ŷ(t − 1), c(t)) Eq. 7 

As a result, the model may determine correlations between various input sequence components and associated 

output sequence components utilizing this approach.The output of the decoder is determined for each time step 

using the weighted hidden state and the softmax function: 

ŷ(t) = softmax(Vs(t)) Eq. 8 

Even in the midst of lengthy input sequences, the attention mechanism produces positive consequences. The 

advantage of the attention mechanism is that it is more interpretablethan other Deep Learning models. 

Additionally, the attention mechanism will produce excellent results in time series analysis since it enables 

recall of every element in the input sequence and the ability to identify the elements that are most important 

when constructing a response. 
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4. Methodology 

 

The overall process of constructing a predictive model for time series data is presented in Fig. 4. Before building 

a model the data samples are preprocessed to handle missing values and label values of combine wind direction 

attribute. The missing values are imputed using a linear interpolation technique. By joining dots along a straight 

line in ascending order, linear interpolation refers to guessing a missing value. In the same ascending sequence 

as the preceding values, it guesses the unknown value. The most common method used in numerous researches 

is interpolation when imputing missing values with the average. When working with time-series data, 

interpolation is frequently employed as missing values are to be filled with preceding one or two values. The z-

score method is used to standardize the data. It uses z-score normalization and min-max normalization, the two 

most used scale normalizing techniques. The most common and accurate way to represent the original raw data 

is by Z-score normalization when the data fits into a normal distribution. Each data point is converted into a 

positive or negative value that indicates how many standard deviations away from the mean it is as part of the Z-

score normalization procedure.  

 

 

 

 

 

 

 

 

Figure 4 Block Diagram of time series analysis process 

Algorithm: Model Training and Testing LSTM 

Input: Data (PM2.5), Features (Univariate/ Multivariate) 

Output: Evaluation metrics of the predicted data 

Data split : 75% training + validation and 25% test data 

#Normalization 

1: object1 ← Z-scoreScaler() 

2: object2 ← Z-scoreScaler() 

3: Data2 ← object1.fittransform(Data) 

4: Features2 ← object2.fit transform(Features) 

#Train and Validation 

5: count ← length(Data2) ∗ 0.75 

6: X ← Data2(0 : count) 

7: V ← X ∗ 0.20 

8: X1 ← X − V 

9: Z ← Features2(0 : count) 
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10: v ← Z ∗ 0.20 

11: Z1 ← Z − v 

#Data for Evaluation 

12: x ← Data(count : ) 

13: z ← Features(count : ) 

#Model_Hyperparameters 

14: epochs ← [100,200,300, 400, 500] 

15: activation ← [tanh, relu] 

#Training LSTM 

16: for each i in activation do 

17:   model ← Sequential() 

18:   model.add(LSTM(64), activation = i) 

19:   model.add(Dense(1)) 

20:   model.compile(loss = mae, optimizer = adam) 

21:   for each j in epochs do 

22:     model.fit(Z1, X1, validation = (v, V ), epochs = j) 

23:     forecast ← model.predict(z) 

24:     forecast ← object1.inverse transform(forecast) 

25:     return rmse, mae, mape, rrse 

26:   end for 

27: end for 

To check for underfitting and overfitting, the LSTM RNN with and without attention was trained independently 

for various numbers of epochs. The 'tanh' and 'relu' activation function for LSTM was used to test for the 

nonlinearity of 'relu' and to enhance the model. It caused the construction of two loops, adding up to 10 different 

LSTM models. The 'adam' optimizer was used to train the model. In place of the conventional stochastic 

gradient descent method, Adam is an optimization technique that may be used to iteratively update network 

weights depending on training data. Adam additionally uses the average of the second moments of the gradients, 

as opposed to adjusting the parameter learning rates based on the average first moment as in RMSProp. 

Table. 1 Model Layer and Hyperparameter Details 

Hyperparameter Value 

No. of LSTM layers 02 

No of LSTM Units 32 and 64 

Size of Fully connected layer 32 

No of Epochs 100, 200, 300,400, and 500 

Activation Function Tanh and ReLu 

Optimizer ADAM 
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Learning Rate 0.001 

Dropout rate 0.15 

Momentum 0.9 

Batch size 64 

 

This research utilizes a model with two LSTM layer each consisting of 32 and 64 LSTM units respectively 

followed by a fully connected layer for prediction. Model prediction performance was evaluated using the 

RMSE, MAPE, and MAE scores. The mean of absolute error (MAE) is known as MAE. The fact that MAE 

estimates mistakes on a comparable scale suggests that it considers both large and small errors equally. To 

properly investigate the forecasts, it is not enough. MAPE Mean Absolute Percentage Error, a type of 

normalized absolute error, enables comparison of mistakes across data sets with different sizes. MAPE 

processes and averages each piece of data, which helps it identify more errors and outliers. Additionally, since 

the estimation of the actual data will be less than the anticipated data, it is beneficial to penalize negative 

mistakes. However, because the errors are squared, the RMSE Root Mean Square Error is useful for punishing 

greater mistakes because larger values are often given more weight. 

Dataset Description 

Beijing Multi-Site AirQuality, obtained from the UCI Machine Learning Repository, was the dataset utilized in 

this study [23]. It includes hourly data on air pollution collected from air-quality monitoring locations (stations) 

between January 1st, 2010, and December 31st, 2014. There are 7 climatic and meteorological features in it. 

Particulate matter (PM2.5) pollution is the key predictor variable. As an example the trend and seasonality in the 

time series data is shown in Fig. 3 as series plot. The different important attributes present in the dataset are 

listed below; 

▪ Dew Point in in °C Td 

▪ Temperature in °C 

▪ Pressure in kPa 

▪ Combined wind direction – categorical value 

▪ Cumulated wind speed in km/hr 

▪ Cumulated hours of snow in hrs 

▪ Cumulated hours of rain in hrs 

 

Figure 3 Seasonality and Trend in PM 2.5 data 2010 

5. Experiments and Results 

In this experiment, LSTM model was assessed under different scenario with and without attention mechanism; 

training with single attribute and multiple attribute to evaluate the performance of the models for the time series 

prediction task. Dew, temperature, atmospheric pressure, wind direction, wind speed, snow, and rainfall are the 
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different attributes used in the prediction of air pollution (PM 2.5) level. The Fig. 5 presents the correlation of 

different attributes used for building the prediction model. The plot shows that there is a higher level of 

correlation between the PM 2.5 level and dew point. The other attributes has lower correlation with the level of 

air pollutant. Hence during the model training in univariate mode, dew point is used and in multi variate model 

all the attributes are used.  

 

Figure 5 Correlation plot of attributes used in prediction 

The deep learning based model when trained with attention mechanism outperformed the other models in terms 

of mean absolute percentage error. At the same time, LSTM model trained in univariate mode has the highest 

error in all assessment metrics compared with other models. The MAPE value is highest for LSTM univariate 

model, which is 34.98. Though there is a lower correlation levels between the PM 2.5 and other attributes, the 

model showed better performance when trained with multiple attributes. It shows that the attention mechanism 

can, in certain cases, increase the prediction accuracy by adaptively choosing the most pertinent input features. 

The model performance under different scenario is presented in Table 2. 

Table. 2 Performance metrics values of model under different scenario 

Model RMSE MAE MAPE 

LSTM Univariate 21.02 14.56 34.98 

LSTM Multivariate 19.16 12.53 32.56 

LSTM Univariate + Attention 19.85 13.12 33.08 

LSTM Multivariate + Attention 17.65 10.64 30.45 

 

Even though it has been demonstrated that LSTM with attention produces the best outcomes, it is crucial to 

understand which activation function was more effective at predicting. Table 3 lists the average outcomes for 

the 'tanh' and'relu' activation functions that the LSTM employed to anticipate PM2.5 values across all scenarios. 

The findings unambiguously show that LSTM performance increased with relu's nonlinearity [24]. 
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Table. 3 Performance metrics values of model under different activation function 

Model RMSE MAE MAPE 

Tanh 22.02 15.16 28.54 

ReLu 20.18 12.65 24.25 

 

The graph presented in the Fig. 6 shows the correlation between the actual and the predicted air pollution levels 

using a LSTM model with attention mechanism. The model is capable of capturing the trend and seasonality 

pattern in the time series data with predicted values slightly deviating from the actual values of the air pollutant.  

 

Figure 6 Result of prediction using LSTM with Attention Mechanism 

6. Conclusion 

The most widely used Deep Learning method for time series forecasting is recurrent neural networks since it 

enables accurate predictions on time series in a variety of scenarios. When used on lengthy sequences, RNNs 

have the vanishing gradient issue, which is their biggest drawback. The vanishing gradient issue with RNNs was 

addressed in this work using LSTM, which uses gates to control the information flow across the sequence chain. 

Using a separate context vector for each time step, the Attention mechanism is an extension of the Encoder-

Decoder model that was used to address the Encoder-Decoder model's performance degradation in the presence 

of extended sequences. The features that are useful for predicting are selected using the attention weights on 

rows. It captures temporal information since the context vector is now a weighted total of the row vectors that 

hold the data over several time steps. This makes it easier to choose the relevant features from among the 

multivariate time series data to predict the respective target time series feature, PM 2.5 level. The techniques 

used produced positive outcomes. It does, however, limit our analysis to the model's sufficiency, which may be 

further enhanced by taking into account an ensemble of other forecast models. By taking feature engineering 

and better hyperparameter optimization into consideration, which will be a part of the future study, the obtained 

prediction results can be improved. 
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