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Abstract  

To develop a crop recommendation system using soil nutrient data, you'll need a dataset containing details on soil 

nutrients and the crops that thrive in particular soil conditions. While I can't supply a specific dataset, I can offer 

guidance on the types of data you should seek or gather for building such a system. Machine learning, a subset of 

artificial intelligence (AI) and computer science, centers on harnessing data and algorithms to replicate human 

learning processes, steadily enhancing its precision over time. This paper considers crop recommender dataset 

with soil nutrients-related dataset like N, P, K, ph, EC, S, Cu, Fe, Mn, Zn, B, label. The machine learning 

approaches are used to analyze and predict the dataset using Logistic, Multilayer Perceptron, Simple Logistic, 

Hoeffding Tree, random forest, random tree, and REP tree. Numerical illustrations are provided to prove the 

proposed results with test statistics or accuracy parameters.  

Keywords: Machine learning, crop recommender dataset with soil nutrients, decision tree, correlation coefficient, 

and test statistics. 

1. Introduction and Literature Review  

A successful crop recommendation system necessitates ongoing fine-tuning and adjustment to fit specific local 

circumstances. Its effectiveness is intrinsically linked to the excellence and appropriateness of the training data 

and the resilience of the employed machine learning models. 

Data mining finds application in various domains, such as customer relationship management, fraud detection, 

market basket analysis, recommendation systems, medical diagnosis, and scientific research, among numerous 

others. Its utilization empowers organizations to make data-informed decisions, recognize trends, and unearth 

valuable insights from extensive datasets. Machine learning finds extensive use in diverse domains, such as natural 

language processing, image and speech recognition, healthcare, finance, autonomous vehicles, and more. Its 

versatile applications are expanding, presenting opportunities to automate processes, extract insights from data, 

and enhance decision-making within intricate, data-driven contexts. 

A system for predicting crop yield based on historical data. We accomplish this by employing machine learning 

algorithms such as Support Vector Machine and Random Forest on agricultural data. Additionally, we offer 

recommendations for suitable fertilizers tailored to specific crop types. The primary focus of this study is the 

creation of a predictive model that can be applied for future crop yield forecasts. It also provides a concise analysis 

of crop yield prediction through machine learning techniques [1]. 
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Machine learning is harnessed to predict the yields of four widely cultivated crops throughout India. Once the 

crop yield is accurately predicted for specific locations, it enables the precise application of fertilizers based on 

the anticipated crop and soil requirements. We utilize machine learning methods to develop a trained model that 

identifies patterns in data for crop prediction. The study concentrates on predicting the yields of four of the most 

commonly cultivated crops in India: Maize, Potatoes, Rice (Paddy), and Wheat [2]. 

An application of machine learning for the classification of soil into hydrologic groups. By utilizing attributes 

such as percentages of sand, silt, clay, and the value of saturated hydraulic conductivity, machine learning models 

are trained to classify soil into four hydrologic groups. The results of this classification, achieved through 

algorithms such as k-Nearest Neighbors, Support Vector Machine with Gaussian Kernel, Decision Trees, 

Classification Bagged Ensembles, and TreeBagger (Random Forest), are compared with estimation based on soil 

texture. The performance of these models is assessed using various metrics. Notably, k-Nearest Neighbors, 

Decision Trees, and TreeBagger performed better than Support Vector Machine with Gaussian Kernel and 

Classification Bagged Ensemble. Among the four hydrologic groups, it was observed that group B had the highest 

false positive rate [3]. 

The hypothesis that a machine learning approach enhances the accuracy of soil properties prediction. The study 

presents multiple research findings and a comparison of six commonly used techniques: Random Forest, Decision 

Tree, Naïve Bayes, Support Vector Machine, Least-Square Support Vector Machine, and Artificial Neural 

Network. It demonstrates that the most accurate predictions are not always achieved with the most common and 

complex methods. The choice of nutrient characterization category is also explored, indicating better prediction 

with a multi-component strategy. Additionally, the study investigates the influence of category levels and 

compares soil from a local farm with soil from different locations in Slovenia. Finally, the impact of principal 

component analysis on machine learning performance is validated using various numbers of principal components 

[4]. 

A model to assess soil fertility, the viability of sowing crop seeds, and predicting crop yields based on various soil 

features. Using machine learning algorithms such as Support Vector Machine (SVM), Random Forest, Naive 

Bayes, Linear Regression, Multilayer Perceptron (MLP), and Artificial Neural Networks (ANN), the study focuses 

on soil classification and crop yield prediction. Test results demonstrate that the proposed ANN method, which 

follows a deep learning architecture, achieves higher accuracy than existing methods [5]. 

Data mining is a valuable tool for uncovering previously unknown information within large existing databases. In 

this study, a weather dataset is used to predict whether conditions are conducive to playing golf. Seven 

classification algorithms, including J48, Random Tree (RT), Decision Stump (DS), Logistic Model Tree (LMT), 

Hoeffding Tree (HT), Reduce Error Pruning (REP), and Random Forest (RF), are employed to measure accuracy. 

Among these algorithms, the Random Tree algorithm stands out, achieving an accuracy of 85.714% [6]. 

Author suggest investigates parameters in the literature used to define soil characteristics and how they can be 

used as inputs for machine learning algorithms to predict soil fertility. The results indicate that prediction 

techniques can be efficiently applied to optimized soil parameters for more accurate soil fertility predictions with 

minimal human intervention [7]. 

The research's objectives involve conducting a comparative assessment of nutrient management strategies for 

major cereals, considering productivity, profitability, and nutrient use efficiencies. Various methods, including the 

Nutrient Expert (NE) Decision Support System, the APSIM cropping system simulation model, and machine 

learning (ML) approaches, are used for data analysis. The study aims to estimate potential yields and yield gaps 

and understand the causes of yield variability across on-farm trials in Nepal. Machine learning approaches, 

specifically Linear Mixed Effect models (LME) and Random Forest models (RF), are used to analyze data from 

the trials and make predictions [8]. 

A framework for predicting the absolute Crop Growth Rate (CGR) in hydroponic tomato crops using machine 

learning techniques. Input variables such as Electric conductivity (EC) limit, Nutrient solution (NS), ion 

concentration uptake, and dry weight matter of the fruits contribute to the CGR. The study explores the dynamics 
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of nutrient ion uptake and its impact on absolute growth, aiding in determining essential variables affecting CGR 

[9]. 

The paper proposes the use of stochastic modeling and data mining approaches to assess groundwater levels, 

rainfall, population, food grains, and enterprises data. It introduces a novel data assimilation analysis to predict 

groundwater levels effectively. The experimental results demonstrate the effectiveness of this approach [10] and 

[11]. 

The research uses chronic disease data to conduct assessments and training for five classification algorithms. The 

paper provides an analysis of the accuracy and performance of these algorithms, highlighting the M5P decision 

tree approach as the best-performing algorithm among the five tested [12].  

2. Backgrounds and Methodologies 

A data mining decision tree is a widely used machine learning technique for classification and regression tasks. It 

visually depicts a sequence of decisions and their possible outcomes in a tree-like structure. Each internal node 

represents a decision based on a specific feature, and each branch corresponds to the potential result of that 

decision. The tree's leaf nodes represent the final decision or the predicted outcome [13].  

2.1 Logistic Regression  

Logistic Regression is a statistical method used for binary classification, which means it's used to predict the 

probability of an observation belonging to one of two classes (usually labeled as 0 and 1). It's a type of regression 

analysis that's particularly suited for categorical outcome variables. The formula for logistic regression involves 

the logistic function (also known as the sigmoid function) to transform the linear combination of input features 

into a value between 0 and 1, representing the predicted probability of the positive class. The formula is as follows: 

P (Y =
1

X
) =

1

1 + e−(β0+β1X1+β2X2+⋯+βnXn)
 

P(Y=1/X) is the probability that the dependent variable Y is the binary outcome equal to 1 given the input features 

X1 + X2 + ⋯ + Xn. e is the base of the natural logarithm. β0 + β1 + ⋯ + βn are the coefficients that need to be 

estimated from the training data. X1 + X2 + ⋯ + Xn. are the input features. Logistic regression is often 

implemented using optimization algorithms to find the best-fitting coefficients that minimize the prediction error. 

2.2 Multilayer Perception  

A Multilayer Perceptron (MLP) is an artificial neural network consisting of multiple layers of interconnected 

nodes or neurons. It's a fundamental architecture in deep learning and is used for various tasks, including 

classification, regression, and more complex tasks like image recognition and natural language processing. The 

architecture of an MLP typically includes three types of layers: 

i.Input Layer: This layer consists of neurons receiving input data. Each neuron corresponds to a feature in the 

input data, and the values of these neurons pass through the network. 

ii.Hidden Layers: These layers come after the input layer and precede the output layer. They are called "hidden" 

because their activations are not directly observed in the final output.  

iii.Output Layer: This layer produces the network's final output. The number of neurons in the output layer depends 

on the problem type.  

2.3 Hoeffding Tree 

A Hoeffding Tree, also known as VFDT (Very Fast Decision Tree) or Incremental Decision Tree, is a machine 

learning algorithm designed for online, incremental learning on streaming data. It's beneficial when you have large 

volumes of data that are continuously arriving and you want to update your model in real-time without retraining 

the entire dataset. Here's a simplified overview of how the Hoeffding Tree algorithm works:  

Step 1. Initialization 

Step 2. Data Arrival 
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Step 3. Splitting Nodes  

Step 4. Leaf Node Prediction 

Step 5. Adaptation  

2.4 Random Forest 

Random Forest is a popular machine learning ensemble method for classification and regression tasks. It is an 

extension of decision trees and is known for its high accuracy, robustness, and ability to handle complex datasets. 

Random Forest is widely used in various domains, including data science, machine learning, and pattern 

recognition. The main idea behind Random Forest is to create an ensemble (a collection) of decision trees and 

combine their predictions to make more accurate and stable predictions. The following steps describe what 

Random Forest works like Bootstrap Aggregating (Bagging), Decision Tree Construction and Voting for 

Classification, Averaging for Regression. The steps involved in building a Random Forest are as follows: 

Step 1. Data Bootstrapping 

Step 2. Random Feature Subset Selection 

Step 3. Decision Tree Construction 

Step 4. Ensemble of Decision Trees 

Step 5. Out-of-Bag (OOB) Evaluation 

Step 6. Hyperparameter Tuning (optional) 

2.5 Random Tree 

In machine learning, a Random Tree is a specific type of decision tree variant that introduces randomness during 

construction. Random Trees are similar to traditional decision trees but differ in how they select the splitting 

features and thresholds at each node. Random Trees are commonly used as building blocks in ensemble methods 

like Random Forests. The critical characteristics of Random Trees are as follows Random Feature Subset, Random 

Threshold Selection, No Pruning and Ensemble Methods. Steps involved in Random Tree.  

Step 1. Data Bootstrapping: 

Step 2. Random Subset Selection for Features: 

Step 3. Decision Tree Construction: 

Step 4. Voting (Classification) or Averaging (Regression): 

2.6 REP Tree 

REP (Repeated Incremental Pruning to Produce Error Reduction) Tree is a machine learning algorithm for 

classification and regression tasks. A decision tree-based algorithm constructs a decision tree using incremental 

pruning and error-reduction techniques. The key steps in building a REP Tree are recursive binary splitting, 

pruning, and repeated pruning and error reduction. Below are the steps involved in building a REP Tree. 

Step 1. Recursive Binary Splitting 

Step 2. Pruning 

Step 3. Repeated Pruning and Error Reduction 

Step 4. Model Evaluation 

2.7 Kappa statistic 

The Kappa statistic, also called Cohen's Kappa or simply Kappa, is a statistical metric utilized to assess the level 

of agreement between two or more raters or classifiers when assigning categorical ratings or labels to items. It 

goes beyond considering agreement by chance alone. The Kappa statistic is represented on a scale from -1 to 1. A 

Kappa value of -1 signifies perfect disagreement between the raters or classifiers. A Kappa value of 0 indicates 

agreement that is no better than chance. A Kappa value of 1 implies perfect agreement between the raters or 

classifiers. The calculation of Kappa employs the formula: 
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Kappa =
Po−Pe

1−Pe
     …(1) 

Po =
Number of items with agreement

Total number of items
 

Pe = ∑
Total count in row × Total count in column

Total number of items
 

 

Where, Po denotes the observed agreement, i.e., the proportion of items on which raters or classifiers agree. Pe 

represents the expected agreement, i.e., the agreement expected by chance. 

2.8 Mean Absolute Error 

Mean Absolute Error (MAE) is a metric used to measure the average absolute difference between predicted and 

actual (true) values in a regression problem. It is commonly used to assess the accuracy of a regression model's 

predictions [14]. The formula to calculate Mean Absolute Error (MAE) is as follows: 

MAE = Σ |(Actual Value - Predicted Value)| / n ... (2) 

Where: 

Σ represents the summation symbol, which sums up the values for all data points, | | denotes the absolute value, 

ensuring the differences are positive. In this formula, Actual Value: Refers to the true value of the target variable 

(ground truth) for a specific data point. Predicted Value: Refers to the value predicted by the regression model for 

the same data point. n: Represents the total number of data points in the dataset. 

2.9 Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is a commonly used metric to assess the accuracy of a regression model's 

predictions. It measures the average magnitude of the errors between the predicted and actual (true) values, 

considering both the direction and magnitude of the errors. The formula to calculate Root Mean Squared Error 

(RMSE) is as follows [15]: 

RMSE = √(Σ (Actual Value - Predicted Value)² / n) ... (3) 

Where: 

❖ Σ represents the summation symbol, which sums up the values for all data points. (Actual Value - 

Predicted Value) ² denotes the squared difference between each data point's actual and predicted values. n is the 

total number of data points in the dataset. 

2.10 Relative Absolute Error (RAE) 

Relative Absolute Error (RAE), also known as Mean Absolute Percentage Error (MAPE), is a metric used to 

evaluate the accuracy of predictions in regression tasks. It measures the average percentage difference between 

the absolute and actual (valid) values, providing a relative measure of the prediction errors [16]. The formula to 

calculate Relative Absolute Error (RAE) is as follows: 

RAE = (Σ |Actual Value - Predicted Value| / Σ |Actual Value|) * (100 / n) ... (4) 

Where: 

Σ represents the summation symbol, which sums up the values for all data points. | | denotes the absolute value, 

ensuring the differences are positive. n is the total number of data points in the dataset.  

2.11 Root Relative Squared Error (RRSE) 

"Root Relative Squared Error" is not a standard or widely recognized metric in statistics or machine learning. It 

appears to be a combination of the terms "Root Mean Squared Error (RMSE)" and "Relative Absolute Error 
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(RAE)." It's possible that the time was created or used in a specific context or literature, but it is not a commonly 

used or established metric. For clarity, let's briefly define the two individual metrics mentioned. The formula to 

calculate RMSE is: 

RMSE = √(Σ (Actual Value - Predicted Value)² / n) 

Relative Absolute Error (RAE): Also known as Mean Absolute Percentage Error (MAPE), RAE measures the 

average percentage difference between the absolute errors and the actual (true) values, providing a relative 

measure of the prediction errors. The formula to calculate RAE is: 

RAE = (Σ |Actual Value - Predicted Value| / Σ |Actual Value|) * (100 / n) 

As there is no established metric called "Root Relative Squared Error," it's crucial to use standard evaluation 

metrics such as RMSE, RAE (MAPE), or others that are well-known and have clear interpretations in the context 

of your specific problem.  

Numerical Illustrations  

The corresponding dataset was collected from the open-source Kaggle data repository. The crop recommender 

and soil nutrients dataset includes 12 parameters with data categories like N, P, K, ph, EC, S, Cu, Fe, Mn, Zn, B, 

and label [17]. A detailed description of the parameters is mentioned in the following Table 1.  

Table 1. Crop recommender dataset with soil nutrients (sample dataset) 

N P K ph EC S Cu Fe Mn Zn B label 

143 69 217 5.90 0.58 0.23 10.20 116.35 59.96 54.85 21.29 pomegranate 

170 36 216 5.90 0.15 0.28 15.69 114.20 56.87 31.28 28.62 pomegranate 

158 66 219 6.80 0.34 0.20 15.29 65.87 51.81 57.12 27.59 pomegranate 

133 45 207 6.40 0.94 0.21 8.48 103.10 43.81 68.50 47.29 Pomegranate 

98 85 191 6.00 1.45 0.28 14.47 179.63 85.79 47.76 65.83 mango 

95 87 141 4.80 0.88 0.27 18.63 71.11 64.77 20.86 58.64 mango 

107 79 127 5.70 0.75 0.25 9.46 80.98 89.12 29.14 60.91 mango 

123 74 134 6.00 0.83 0.31 19.90 140.22 99.24 23.29 70.52 mango 

174 79 300 7.70 1.65 0.02 12.23 163.19 65.96 18.22 7.49 ragi 

147 96 346 6.30 0.85 0.01 15.11 206.88 60.28 20.08 4.32 ragi 

164 96 242 6.20 0.78 0.02 18.33 76.05 55.59 18.42 6.88 ragi 

179 86 301 7.70 0.84 0.02 13.76 248.54 59.01 26.88 8.39 ragi 

103 35 69 5.60 1.47 0.12 19.00 38.50 184.24 37.92 11.01 potato 

72 32 196 6.00 1.92 0.09 29.00 40.40 116.88 23.33 13.25 potato 

177 42 171 5.70 2.23 0.11 17.00 39.70 254.08 41.96 16.10 potato 

83 31 173 6.00 2.32 0.10 14.00 41.60 147.19 42.60 17.61 potato 

165 57 53 5.10 1.61 0.11 16.00 41.50 175.07 48.55 19.36 potato 
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Table 2: Machine Learning Models with Correctly and Incorrectly Classified Instances 

Function and Trees 

Correctly  

Classified  

Instances 

Incorrectly  

Classified  

Instances 

Logistic 591.0000 29.0000 

Multilayer Perceptron 590.0000 30.0000 

Simple Logistic 600.0000 20.0000 

Hoeffding Tree 601.0000 19.0000 

Random Forest 600.0000 20.0000 

Random Tree 576.0000 44.0000 

REP Tree 595.0000 25.0000 

 

Table 3: Machine Learning Models with Correctly and Incorrectly Classified Instances (%) 

Function and Trees 

Correctly  

Classified  

Instances (%) 

Incorrectly  

Classified  

Instances (%) 

Logistic 95.3226 4.6774 

Multilayer Perceptron 95.1613 4.8387 

Simple Logistic 96.7742 3.2258 

Hoeffding Tree 96.9355 3.0645 

Random Forest 96.7742 3.2258 

Random Tree 92.9032 7.0968 

REP Tree 95.9677 4.0323 

 

Table 4: Machine Learning Models with Kappa statistic 

Function and Trees Kappa statistic 

Logistic 0.9439 

Multilayer Perceptron 0.9419 

Simple Logistic 0.9613 

Hoeffding Tree 0.9632 

Random Forest 0.9613 

Random Tree 0.9148 

REP Tree 0.9516 
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Table 5: Machine Learning Models with MAE and RMSE 

Function and Trees MAE RMSE 

Logistic 0.0261 0.1188 

Multilayer Perceptron 0.0226 0.1174 

Simple Logistic 0.0365 0.1151 

Hoeffding Tree 0.0106 0.0993 

Random Forest 0.0255 0.1055 

Random Tree 0.0237 0.1538 

REP Tree 0.0228 0.1145 

 

Table 6: Machine Learning Models with RAE and RRSError (%) 

Function and Trees RAE (%) RRSE (%) 

Logistic 9.3928 31.8846 

Multilayer Perceptron 8.1319 31.5085 

Simple Logistic 13.1465 30.8742 

Hoeffding Tree 3.8121 26.6572 

Random Forest 9.1955 28.3209 

Random Tree 8.5161 41.2692 

REP Tree 8.1920 30.7324 

 

Table 7: Machine Learning Models with Time Taken to Build Model (Seconds) 

Function and Trees 

Time  

taken  

(seconds) 

Logistic 0.7600 

Multilayer Perceptron 1.7100 

Simple Logistic 0.8200 

Hoeffding Tree 0.1000 

Random Forest 0.4700 

Random Tree 0.0200 

REP Tree 0.0300 
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Figure 1. Machine Learning Models with Correctly Classified Instances (%) and Incorrectly Classified 

Instances (%) 

 

 

Figure 2. Machine Learning Models with Kappa statistic 

 

 

Figure 3. Machine Learning Models with MAE and RMSE 
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Figure 4. Machine Learning Models with RAE (%) and RRSE (%) 

 

Figure 5. Machine Learning Models and its Time Taken to Build the Model (Seconds) 
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approaches demonstrate kappa values close to 0.95, indicating superior reliability. Visual representations are 

included in Figure 3 to support these findings. 

Moving forward, the Mean Absolute Error (MAE), defined by Equation 2, is utilized to assess model errors, 

leveraging seven different machine learning algorithms. All seven approaches exhibit exceptional error 

performance, with MAE values approaching 0. The Root Mean Square Error (RMSE), as described in Equation 

3, measures the disparity between predicted and actual values. Like MAE, all machine learning approaches deliver 

a commendable error performance, with RMSE values close to 0. Corresponding numerical data is displayed in 

Table 5 and Figure 3. 

To evaluate the accuracy, the Relative Absolute Error (RAE), as per Equation 4, is employed to compare predicted 

and actual values in percentage terms. Seven ML classification algorithms are considered in this context. Notably, 

logistic regression returns the highest error rate, while the remaining six ML approaches exhibit minimal error. 

This trend is reflected in Relative Root Mean Square Error (RRSE) as well, with analogous numerical 

representations provided in Table 6 and Figure 4. 

Time efficiency is a critical factor in machine learning approaches. The data presented in Table 7 and Figure 5 

indicate that Multilayer Perceptron require the maximum time for problem-solving. Conversely, Random tree, 

REP tree, Hoeffding tree, and Random Forests are the most time-efficient for model development. Furthermore, 

logistic regression demonstrates a minimal time requirement for model generation. Similar trends are observed in 

the visualizations. 

4. Conclusion and further research  

Considering the constraints of the model, it is important to acknowledge potential biases in the dataset, as well as 

factors specific to machine learning algorithms that may contribute to variations in performance. Additionally, 

computational constraints might have influenced the model development. To enhance this research, it would be 

beneficial to explore additional data sources to validate and augment the findings. Investigating more advanced 

algorithms and fine-tuning hyperparameters could further improve model performance. Additionally, addressing 

potential dataset biases and working to reduce computational constraints would be pivotal for refining the model. 

This research holds significant potential for the Department of Agriculture and other stakeholders aiming to 

optimize the agriculture sector through micro and macronutrient level insights. 
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