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Abstract:- The exponential increase in toxic speech has significantly jeopardized the creation of an inclusive
environment for all individuals. Though attempts have been taken to detect and restrict such information online,
this is still difficult to discover. Deep learning-based methods have pioneered toxic speech detection. The context-
dependent characteristics of poisonous speech, user intention, unwanted biases, etc., render this procedure
overcritical. We provide a hierarchical architecture of automated hazardous speech detection difficulties in this
study to fully examine them. We examine machine learning and deep learning toxic speech recognition
difficulties. At the top, we differentiate data, model, and human issues. We analyze each hierarchical level in
detail using examples. This poll will help toxic speech detection researchers create better solutions. This survey
paper presents an extensive literature review of deep learning and machine learning methods towards the
automatic identification of toxic speech, considering recent technological advancements. A multitude of
algorithms and architectures have been evaluated in this context. This paper will assess the positive and negative
aspects of various recognition and categorization models regarding speech expressed vocally in multilingual
contexts. Additionally, there will be an analysis of occurrences of code-mixing. To demonstrate the impact of
these techniques on the overall effectiveness of the model, additional analysis will be performed on the methods
employed in feature selection during toxic speech detection.
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1. Introduction

The exponential proliferation of communication platforms has had various beneficial benefits on people lives.
The increasing popularity of digital communication among the general populace is attributed to people expressing
their ideas and opinions without hesitation. All individuals have the right to articulate their thoughts and feelings
without the apprehension of retaliation. This privilege is now used to justify discriminatory behaviors and attacks,
both physical and verbal, against others under the guise of free speech. This kind of discrimination is termed toxic
speech. Toxic speech[1] is a communicative expression of hostility directed against a person or group based on
their race, color, faith, gender, nationality, disability, or sexual orientation. This is only one definition of toxic
speech; yet, it is a generally acknowledged and often used one. This often results in the propagation of violent and
detrimental material, regardless of whether it was shared with purpose. A particular vocabulary is used to abuse
individuals or organizations based on their unique attributes, such as gender, race, national origin, disability, and
similar factors. Toxic speech refers to this kind of rhetoric. The changeable nature of the material complicates
the regulation of its transmission on the internet. Moreover, the mental and physical health of the one addressed
may be profoundly affected by a single hostile remark. Belief in the liberty of speech within the internet media
landscape has deteriorated over time, complicating the ability to interact freely with all persons [2]. Consequently,
it is essential to preemptively discover a resolution to this problem.

The principal obstacle to restricting harmful content on the internet is the lack of a universally accepted definition
of hate speech. While people have a basic understanding of toxic speech, that does not equip them with the
requisite knowledge to fully comprehend it. Furthermore, many limitations and rules have been instituted by social
network platforms, including Twitter, YouTube, among Facebook, to govern its distribution on their sites [24].
Nonetheless, the immense volume of data collected poses management challenges and requires considerable
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focus. The ratio of hostile material on the internet is much lower than that of positive or neutral content [15],
which therefore biases toxic speech identification algorithms in different ways. We want to examine and clarify
these issues comprehensively in this study.
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Figure 1: Framework of Proposed Toxic System based on voice[18]
The figure 1 illustrates the overall framework for toxic voice identification. Audio samples from a foul-language
training dataset are processed with feature extraction and passed through an end-to-end CNN architecture
comprising multiple convolutional and pooling layers for classification. Once trained, the model performs
automated censorship by analyzing audio from test videos. The system outputs time-stamped segments labeled as
normal or containing toxic/foul speech.
Concept behind toxic words identification
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Figure 2: Framework of Proposed Toxic System based on words[30]

The figure 2 illustrates a three-stage audio processing pipeline used for detecting toxic or abusive words in
speech. Training utterances are first encoded to create speaker embeddings that capture important voice
characteristics. The synthesizer then converts the target text into a spectrogram, providing a detailed view of
the speech features. Finally, the vocoder generates the corresponding audio waveform, enabling the system to
analyze and classify the spoken content for toxicity. This paper comprises the following section after
introduction, literature review, comparison with various methods then conclusion.
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2. Literature review

The literature review presented below explores various research on multimodal systems leveraging text, audio,
and video data, also delivering a grounds for understanding current approaches and research trends.

Based on the Text, various authors proposed

Herwanto et al. (2019) worked on developing a toxic speech and abusive language classification model for
Indonesian with the help of deep learning approach. A dataset compiled from three previous studies, including
the tweets from Twitter, Facebook, and YouTube was used by the researchers. The model utilized the fastText
algorithm with a continuous bag-of-words (CBOW) representation and was trained with and without pre-trained
data from Wikipedia. The highest F1-score for binary classification was 0.873 with pre-trained data, 50 epochs,
and no sub-words, whereas the lowest came upto 0.764 without pre-trained data and 5 epochs with sub-words. It
was found that models that used pre-trained vectors from Wiki, outperformed the ones that did not.[3]

Kalaivani et al. (2021) focused on multilingual hate speech and offensive language detection in English, Hindi
(code-mixed), and Marathi. This study was directed to address both binary classification (HOF vs. NOT) and
multi-class classification (HATE, OFFN, PRFN)for all the three languages. The researchers investigated wide
range of approaches, including traditional machine learning models, ULMFiT, and transformer-based
architectures such as BERT, RoBERTa, ALBERT, DistilBERT, and mBERT. Experimental results reflect that
RoBERTa performs best for English Subtask A, BERT works best for English Subtask B, and mBERT does well
for Hindi and Marathi tasks. The system observed macro F1-scores of 0.7919 (English A), 0.6242 (English B),
0.7320 (Hindi A), 0.5110 (Hindi B), and 0.8223 (Marathi A). The results present the effectiveness of multilingual
transformer models for hate speech detection in low-resource and code-mixed languages and also note challenges
related to handling of sarcasm and dataset imbalance.[4]

Soykan et al. (2022) conducted a study on Turkish profanity detection in search engine queries which was a
challenging task particularly due to the agglutinative language structure and the short length queries. They built a
dataset of around 400,000 queries labeled - profane or not profane, with 16.4% of the data categorized as profane.
Several classical machine learning and deep learning methods, some of which being Logistic Regression,
LinearSVC, and transformer-based models like BERT and ELECTRA, were then compared and it was established
that the best performance was achieved using the ELECTRA model, with a score of 0.93 F1. The study also
showed that LinearSVC too performed almost as well with a score of 0.92 F1 score.[5]

Kim et al. (2022)used an Artificial Neural Network (ANN) to conduct a study analyzing the effect of profanity
on sentiment analysis in Korean. They used a movie review dataset called 'NaverSentimentMoviecorpusv 1.0'.
The researchers put two models to training: one that included profanity and the other with profanity removed at
the data preprocessing stage. The model with profanity showed an accuracy of 83.4%, whereas the model with
profanity removed reflected an accuracy of 81.6%. The findings thus suggested that profanity may not always
relate to noise data and in fact in this context, can improve the accuracy of sentiment analysis.[6]

Maity et al. (2023) followed a study focused on detection of toxic speech in Malay language, a low-resource
language with datasets being narrowly available to public. In line with the study, they created a new benchmark
dataset called HateM, consisting over 4,892 manually annotated tweets. A two-channel deep learning model
named XLCaps was developed where One channel used XLNet language model followed by a capsule network,
and the other one used FastText embedding with a Bi-GRU network. As a result of the study, the XLCaps model
outperformed the baseline models, with and overall accuracy of 80.69% and F1 score of 80.41%.[7]

Saleh et al. (2023) took up the challenge to detecting online toxic speech, where coded language is used in order
to avoid detection. The study was meant to probe two approaches for toxic speech detection: First being the
bidirectional LSTM-based deep model with domain-specific word embedding and second being a fine-tuned
BERT language model. A combined dataset from existing toxic speech datasets were used for the purpose which
included Davidson-ICWSM, Waseem-EMNLP, and Waseem-NAACL. These experiments resulted in the Bi-
LSTM model with domain-specific word embeddings achieving a 93% f1-score, while BERT reflecting a score
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0f 96% f1 on the combined balanced dataset. The study thus concluded that even though BERT outperformed in
terms of score, the domain-specific embedding approach came out to be more effective when detecting
intentionally misspelled or coded toxic words.[8]

Omran et al. (2023) conducted a comparative analysis of machine learning algorithms for toxic speech detection
on an English-language Twitter dataset of 24,783 tweets. He aimed at finding simple, efficient, and high-
performing algorithmic combination for real-world deployment. Several models, including SVM, KNN, Random
Forest, Naive Bayes, and Decision Trees were compared by the researchers and it was found that a combination
of Naive Bayes and Decision Trees produces best results, reaching accuracy of 0.887 and an F1-score of 0.885. It
was also noted that while other algorithms like SVM and Logistic Regression performed well, the computational
requirements could prove a challenge for large datasets. The paper also presents a system design for real-time
toxic speech detector which uses visual progress bar and cautionary pop-up message to notify users about the
potentially harmful content before it is posted.[9]

Gutha et al. (2023) did a study focusing on detection of toxic speech in low-resource Indian languages, especially
Bengali, Bodo, and Assamese, as part of the HASOC 2023-Task 4 competition. The researchers used dataset of
tweets and other social media posts for binary classification of content as "toxic and Offensive" (HOF) or "Not
Hate-Offensive" (NOT). The models that were explored included LSTM and BiLSTM together with CNN, and
pre-trained BERT-based models like IndicBERT and MuRIL. It was found that for languages rich in resource,
specialized BERT models were most effective, with IndicBERT achieving an F1 score of 69.726% for Assamese
and Bengali MuRIL achieving 71.955% for Bengali. For low-resource Bodo language, a BILSTM model with an
additional Dense Layer produced best results, an F1 score of 83.513%. The study noted that tailoring NLP
methodologies to specific resources of a language is highly important, and for low-resource languages like Bodo,
neural network-based approaches may prove more effective in comparison to pre-trained BERT models.[10]

Awal et al. (2023) proposed a new framework named HateMAML addressing the issue of multilingual toxic
speech detection in low-resource languages. The model-agnostic meta-learning (MAML)-based approach used a
self-supervision approach to beat data scarcity and enabled quick adaptation to new languages and domains.
Researchers conducted experiments on five datasets across eight low-resource languages. The results reflected
that HateMAML outperformed state-of-the-art fine-tuning baselines by over 3% in cross-domain multilingual
transfer settings. The study resulted in favor of the opinion that meta-training can prove to be an effective
alternative to standard fine-tuning, providing high-end performance by learning a good initial model that adapts
rapidly to new tasks.[11]

Singh et al. (2024) worked on developing an automated framework used to identify toxic speech on social media
in low-resource Indian languages. The researchers proposed a federated learning approach known as MultiFED,
trying to solve the issue of data scarcity and user privacy by training the models on client devices without sharing
sensitive data with a central server. The study used a combined dataset of around 300,000 texts from 13 Indian
languages and English, gathered from platforms such as Sharechat, YouTube, and Facebook. The MultiFED
approach, which used fair client selection and pre-trained models like XLM-ROBERTa and Indic-BERT,
performed better in comparison to state-of-the-art centralized baselines by over 8% in accuracy and 12% in F1-
score. This research also noted that performance of federated learning models is good on diverse datasets and can
be scaled while guarding user privacy.[12]

Abdellaoui et al. (2024) worked on offensive language detection in Moroccan Darija. The researchers created a
dataset of more than 20,000 phrases from social media platforms, and labelled 37.8% of them as offensive. They
fine-tuned various language models on this dataset, concluding that Darija RoOBERTa-based model performed
with 90% accuracy and an F1 score of 85% and proves to be best-prforming. This study also evaluated the
robustness and fairness of this model by using metamorphic testing and adversarial attacks. It was noted that the
model was vulnerable to following attacks: inserting dots (29.4% success rate) and spaces (24.5%), and modifying
characters (18.3%). Fairness tests observed a 7% success rate for the attacks that targeted entities subject to
discrimination, reflecting a bias in some cases. The authors drew a conclusion that it is not sufficient to evaluate
machine learning systems solely on offline metrics like F1 score and accuracy.[13]
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Mnassri et al. (2024) proposed a partially supervised generative adversarial approach to identify multilingual toxic
speech and offensive language. The model, known as SS-GAN-PLM, combines Generative Adversarial Networks
(GANSs) with pretrained language models (PLMs) such as mBERT and XLM-ROBERTa. It used only 20% of the
labeled data from HASOC2019 Indo-European corpora (English, German, and Hindi), and the SS-GAN-mBERT
model outperformed a baseline semi-supervised mBERT model by an average F1 score of 9.23% with an increased
accuracy of 5.75%. This study reflected that this approach is effective in multilingual, zero-shot crosslingual, and
monolingual training scenarios, successfully mitigated the issue of data scarcity in toxic speech detection.[14]

Spiesberger et al. (2025) worked on inspecting abusive speech detection in audio recordings of 10 Indic languages
while using only acoustic and prosodic features. These used the ADIMA dataset, containing 11,775 audio
recordings from real-life conversations on ShareChat. Models were trained in both multilingual and cross-lingual
settings and it was found that it was possible to classify abusive and non-abusive content using only paralinguistic
features. The Random Forest (RF) classifier performed exceptionally well on the extracted EGEMAPS feature
set, achieving Unweighted Average Recall (UAR) scores between 0.70 and 0.84 in multilingual settings, and
between 0.66 and 0.84 in cross-lingual settings. Features related to loudness, mean F1, F2, and F3 amplitude, and
mean spectral flux, were found to be most effective aligning with features of angry speech. The study concluded
that relying on emotional and acoustic cues is a feasible approach for low-resource languages where text-based
methods may not work due to lack of transcribed data or bad quality of audio.[15]
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Based on Audio Video, various authors proposed

Hyder et al. (2017) worked on developing a system for Acoustic Scene Classification (ASC) using CNN-
SuperVector (CNN-SV) approach combining auditory and spectrogram image features. This research used
DCASE 2016 ASC challenge dataset, containing 30-second audio sections from 15 different indoor and outdoor
locations. The researchers compared various features including linear-scaled, log-scaled, and Mel-scaled
spectrograms, and noted that log-scaled and Mel-scaled spectrograms performed best, observing an average
accuracy rate of 80%. The proposed CNN-SV approach, using activations from the final CNN layer to form a
high-dimensional vector for a Probabilistic Linear Discriminant Analysis (PLDA) classifier, performed better than
traditional CNN and GMM-SuperVector systems consistently. A merged score of multiple systems yielded a 7%
improvement relatively in overall accuracy when compared to the baseline CNN system.[16]

Ghaleb et al. (2020) suggested a novel multimodal temporal deep network for enhancement of emotion
recognition from audio-video clips. Two streams of audio-visual networks, connected incrementally via LSTM
cells to model temporal dependencies were used. The method was evaluated on two datasets, CREMA-D and
RAVDESS, achieving state-of-the-art performance on both. On CREMA-D, the model achieved an accuracy of
74.0%, outperforming human perception and other baselines. This study concluded that multimodal perception is
a time function, with emotion recognition rates increasing over the duration of the clip, and that positive emotions
are easier to identify and that too with more accuracy than the negative ones.[17]

Wazir et al. (2020) worked to mitigate the issue of foul language censorship in audio and video content manually,
where possibilities of human error or inefficiency rises. This research suggessted an automated and robust
detection model using deep Convolutional Neural Networks (CNNs) trained on spectrogram images derived from
words that are spoken by an individual. Foul language dataset was gathered with 2-class (Foul vs. Normal) and
10-class annotation issues. Among the models tested, the Resnet50 architecture achieved the best performance,
with low error rate of around 1.24% and high F1-score of 98.54% for the 2-class problem. It was thus noted as a
result of such study that deep CNNs are practical and effective solution for classifying speech spectral images for
censor purposes.[18]

Alcantara et al. (2020) addressed the issues related offensive video detection by making and publishing a dataset
of 400 YouTube videos in Portuguese, named OffVidPT. This dataset includes textual and statistical
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charecteristics such as video descriptions, tags, titles, transcriptions, and view counts. The experiment was carried
out with Classic, Deep Learning, and Transfer Learning models. The research thus reflected that while Deep
Learning classifiers with word embeddings and CNN architectures were found to be performing best on average,
the textual features were also sufficient for detection of offensive videos. All in all, the best result was obtained
as an AUC of 0.78, with an F1 score of 0.74, putting it within the range of close competitions.[19]

Ba Wazir et al. (2021) advanced a deep learning-based system for foul language recognition in speech to help
censor films. The researchers applied two different end-to-end deep neural network (DNN) architectures: a
Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) with Long Short-Term Memory
(LSTM) cells. They produced a novel foul language dataset called the MMUTM foul language dataset, containing
nine indecent words and samples of normal conversations. The dataset was labeled manually and exaggerated to
increase its size and robustness to noise. The CNN model outperformed the RNN model in identifying pre-
segmented foul language samples. The suggested CNN model observed a 96.92% F1-score for the foul class and
a 98.39% F1-score for the normal class in a two-class problem. It also performed better than state-of-the-art pre-
trained neural networks, reflecting a 1.91% improvement in F1-score and a 1.57% reduction in False Negative
Rate (FNR) when compared to the best baseline model. The study put focus on the fact that the model is
lightweight, with only 57k parameters. This makes it suitable for real-time applications with nominal
computational cost.[20]

A. Chaudbhari et al. (2021) advanced a system to detect indecency and accordingly remove it from videos using
machine learning. The approach is carried out in two staged pipeline: an automatic speech recognition (ASR)
system to transcribe audio to text, followed by a text-based profanity detection model. A dataset of 50 videos
collected from various social media platforms, totaling approximately 29 minutes of footage was produced. The
system uses a Speech-to-Text library for transcription and verifies the output text against an indecency check-list.
The model observed an accuracy rate of around 85.03% on their dataset. This research concluded a practical and
efficient method for automated content moderation, aimed at reducing the need for manual screening.[21]

Xia et al. (2022) worked on Speech Emotion Recognition (SER) which used a Deep Convolutional Neural
Network (DCNN) with a data augmentation technique known as Random Circular Shift (RCS). The process
involved using a time-frequency representation of the speech signal as input to the DCNN, along with its delta
and delta-delta features. They experimented with DCNN architectures like Alexnet, Resnet-152, and Inception-
v3, trained already on the ImageNet dataset. The study used two publicly available datasets: eNTERFACEOQS5 and
EMO-DB. The results reflected that Alexnet, when combined with RCS, observed the highest accuracy rate of
91.25% on the eNTERFACEOQS dataset. This approach outperformed a more complex state-of-the-art method
based on Discriminant Temporal Pyramid Matching (DCNN-DTPM) on the same dataset, which achieved an
accuracy rate of 79.25% in its turn. However, their model had a little lower accuracy rate of 81.82% on the EMO-
DB dataset compared to DCNN-DTPM's rate of 87.31%. It was concluded from this study that RCS significantly
improves classification results and that for audio classification using time-frequency representations, Alexnet is a
better choice.[22]

Thakran et al. (2023) put their focus on audio abuse detection in a multilingual social media context, with an
assumption that abusive behavior produces distinct acoustic cues which may be detected without transcription. A
framework called ACMAD using two modalities: the underlying emotions expressed and the language features
of the audio, was used by the researchers. They used the ADIMA benchmark dataset, containing an audio of 65
hours from ShareChat in 10 Indic languages. This ACMAD approach observed a state-of-the-art test accuracy
rate of 96% with an F1 score of 0.9579 on the test set, performing better than existing models by a well enough
margin. It was concluded from the study that using large pre-trained acoustic or language models alone would not
be sufficient for this task. Instead, the success of ACMAD is aligned with its careful selection of models for each
modality, such as the IndicWav2Vec-Base model for language features and the XLS-R 300M model fine-tuned
on RAVDESS for emotion features.[23]

Garg et al. (2024) comprehensively review the current state of Hate Speech Detection (HSD) using Large
Language Models (LLMs). The paper highlights the evolution of HSD from traditional machine learning to deep
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learning and, most recently, to LLMs. Several LLM-based HSD techniques, including fine-tuning, zero-shot and
few-shot learning, and in-context learning, were examined. This review covers wide range of datasets used for
HSD, such as the HateXplain and Gab datasets, and addresses the difficulty posed by different languages,
including code-mixed and low-resource languages. The researchers address key challenges mainly data scarcity,
the subjective nature of toxic speech, and the inherent biases of LLMs, providing a futuristic roadmap for research
in this area.[24]

Maitya et al. (2024) developed a multimodal multitask framework for the detection of toxic content in code-mixed
Hindi-English videos. They proposed the ToxCMM dataset, which covers 931 YouTube videos annotated for
toxicity, severity, and sentiment. This framework supports transformer-based models across text, audio, and visual
modalities with a gated fusion mechanism. The results of this investigation reflect that multimodal learning
performs better than unimodal approaches, achieving a weighted F1 score of 94.35% for toxicity detection. This
study highlights the effectiveness of multimodal transformers for toxic content analysis in low-resource, code-
mixed settings.[25]

Costa-jussa et al. (2024) worked on developing MuTox, a highly multilingual dataset and classifier to address the
lack of multilingual audio-based toxicity detection research. The dataset includes 30 languages from 14 linguistic
families, with 20,000 audios for English and Spanish, and 4,000 for the other 28 languages. Human annotators
with specific guidelines to label the audio for various types of toxicity, including profanities, toxic speech,
pornographic language, and physical violence or bullying language were used by the researchers for the purpose
of experiment. The MuTox classifier is a simple architecture with a SONAR encoder and a three-layer binary
classifier. It enables zero-shot toxicity detection across a wide range of languages. It was noted that the classifier
expands language coverage more than tenfold and performs equivalent to existing text-based trainable classifiers.
Also in comparison to a wordlist-based classifier with similar language coverage, MuTox enhances the F1-score
by an average of 100%.[26]

Sankaran et al. (2024) addressed cross-lingual audio abuse detection in low-resource Indian languages using Few-
Shot Learning (FSL). The researchers put to work a Model-Agnostic Meta-Learning (MAML) framework,
focused on pre-trained audio features from Whisper and Wav2Vec models. The model was trained and evaluated
on the ADIMA dataset which was a collection of audio clips across 10 Indian languages. In the 100-shot setting,
Whisper with L2-Norm feature normalization observed the best accuracy scores, with a range between 78.98% to
85.22%. This study reflected that this few-shot approach is effective in helping pre-trained models to generalize
and capture language-specific patterns, while also giving required insights for low-resource abuse detection.[27]

Bentaleb et al. (2024) studies and performed a detailed survey on the evolution of low-latency live media
streaming systems with a focus on end-to-end (E2E) latency reduction in IP-based streaming architectures. This
paper was meant to analyze live streaming workflows, protocols, and latency sources at following stages: media
preparation, delivery and consumption. It examines traditional as well as modern streaming protocols namely
DASH, HLS, WebRTC, and budding technologies like Media over QUIC (MOQ), highlighting low-latency
extensions which also includes LL-DASH and LL-HLS. This survey also put emphasis on key enabling
technologies such as chunked encoding, CMAF, adaptive bitrate algorithms, and playback buffer management.
Furthermore, major challenges in achieving scalable and robust low-latency streaming, of which encoding
complexity, network variability, and QoE optimization are also part, are also addressed by this study. This helped
in positioning this survey work as a reference for future research and development in low-latency live streaming
systems.[28]

Arya et al. (2024) introduced a multimodal framework for detection of toxic speech in memes by leveraging
Contrastive Language-Image Pre-training (CLIP). The study addresses the challenge of implicit toxic speech in
memes, which often relies on the interplay between text and image. The proposed model was evaluated on two
datasets: the Hateful Memes Challenge (HMC) and Fakeddit. This framework achieved a state-of-the-art accuracy
rate of 83.1% on the HMC dataset by combining a pre-trained vision-language model with a novel multi-task
learning approach. As a result of the study, it was noted that jointly analyzing image and text is more effective as
compared to using just unimodal methods for identifying toxic speech in multimodal content.[29]
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Zhou et al. (2024) developed a survey of recent advances in Speech Language Models (SLMs). The research
categorizes SLMs based on their architectures and training objectives, with distinguishes between models for
speech recognition, emotion recognition, and acoustic event detection. It details various applications, including
ASR and spoken language understanding, also discussing the challenges of building effective SLMs. One of such
issue being the high computational cost and the need for large amounts of data. The survey puts lights on the shift
from traditional methods to end-to-end deep learning models like Wav2Vec 2.0 and Whisper, which have
significantly evolved the field by learning representations directly from raw audio waveforms.[30]

Zhang et al. (2025) proposed MultiTec, a data-driven deep learning framework for detecting healthcare
misinformation in short-form videos on TikTok. The system jointly analyzes visual, acoustic, and textual
information by learning caption-guided visual representations, acoustic-aware speech features, and cross-modal
interactions through a dual-attentive fusion mechanism. The model was evaluated on two real-world TikTok
datasets related to COVID-19 disease and COVID-19 vaccines. Experimental results show that MultiTec
consistently outperforms state-of-the-art unimodal and multimodal baselines, achieving higher performance
across multiple metrics including F1 score, Cohen’s Kappa, and AUC on both datasets. Ablation studies further
demonstrate the contribution of each modality and the effectiveness of the dual-attentive fusion strategy. The
study concludes that modality-aware multimodal learning is highly effective for identifying healthcare
misinformation in short video platforms.[31]

Warren et al. (2025) suggested a better approach focused at detecting audio
deepfakes by emphasising on acoustic prosodic analysis, which refers to the high—
level linguistic features of human speech, such as pitch, intonation, and jitter.
The authors created a detector based on six prosodic features: mean fundamental
frequency (F0), jitter, shimmer, and harmonic—to—noise ratio (HNR), and their
respective standard deviations. The model was trained and tested on the
ASVspoof2021 dataset, achieving a 93% accuracy and an Equal Error Rate (EER) of
24.7%.1t was noted from the experiment that this linguistic feature-—based
approach is robust and provides explanation by an attention mechanism, which
identifies jitter, shimmer, and mean—-FO0 as the most influential features on the
model's decision. Also, the model was proven resistant to a simple L norm attack
causing a 99.3% accuracy degradation in other baseline models. This in turn
reflected the superiority of this model.[32]

Shang et al. (2025) introduced a multimodal framework called MultiTec. It was designed to identify healthcare
misinformation in short videos from TikTok. This model focuses on mitigating challenges such as misleading
visual content and complex inter-modality dependencies by employing a visual learning module with caption
guidance and a dual-attentive transformer mechanism. Two real-world datasets related to COVID-19 disease and
COVID-19 vaccines were used to test this system. MultiTec maintained consistency and performed better than
state-of-the-art baselines, with an increase of 6.90% and 4.73% in F1-score on the two datasets, respectively. It
was also noted that the Visual-speech co-attention mechanism was a critical component for improving detection
capabilities, and this was further confirmed by performing an ablation study.[33]
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3. Conclusion

The domain of automated content moderation has significantly progressed, evolving from rudimentary lexical
filters to sophisticated deep learning systems. An examination of 31 contemporary research underscores
significant tendencies and efficacious strategies for various moderation issues. In text-based tasks, fine-tuned
transformer models regularly outperform. BERT and ELECTRA get elevated F1 scores, with a BERT-based
model achieving 96% on English hazardous speech. A Darija RoBERTa model attained 90% accuracy in a
resource-constrained environment. These models include context and intricate patterns, making them proficient
for delicate examination. Audio-native approaches are often more effective for spoken material, particularly in
real-time applications. Efficient and accurate analysis of spectrograms and MFCCs is provided by lightweight
CNNs and RNNs. A CNN system for foul language identification attained an F1 score of 98.1% in a binary
classification framework, operating at a real-time pace of around 0.46 seconds per second of audio. This mitigates
transcription-related mistakes and utilizes paralinguistic signals. Multimodal techniques are becoming more
essential as internet material integrates several modalities. CLIP achieved 87.4% accuracy in identifying
hazardous speech in memes by integrating visual and linguistic elements, underscoring the significance of cross-
modal thinking.

Challenges persist, especially regarding robustness. Even robust models are susceptible to hostile manipulations
such as the inclusion of extraneous spaces or symbols. Addressing this requires adversarial training and validation.
Enhancing support for low-resource languages and advancing cross-lingual generalization are essential. Meta-
learning has potential in adjusting models with little data, advancing towards inclusion. Research indicates a
method that integrates modular technologies, merging precision with real-time performance, underpinned by
ethical assessments to ensure fairness. Emphasizing robustness, inclusiveness, and openness will enhance the
effectiveness, scalability, and accountability of future moderating systems.
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