Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 47 No. 01 (2026)

LSTM-NN Based Modelling and Simulation
of 8 MW Grid-Connected Photovoltaic (PV)
System Using Real-time Data

Vanishree G NI, Dr Ashoka H N2

1 Research Scholar, Department of Studies in Electrical & Electronics Engineering, University BDT College
of Engineering, Davanagere, Karnataka, India, and Visvesvaraya Technological University, Jnana Sangama,
Belagavi-590018, India. Email: vanishreegn4@gmail.com

2 Professor, Department of Studies in Electrical & Electronics Engineering, University BDT College of
Engineering, Davanagere, Karnataka, India, and Visvesvaraya Technological University, Jnana Sangama,
Belagavi-590018, India. Email: ashokahn@ubdtce.org

Abstract :-This paper proposes an advanced neural network-based Modelling and control approach for an 8 MW
grid-connected photovoltaic (PV) system, leveraging real-world irradiance and temperature data to enhance power
extraction efficiency. Traditional maximum power point tracking (MPPT) methods, while effective, exhibit
limitations in dynamic response and accuracy under rapidly varying environmental conditions. To address this, a
The LSTM-based NN (LMST-NN) is trained on historical solar irradiance and temperature datasets to predict the
optimal operating points of the PV array, replacing conventional MPPT algorithms. The system architecture
comprises a PV array, a DC-DC boost converter (elevating voltage to 11 kV), and a three-phase inverter
synchronized with the utility grid using a phase-locked loop (PLL). The neural network’s predictions dynamically
adjust the boost converter’s duty cycle, ensuring maximum power transfer under fluctuating conditions.
Simulation in MATLAB/Simulink validates the system’s performance, demonstrating superior prediction
accuracy compared to traditional techniques. Additionally, the integration of an LCL filter maintains total
harmonic distortion (THD) below 1%, complying with IEEE 519 standards. Key metrics, including grid
synchronization stability (frequency deviation < 0.05 Hz), converter efficiency (97.5%), and transient response,
are rigorously evaluated. The results highlight the neural network’s robustness in optimizing power generation
while ensuring seamless grid integration, offering a promising alternative to conventional MPPT for large-scale
PV systems.
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1. Introduction

Grid-connected photovoltaic (PV) systems play a pivotal role in modern renewable energy infrastructure,
requiring precise power prediction and efficient voltage conversion to ensure stable integration with utility grids
[1]. The intermittent nature of solar irradiance and ambient temperature variations poses significant challenges to
maintaining optimal power extraction. Traditional maximum power point tracking (MPPT) techniques, such as
Perturb and Observe (P&O) and Incremental Conductance (INC), rely on real-time adjustments to track the
maximum power point (MPP) [2]. While these methods are widely adopted, they suffer from inherent limitations,
including oscillations around the MPP and slow response under rapidly changing environmental conditions [3].
These drawbacks can lead to suboptimal energy harvest, particularly in large-scale installations where minor
inefficiencies translate to substantial energy losses. To address these challenges, advanced control strategies
leveraging artificial intelligence (AI) have emerged as promising alternatives, offering improved accuracy and
adaptability in dynamic environments [4].

Maximum Power Point Tracking (MPPT) is a critical technique used to maximize the power output of solar panels
under varying environmental conditions such as irradiance and temperature. The fundamental principle involves
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dynamically adjusting the panel's operating voltage or current to track the Maximum Power Point (MPP), where
the product of voltage and current is maximized. Traditional MPPT methods include Perturb and Observe (P&O),
which iteratively adjusts the voltage and measures power changes, and Incremental Conductance (INC), which
compares the panel's instantaneous conductance (dI/dV) to its operating conductance (I/V) to determine the MPP.
While these methods are simple and widely used, they can suffer from oscillations around the MPP or slow
response under rapidly changing conditions.

To overcome these limitations, advanced MPPT techniques have been developed, including artificial intelligence
(AI)-based approaches like neural networks and hybrid approaches are being used. This paper proposes a neural
network-based approach for optimizing power extraction in an 8 MW grid-connected PV system, utilizing real-
world irradiance and temperature data for training. Unlike conventional MPPT methods, which reactively adjust
to environmental changes, the proposed neural network predicts optimal operating points proactively, enhancing
both dynamic response and prediction accuracy [5]. The system architecture comprises three key components: (1)
an 8 MW PV array modelled using a single-diode equivalent circuit, (2) a DC-DC boost converter that steps up
the voltage to 11 kV for grid compatibility, and (3) a grid-tied inverter synchronized with the utility grid using a
phase-locked loop (PLL) [6]. By replacing traditional MPPT with a trained neural network, the system achieves
faster convergence to the MPP and reduced power fluctuations, even under abrupt weather changes [7]. The neural
network is trained on historical solar data, enabling it to generalize across diverse operating conditions and
outperform conventional techniques in both steady-state and transient scenarios [8].

The proposed model is simulated in MATLAB/Simulink, with performance metrics rigorously evaluated against
traditional MPPT methods. Key parameters include prediction accuracy (quantified via mean absolute error and
regression fit), converter efficiency, total harmonic distortion (THD), and grid synchronization stability [9].
Recent studies have demonstrated the superiority of Al-based MPPT techniques in similar applications, with
neural networks achieving up to 99% prediction accuracy under variable irradiance [10]. This work builds on
these advancements, focusing on scalability for utility-scale PV systems and compliance with grid standards such
as IEEE 1547 for distributed energy resources [11]. The results highlight the neural network’s potential to
revolutionize PV system control, offering a robust solution for maximizing energy yield while ensuring seamless
grid integration.

2. Literature survey

Recent advancements in photovoltaic (PV) systems have witnessed a paradigm shift from conventional maximum
power point tracking (MPPT) methods to sophisticated artificial intelligence (Al)-based approaches. This
transition addresses the inherent limitations of traditional techniques while meeting the growing demands for
efficiency and stability in grid-connected applications. The literature from the past five years reveals significant
progress in several key areas. Machine learning techniques have demonstrated remarkable success in overcoming
the challenges of partial shading and rapidly changing environmental conditions. Al-Dhaifallah et al. (2018)
proposed a novel artificial neural network (ANN) based MPPT controller that achieved 98.7% tracking efficiency,
significantly outperforming conventional perturb and observe methods under dynamic conditions [ 12]. Their work
established that properly trained ANNs could reduce tracking errors by up to 60% compared to traditional
algorithms. Building on this, Javed et al. (2019) introduced a hybrid approach combining long short-term memory
(LSTM) networks with convolutional neural networks (CNNs) for PV power prediction, achieving a mean
absolute percentage error of less than 1.5% [13]. This approach proved particularly effective in handling the
temporal dependencies in solar irradiance patterns.

Recent studies have also explored the integration of evolutionary algorithms with machine learning for enhanced
MPPT performance. Ahmed et al. (2020) developed a genetic algorithm-optimized neural network that
demonstrated superior convergence characteristics, reaching the maximum power point in 80% less time than
conventional methods [14]. Their work highlighted the potential of bio-inspired optimization techniques to
enhance neural network training for PV applications. Similarly, Harrag and Messalti (2019) presented a
comparative study of various Al-based MPPT techniques, finding that adaptive neuro-fuzzy inference systems
(ANFIS) offered the best compromise between tracking accuracy and computational efficiency [15]. Their
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research provided valuable insights into the practical implementation of different Al approaches in real-world PV
systems. The intersection of Al-based MPPT with grid synchronization has emerged as another critical research
frontier. Mahmud et al. (2021) investigated the impact of neural network-based MPPT on grid-connected inverter
performance, demonstrating that intelligent tracking algorithms could reduce total harmonic distortion by 35%
compared to conventional methods [16]. Their findings emphasized the importance of co-optimizing MPPT and
grid synchronization for overall system performance. Complementing this work, Khan et al. (2022) developed a
deep reinforcement learning framework that simultaneously optimized power extraction and grid current quality,
achieving THD levels below 1.5% while maintaining 99% tracking efficiency [17]. These studies collectively
underscore the transformative potential of Al in addressing both energy extraction and power quality challenges

in modern PV systems.

TABLE ISummary of the benefits and drawbacks of different techniques

Ref. Achievements Advantages Limitations
K. Y. Yap, C. R.| Reviewed Al-based | Comprehensive Lacks experimental
Sarimuthu and J. M. -Y. | MPPT techniques for PV | overview of Al models | validation and
Lim [18] systems like ANN, Fuzzy, PSO comparative

performance metrics

H. Jiong [19] CNN-LSTM for ultra- | High accuracy for non- | Requires large datasets
short-term PV~ power | linear, time-dependent | and computational
prediction forecasting power

P. K S, V. K.| Compared ANNand SVM | Fast convergence and | Decreased accuracy

Viswambharan and S. | for MPPT in PV systems | improved tracking under | under partial shading

Pillai [20] uniform conditions scenarios

] Senthilkumar, S., | Nature-inspired ~ MPPT | Combines optimization | Complexity increases

Mohan, V., | with  DL-based fault | with fault resilience with hybrid models

Mangaiyarkarasi, S.P. et | classification

al. [21]

Nugraha DA, Lian KL | Hybrid MPPT using | Efficient in partially | May suffer from longer

Bharathidasan, P. et al.
[25]

management

[22] Cuckoo Search & Golden | shaded PV conditions convergence time
Section for shading
Gurumoorthi G, | Hybrid DL approach for | Improves system-level | Application-specific
Senthilkumar S, | optimal power flow in | energy optimization and lacks real-time
Karthikeyan G, Alsaif F | HRES validation
[23]
Anwer, A.M.O., Omar, | Fuzzy logic MPPT with | Reduces sensor | Performance highly
F.A. & Kulaksiz, A.A [24] | sensorless MRAS-based | dependency, efficient | dependent on fuzzy rule
PMSM control under variable | set
conditions
Arulmurugan, V.S., | PSO-based MPPT | Enhances battery life, | PSO may get trapped in
Rajeswari, C., | integrated with battery | improves energy balance | local minima

in grid

Yadav, A., Pal, N., Khan,
F.A. etal. [26]

Comparative study of
MPPT under dynamic
shading

Systematic evaluation of
algorithms  for real-
world shading

under
extremely fast
dynamics not covered

Performance
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] Kouser, S., Dheep, G.R. | AEOSA-tuned PI | Adaptive tuning for | Algorithm complexity

& Bansal, R.C [27] controller for PV-grid | improved stability and | may limit practical
systems control deployment

Hai T, Zhou J, Muranaka | Fuzzy-logic MPPT using | Novel, biologically | Validation limited to

K [28] Farmland Fertility | inspired control | simulation models
Optimization technique

Alturki FA, Omotoso HO, | Manta Ray  Foraging | Robust optimization | Requires tuning of
Al-Shamma’a AA, Farh | Optimization for PV | with high convergence | multiple

HMH, Alsharabi K [29] control speed hyperparameters
Adefarati T, Bansal RC, | Optimal energy | Ensures cost-effective | Assumes ideal weather
Bettayeb M, Naidoo R | management for PV- | and balanced operation | and load forecasts

[30] WTG-BSS-DG microgrid

3. System Modelling and Configuration

LSTM-NN
B
.oos.t Converter
Circuit

Fig 1: System Model of proposed Technique

The Figure 1 illustrates a solar PV system were irradiance and temperature influence power generation. An LSTM
neural network optimizes the boost converter operation. The regulated DC output is fed into a converter, producing
a stable AC waveform suitable for grid or load integration, ensuring consistent performance despite environmental
variations.

3.1 PV Array Modelling

The PV array is modelled using the single-diode equivalent circuit, with parameters adjusted to achieve an 8§ MW
output. The power output of a single PV module depends on irradiance (G) and temperature (T). The mathematical
model is given by:

G
Produe = 218871 % (—==)  [1 = 0.0045(Teey — 25)] (1)
G = Irradiance
Teen = Tambient + % * G (Assume NTOC = 45°) (2)
8000000
Ninoautes = 218871 36550 3)

Assumptions for 218.871 W module (e.g., 60-cell monocrystalline):
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Vmp=30.5 V=30.5V (MPP voltage)
Imp=7.17 A=7.17A (MPP current)
Series Modules (Ns) for Boost Converter Input Voltage (600 V)

N = % = 20 modules in series 4
Parallel strings (Np)

36550 .
N, = 0 = 1828 strings %)

Total Array Parameters
Voltage at MPP:
Varray=20%30.5=610 V
Current at MPP:
Larray=1,828%7.17=13,100 A

In an 8 MW grid-connected solar PV system, the solar panels generate electricity based on sunlight (irradiance)
and temperature. Each 218.871 W module produces power depending on these conditions—more sunlight means
higher current, while higher temperatures slightly reduce voltage. To achieve 8 MW, about 36,550 modules are
connected in 20 series strings (totalling 610 V) and 1,828 parallel branches (delivering 13,100 A) as given in
equation 1-5.

The PV voltage (V_pv) remains near 610 V, adjusted slightly by the Neural Network-Based MPPT (Maximum
Power Point Tracking) algorithm to extract the most power. If sunlight decreases (e.g., clouds or sunset), the PV
current (I_pv) drops proportionally, while the voltage stays relatively stable. The PV power (P_pv) follows the
sunlight pattern peaking at midday and falling in the morning/evening.

Fig 2 presents the temperature readings recorded over a one-month period, illustrating daily fluctuations and
overall trends. The graph highlights variations between daytime highs and nighttime lows, reflecting typical
diurnal patterns. Peaks in temperature may correspond to clear, sunny days, while dips could indicate cloudy or
rainy conditions. This data provides insight into the month’s climatic behaviour, helping to identify any unusual
weather patterns or heatwaves that occurred during the period. Such information is valuable for applications in
environmental monitoring, agriculture, and energy management.

40
35
TemperatureT 30
25

20 [~

10 20 30 40 50 60
Row

Fig 2: Temperature readings for one month
3.2 Boost Converter Design

The boost converter steps up the PV output voltage (typically 600—1000 V) to 11 kV. Boost converter steps up the
610V from the panels to 11,000 V for grid compatibility. The converter operates at a 94.45% duty cycle, meaning
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the switching transistor stays on most of the time to achieve this high voltage gain. The inductor current (I_L) has
a triangular ripple (around 1,310 A peak-to-peak) due to rapid switching at 10 kHz, while the output voltage
(V_boost) stays near 11,000 V with minor ripple (under 110 V). Design for boost circuit parameters is given in
equation 6-8.

After the boost stage, the DC-link smooths out the power before feeding it to the grid inverter. The DC current
(I dc) is a steady 726 A, and the DC voltage (V_dc) holds at 11,000 V with almost no ripple. The inverter then
converts this to AC, synchronizing with the grid’s frequency and phase. The duty cycle (D) is controlled via MPPT
to maximize power extraction:

Duty Cycle (D)
D=1-2n—1_2% — 09445 (94.45%) (6)
Vout 11000

Inductor (L) for Continuous Conduction Mode (CCM)
Vin*D
L2 AlL* fsw (7)
Al =10% of Lumay =1,310A
Fsw =10kHz

Output Capacitor (C) for Voltage Ripple

lout*D
~ MVout* fsw (8)
Table 1 summarizes the key parameters of the 8 MW PV system, including module count (36,550 x 218.871 W),
array configuration (20s x 1,828p), and electrical specifications (610 V, 13,100 A). The boost converter design
steps up the voltage from 610 V to 11,000 V with a 94.45% duty cycle, supported by an inductor (>44 uH) and

capacitor (>625 puF) to ensure stable operation.

Table 1: Designed values of Boost converter parameters and PV system standards

Parameter Value

Total Power 8§ MW

PV Modules 36,550 (218.871 W each)
Array Configuration 20 series x 1,828 parallel
Array Voltage 610V

Array Current 13,100 A

Boost Converter 610V — 11,000 V

Duty Cycle 94.45%

Inductor (L) >44 nH

Capacitor (C) > 625 uF

3.3 The LSTM-based Neural Network Structure for Boost Converter Control

A Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) is ideal for power electronics control
due to its ability to handle time-series data as shown in Fig 3. Equations 9-17 define the internal workings of an
LSTM-based Recurrent Neural Network, detailing how inputs, hidden states, and outputs are computed. This
enabling the network to retain temporal dependencies and manage long-term and short-term memory effectively.
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Previous Duty Hidden Layer
Cycle

Fig 3: Neural Network Structure for Boost Converter Control

Error Layer

LMST Layver

D(—1)

Previous Duty
Cycle

A Neural Network (NN)-based controller optimizes the boost converter’s duty cycle (D(t)) to maintain 11,000 V
output in the 8 MW PV system. The NN uses LSTM layers to process time-series data, with inputs: the voltage
error in equation 9, past error (e(t—1)), and prior duty cycle (D(t—1)). The LSTM’s forget gate in equation 10 filters
irrelevant data, while the input gate (it, C ~ t) in equation 11-12, updates its memory as given in equation 13.

NN Architecture:

a. Input Layer (3 nodes):

. Error signal: (11,000V reference vs. actual).
. Past error: e(t—1).

. Duty cycle: D(t—1).

e(t) =Viet — Vboost(t)

b. Hidden Layer (2 LSTM layers, 64 neurons each):

. Processes temporal dependencies in converter dynamics.
For each LSTM cell:

. Forget Gate (ft): Decides what past info to discard.

fe = o(Welhe—y, x] + b (10)
. Input Gate (i;): Updates cell state.

ir = o(Wilhe—y, xe] + by (11)
Ce = tanh(W[he-1, xc] + b, 12)
. Cell State (C;)

CG=fiOC1+ i OC (13)
. Output Gate (0;)

0y = o(Wolhe_y, x:] + by, (14)
hs = 0, © tanh (C;) (15)

Where: o= Sigmoid activation.
W, b= Trainable weights/biases.
©= Element-wise multiplication.

c. Output Layer (1 node):
. Adjusted duty cycle D(t).

D(t)=D(t-1) + K,, * e(t) + K; * ¥ e(t) + NNoutput

)

(16)
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. Loss Function (Mean Squared Error)

1

— N 2
L= ; i=1(Vboost,predicted - Vboost,predicted) (17)

The output gate (Oy) in equation 14 generates hidden states (h;) in equation 15, to predict D(t). The final duty cycle
combines NN output with PI terms as shown in equation 16, ensuring rapid ripple suppression. Trained via
backpropagation as mentioned in equation 17, the NN learns converter dynamics from Simulink data (e.g., Vpv
=500-600 V, Ipv = 10-15 kA). Deployed in real-time, it samples Vboost at 10 kHz, adjusting D(t) faster than a
PI controller. The LSTM’s memory handles nonlinearities (e.g., irradiance swings), reducing output ripple (<1%)
and improving transient response.

3.4 THD Minimization

Minimizing Total Harmonic Distortion (THD) is essential in power electronic systems to ensure power quality,
equipment protection, and compliance with grid standards. THD represents the level of harmonic content in a
voltage or current waveform, caused primarily by nonlinear loads and switching converters such as inverters and
boost converters. High THD leads to several adverse effects, including increased heating in transformers and
motors, malfunctioning of sensitive electronic equipment, reduced system efficiency, and electromagnetic
interference. In grid-connected renewable energy systems like photovoltaic (PV) installations, maintaining low
THD is crucial to avoid disruptions and ensure seamless integration with the utility grid.

According to the IEEE 519 standard, which provides guidelines for harmonic control in electric power systems,
the acceptable THD limit for voltage at the point of common coupling (PCC) should not exceed 5% for systems
below 69 kV. For current, the harmonic distortion limits vary depending on the short-circuit ratio and current
levels but are typically below 20% for most applications. In high-performance or critical applications, THD values
are expected to be even lower—often under 1%. Maintaining THD within these limits ensures the reliability of
the power system, reduces losses, and extends the lifespan of electrical components, making THD minimization
a key design goal in modern power electronics.

4. Simulation Results and Discussion

Table 2 presents the measured temperature and irradiance data under varying experimental conditions. The values
highlight the relationship between thermal performance and solar irradiance, providing key insights for subsequent
analysis. These measurements serve as the foundational dataset for evaluating system efficiency and energy
output.

Table 2: Trained Datasets of corresponding solar irradiance, G (W/m2), temperature, T(°C), maximum voltage

V).
Solar Irradiance | Temperature Voltage Solar Irradiance | Temperature Voltage
G(W/m2) (€)) \%) G(W/m2) (T) \%)
906 40 567.3 258 20 553.14
914 19 572.69 255 41 560.15
98 34 596.68 244 40 556.81
547 24 565.14 350 43 577.12
965 44 587.41 252 21 578.62
971 20 555.18 474 34 552.61
486 44 595.62 831 26 589.9
142 40 568.41 550 33 571
916 28 584.87 286 43 592.57
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960 39 574.17 754 38 583.78
36 35 563.48 568 27 550.16
934 41 573.82 54 18 569.5
758 36 572.27 780 31 596.77
393 38 584.58 130 44 587.41
172 35 562.8 470 33 578.17
32 37 557.92 338 16 598.54
47 24 570.57 795 20 562.06
824 18 566.34 529 25 595.44
318 36 553.19 602 20 553.75
35 44 598.77 655 23 553.33
382 29 553.18 749 36 565.37
796 38 556.81 84 29 586.29
490 21 577.74 914 22 575.93
647 29 569.2 826 20 573.98
755 37 565.47 997 32 558.57
680 24 595.77 443 18 585.07
163 35 592.05 962 19 567.15
499 19 579.61 775 16 574.48
341 44 589.3 869 40 560.66
224 33 569.98 400 18 562.17
256 38 553.14 801 23 575.99
700 31 567.3 911 28 570.21
960 42 572.69 264 21 589.54
139 32 596.68

4.1 Grid Simulation

The simulation results of the 8 MW solar PV system generate key waveforms that validate system performance
under varying conditions. In the simulation, the photovoltaic (PV) system generates a peak output current of
13,000 A, driven by varying irradiance and temperature conditions as shown in fig 4. As irradiance increases,
more photons strike the PV panel, enhancing carrier generation and thereby increasing current. Temperature
variation slightly reduces voltage but can increase current marginally. This high current indicates a large-scale PV
array or parallel-connected modules operating under optimal irradiance as shown in table 1. The PV voltage output
stabilizes at around 600 V as shown in fig 5, reflecting the open-circuit or operating voltage of multiple series-
connected cells. This voltage is ideal for DC-link connection, inverter operation, and efficient grid integration
with minimal losses.
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Fig 4: PV Current plot fed to the converter

VoltageV 575 —
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L L L L
10 20 30 40 50 60
Time

Fig 5: PV Voltage plot fed to the converter

The boost converter in the simulation steps up the PV output voltage from 600 V to a constant DC link voltage of
11,000 V as shown in fig 6. This high and steady output is achieved by precise duty cycle control of the converter,
ensuring efficient energy transfer from the PV array. Despite fluctuations in input due to irradiance and
temperature variations, the converter maintains a regulated output using feedback control. The constant 11,000 V
DC link voltage is crucial for feeding a high-voltage inverter stage, enabling reliable grid connection or high-
power industrial loads with minimal voltage ripple and enhanced system stability and performance. The PV
system generates a peak power output of 8 MW as shown in fig 7, indicating a large-scale solar installation
operating under optimal conditions. This high output demonstrates effective MPPT control using FNN and
efficient energy conversion, making the system suitable for utility-scale applications and significant grid
contribution during periods of high solar irradiance.

12,000
= —— — -
10,000
8,000
6,000
4,000
2,000
o
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
LSTM-NN @ ANN SVM ARIMA @ GNNs

Fig 6: Boost converter Voltage waveform compared with other techniques
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Fig 7: Power output from the PV

In the simulated photovoltaic (PV) grid-connected system, the grid voltage and grid current waveforms exhibit
high-quality sinusoidal behavior, indicating successful synchronization between the inverter and the utility grid.
The standard grid voltage in such systems is typically 11 kV (phase-to-phase) or 415V depending on the
distribution level, and the waveform in the simulation confirms this standard with minimal distortion. The voltage
remains stable, suggesting that the inverter is operating under proper phase-locked loop (PLL) control using FNN,
maintaining phase and frequency alignment with the grid.

Fig 8 presents a comparative analysis of the output voltages from a three-phase power converter system (R, Y, and
B phases) under two operating conditions: with and without output filtering. The unfiltered voltage waveforms,
corresponding to the R (blue), Y (red), and B (yellow) phases, exhibit significant high-frequency oscillations
superimposed on the fundamental sinusoidal signal. These distortions are primarily attributed to the high-
frequency switching operations inherent in power electronic converters, such as pulse-width modulation (PWM),
and contribute to an elevated Total Harmonic Distortion (THD). Such harmonic-rich waveforms can degrade
power quality, increase system losses, and adversely affect grid-connected equipment and sensitive loads.

In contrast, the filtered voltage waveforms demonstrate a marked improvement in waveform quality, closely
approximating ideal sinusoidal signals with minimal harmonic content. The filtering stage effectively attenuates
high-frequency components, ensuring a smoother voltage profile across all three phases. The peak amplitudes
remain consistent at approximately +11,000 V, indicating that the filtering process preserves the fundamental
component while substantially suppressing the harmonics.

This comparison underscores the critical role of output filtering in enhancing the performance of grid-connected
converters. The application of filters significantly reduces harmonic distortion, ensuring compliance with power
quality standards (e.g., IEEE 519), and facilitates the integration of power electronic converters into utility
networks by delivering clean, stable voltage outputs across all three phases.

Comparison of Grid Voltage

—— With Filter
without Filter

10000

5000

Voltage (V) ¢

~10000

. =2n an
Time

(a) Grid Voltage for R phase
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Comparison of Grid Voltage
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5000 A

Voltage (V)

—5000 §

Y y .
—10000 4 \/’ \\/l
/3 ' sn/3 ' 8n/3 ' 11n/3 j
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(b) Grid Voltage for Y phase

Comparison of Grid Voltage

—— with Filter
—— Without Filter

10000

5000

Voltage (V)

~5000

~10000

an/3 n/3 10m/3 1371/3
Time

(©) Grid Voltage for B phase
Fig 8: Grid Voltage output to the load

Convergence Curve for Different Techniques
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2041
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Loss / Error
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Fig 9: Convergence curve in comparison with other techniques
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The convergence curve shown in fig 9 demonstrates that LSTM-NN converges fastest due to its ability to learn
long-term dependencies and temporal patterns in solar data, unlike ANN (slower adaptation), SVM (kernel
limitations), ARIMA (linear assumptions), and GNN (graph-based delays). LSTM’s recurrent gates enable
efficient gradient flow, accelerating optimization and outperforming others in dynamic MPPT tracking.

4.2 THD Analysis

In a boost converter circuit, the Total Harmonic Distortion (THD) is a key parameter that reflects the quality of
the output waveform, especially when the converter interfaces with AC systems or supplies sensitive electronic
equipment. To mitigate these issues, an LCL filter is introduced between the converter and the load. The LCL
filter is particularly effective at attenuating high-frequency harmonics due to its resonant characteristics and steep
roll-off. Fig 10 shows, after implementing the LCL filter, the THD is drastically reduced to around 0.16% as
shown in Fig 9, which is well within the acceptable limits set by standards like IEEE 519. This substantial
improvement indicates that the output waveform closely resembles a pure sine wave, enhancing power quality.

The harmonic spectrum illustrated in the chart provides a comparative analysis of the signal distortion with and
without filtering by showing the magnitude of various frequency components expressed as a percentage of the
fundamental frequency. The fundamental component (assumed at 100 Hz) shows a magnitude of approximately
0.16% with the filter and 0.22% without the filter, establishing a baseline reference.

At 0 Hz (DC component), the signal without the filter exhibits a higher magnitude of around 0.018%, while the
filtered signal is notably lower at approximately 0.11%, indicating that the filter effectively reduces the DC offset
or low-frequency distortions. At 200 Hz, the filtered signal shows a harmonic magnitude of 0.014%, whereas the
unfiltered signal rises to 0.018%, signifying stronger second harmonic distortion in the unfiltered case.
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Fig 10: THD of the boost circuit Voltage with and without filter
5. Conclusion

This study successfully designed and simulated an 8 MW grid-connected solar PV system using a Neural Network
(NN)-controlled boost converter to optimize power conversion and grid integration. The LSTM-based NN ensured
efficient maximum power point tracking (MPPT), dynamically adjusting to irradiance changes and partial shading
while maintaining stable PV voltage (~610 V). The boost converter achieved a ripple-free 11 kV DC output with
a 94.45% duty cycle, outperforming traditional PI controllers in transient response and voltage regulation. The
inverter synchronized seamlessly with the grid, delivering 8 MW of power at unity power factor with minimal
harmonic distortion (<1% THD), complying with IEEE 1547 standards. Key waveforms PV power, boost voltage,
and grid parameters validated the system’s robustness under varying conditions. This work demonstrates the
potential of Al-driven control in renewable energy systems, offering a scalable solution for large-scale solar farms.
The study highlights how machine learning can enhance power quality, and energy yield in sustainable power
systems.
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