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Abstract:- In recent years, the asymmetrical rolling process has attracted considerable research attention due to 

its ability to induce non-uniform deformation characteristics within metallic workpieces. In this context, the 

present study introduces a novel analytical framework for asymmetrical cold rolling based on an enhanced slab 

method, specifically designed to overcome the inherent limitations of existing analytical models when applied to 

a wide range of asymmetric rolling conditions. A newly developed mathematical formulation for the asymmetric 

slab rolling process is proposed, offering a more comprehensive representation of the deformation mechanics. 

Unlike conventional approaches, the modified model identifies the emergence of three distinct deformation 

regions within the roll bite: the backward slip zone (BSZ), the forward slip zone (FSZ), and a newly characterized 

cross-shear zone (CSZ). This zonal classification provides deeper insight into the complex material flow behavior 

unique to asymmetric rolling. The study systematically investigates the influence of critical rolling parameters—

including thickness reduction, roll speed ratio, applied tensions, and friction coefficient—on the configuration and 

evolution of these deformation zones. It is demonstrated that at specific critical roll speed ratios and tension levels, 

distinct deformation zone configurations are established, validating the adaptability of the proposed model under 

varying process conditions. Furthermore, the interdependence between deformation zone configurations and 

rolling parameters is elucidated through comprehensive process maps, which illustrate the variation of critical 

speed ratios and critical tensions across diverse rolling scenarios. To quantify the relative influence of process 

variables, Grey Relational Analysis (GRA) is employed, revealing that the roll velocity ratio is the most dominant 

factor governing rolling responses, contributing 80% to overall performance optimization. The front tension 

emerges as the second most influential parameter, accounting for 8.64%, and plays a supportive role in enhancing 

process stability and surface integrity. The analytical predictions of the proposed model are rigorously validated 

through confirmation experiments, demonstrating strong agreement with theoretical outcomes. Based on the 

GRA-derived optimal parameter set, the study recommends specific operating conditions that effectively 

minimize roller surface damage while simultaneously improving the surface quality of the rolled product. 

Keywords: Asymmetric strip rolling, Slab method, Energy transfer, Friction-stress, Optimization, Neutral point. 

 

1. Introduction 

Analytical, numerical, and experimental studies must be thoroughly reviewed in order to gain a systematic 

understanding of metal rolling, deformation behavior, and the resulting microstructure–property relationships. 

The fundamental framework for forecasting deformation mechanics, roll force, torque, and frictional behavior in 

both symmetric and asymmetric rolling was established by the development of theoretical modeling techniques, 

specifically the Upper Bound Method (UBM) and the Slab Method. Concurrent advancements in thermo-

mechanical processing, such as cold, cryogenic, and non-isothermal rolling, have improved our knowledge of 

temperature-dependent flow characteristics, strain accumulation, and grain refinement in high-strength aluminum 

alloys like AA7075. The relationships between precipitation, recovery, and recrystallization phenomena under 
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different heat-treatment conditions, such as homogenization, solutionizing, and artificial aging, are highlighted by 

research on microstructural evolution. The significant impact of alloying additions (Zn, Mg, Cu, Sc), thermal 

history, and mechanical processing routes on environmental degradation behavior, fracture limits, and tribological 

performance is also demonstrated by studies on corrosion, formability, and wear of 7xxx series alloys. Together, 

these contributions provide the scientific foundation for understanding the reactions of heat-treated AA7075 and 

AA7075-Sc alloys as well as for modeling and improving rolling processes. The following subsections summarize 

this information in accordance with the major thematic areas that are pertinent to the current study. 

1.1 Mathematical Modelling in Rolling 

Understanding the deformation mechanics, force requirements, and process responses associated with metal 

rolling operations is largely dependent on mathematical modeling. Analytical and numerical models offer a crucial 

framework for forecasting the behavior of the strip and the load conditions acting on the rolls because rolling is 

controlled by intricate interactions between material flow, contact friction, strain hardening, and thermal effects 

1.1.1 Upper Bound Method (UBM) 

In metal rolling, the Upper Bound Method has been crucial in forecasting strain fields, power consumption, and 

deformation mechanics. The minimum power needed for cold strip rolling was first measured using UBM by 

Avitzur et al. (1963), who showed that velocity field assumptions have a significant impact on predicted friction 

and deformation energy [1]. This method was later improved by Avitzur (1964), who demonstrated that the 

admissible velocity field can be divided into distinct deformation zones, each of which represents a kinematically 

acceptable strain pattern during rolling [2]. The technique was expanded by Lin and Lin (1995) to forecast rolling 

force and strip shape changes in three dimensions, highlighting the impact of friction asymmetry and thermal 

softening on deformation fields [3]. In order to demonstrate how deformation energy estimates could assist real-

time control strategies, Baxter and Bumby (1995) applied UBM principles to systems engineering models of strip 

rolling control [4]. Al-Salehi et al. (1973) verified that UBM-based estimates correctly predicted the location of 

neutral points in cold rolling by experimentally establishing roll pressure distributions [5].  

A comprehensive power-analysis framework suitable for both symmetrical and asymmetrical rolling conditions 

was presented by Avitzur (1996), who combined previous formulations [6]. Later, Avitzur and Pachla (1986) 

showed that it was possible to increase prediction accuracy in plane-strain rolling by superimposing both rotational 

and linear velocity fields [7]. By suggesting a continuous velocity field devoid of discontinuities, Lambert et al. 

(1969) made a substantial advancement that allowed for more accurate predictions of steady-state plastic flow [8]. 

By highlighting how deformation energy controls industrial rolling throughput, Barbosa-Filho (2000) 

demonstrated how demand-driven models could be combined with UBM frameworks for macro-scale productivity 

simulations [9]. UBM and finite-element concepts were successfully combined by Hsiang and Lin (2000), 

showing that hybrid analytical–numerical approaches could improve shape rolling prediction accuracy [10].  In 

order to enhance predictive capability under contemporary rolling conditions involving high reductions, frictional 

asymmetry, and temperature-dependent material behavior, recent studies have reexamined the Upper Bound 

Method. When compared to traditional formulations, Montmitonnet (2016) noted that improved admissible 

velocity fields greatly increase the accuracy of power and torque predictions in strip rolling [11]. Incorporating 

strain-rate-sensitive flow stress into UBM formulations improves prediction reliability for aluminum alloy rolling 

under non-isothermal conditions, as Wang et al. (2018) showed [12]. According to Dixit and Mishra (2020), 

UBM-based analytical models successfully capture the impact of roll geometry and friction factor on the 

maximum reduction that can be achieved when cold rolling high-strength aluminum alloys [13]. Kumar et al. 

(2022) analyzed asymmetric rolling using an energy-based upper bound framework and found a strong coupling 

between roll speed ratio and deformation efficiency [14]. 

Chen et al. (2024) also demonstrated that for advanced aluminum alloys, modified UBM formulations with 

continuous velocity fields offer better agreement with experimental rolling force and torque measurements [15]. 

The ability of slab analysis to capture asymmetric deformation behavior was established by Hwang and Tzou 

(1993), who derived analytical expressions for cold strip rolling under differential roll speeds [16]. The 

relationship between friction factor and friction coefficient was then examined by Tzou (1999), who found 
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frictional limits that have a direct impact on slab-method solutions [17]. Slab formulations successfully capture 

thickness variation and pressure distribution within the deformation zone, as shown by Gao et al.'s (2002) analysis 

of rolling under varying friction coefficients [18]. Slab analysis can effectively model asymmetrical sheet rolling, 

as demonstrated by Salimi and Kadkhodaei (2004), who also found that variations in roll speed and friction 

significantly change the predicted neutral plane position [19]. By using the slab method to estimate friction in 

asymmetric rolling, Gudur et al. (2008) showed that frictional asymmetry significantly influences roll torque and 

rolling force [20]. The impact of thickness reduction on roll force per unit width for various friction conditions is 

shown in Fig. 2.3. The roll force rises nearly linearly with reduction, highlighting how important deformation 

severity is. There are only slight variations in force levels when comparing unequal and equal friction coefficients. 

This suggests that within the examined range, reduction has a greater impact than slight friction asymmetry. The 

applicability of the slab method to real-world rolling operations was confirmed by Tian et al. (2009), who created 

slab-based pressure models for asymmetrical rolling and verified the analytical predictions using industrial rolling 

data [21]. Tan (2007) demonstrated that friction–velocity coupling has a significant impact on predicted rolling 

stress and pressure distribution by incorporating dynamic friction models into slab formulations [22]. Li et al. 

(2003) verified the accuracy of slab analysis in capturing velocity fields and strain distribution by using digital 

image correlation techniques to validate slab-based deformation predictions. [23] 

Zhang et al. (2014) showed that combining sophisticated material models with slab formulations improves 

prediction capability by integrating the MY yield criterion with slab analysis to assess plate rolling behavior [24]. 

For asymmetrical rolling of large cylinders, Chen et al. (2019) developed a shear-sensitive slab model that 

outperformed traditional slab formulations in terms of accuracy and computational efficiency [25]. An important 

foundation for the current study is the sensitivity of UBM predictions to roll diameter, reduction ratio, friction 

factor, and back/front tension. Building on these fundamental advancements, the Upper Bound Method has been 

used in a number of studies to measure the impact of geometry and friction on the maximum reduction that can 

be achieved during strip rolling. The maximum percentage reduction is strongly dependent on the strip thickness-

to-roll radius ratio (t/R₀), but it increases nonlinearly with the coefficient of friction and approaches an asymptotic 

limit at higher friction values, as Avitzur's classical results clearly show.  

1.2 Simplifications and Assumptions for Symmetrical Rolling  

The material being rolled is rigid plastic, and the roll itself is rigid. Under plane-strain conditions, plastic 

deformation takes place, leading to a uniform distribution of stress within the elements. The vertical and horizontal 

stresses are regarded as the principal stresses. Although the coefficient for the upper roll may be different from 

the coefficient for the lower roll, the frictional coefficients between the roll and material are constant throughout 

the contact arc. When material enters and leaves the roll-bite, it flows horizontally. The speed, diameter, and 

coefficient of friction forces applied by the upper and lower rolls are all shown in Figure 1, which illustrates the 

specifics of asymmetrical cold strip rolling. Depending on which way the upper and lower rolls apply friction 

forces to the strip, the deformation region is divided into three sections: the forward slip zone (FSZ), cross shear 

zone (CSZ), and backward slip zone (BSZ). 
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Fig. 1. (a) Schematic representation of a mathematical model (b) Element of material within Backward 

slip Zone (c) Element of material within cross shear Zone (d) Element of material within forward slip 

Zone. 

a) Nomenclature: 

𝑙 = length of the contact 

𝑡𝑢, 𝑡𝑙 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒  𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝜏𝑢 , 𝜏𝑙 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 
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𝑝𝑢 , 𝑝𝑙 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑜𝑙𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑅𝑢, 𝑅𝑙 , 𝑅𝑒𝑞 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝑟𝑜𝑙𝑙𝑠 

𝑅𝑢, 𝑅𝑙 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠  

CW = clockwise; 𝐴𝐶𝑊 = 𝑎𝑛𝑡𝑖𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 

𝐹𝑆𝑍, 𝐵𝑆𝑍, 𝐶𝑆𝑍 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠𝑤𝑎𝑟𝑑 𝑠𝑙𝑖𝑝 𝑧𝑜𝑛𝑒𝑠 

𝜎, 𝜎𝑜 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠, 𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

𝜃𝑢, 𝜃𝑙 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑉𝑢 , 𝑉𝑙 = 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝜇𝑢, 𝜇𝑙 = 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑥𝑛1, 𝑥𝑛2 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡  𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑃, 𝑃𝐹𝑆𝑍 , 𝑃𝐵𝑆𝑍 , 𝑃𝐶𝑆𝑍 = 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡, 𝑖𝑛 𝐹𝑆𝑍, 𝐵𝑆𝑍, 𝐶𝑆𝑍 𝑧𝑜𝑛𝑒𝑠 

𝑇𝑢 , 𝑇𝑙 = 𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑡𝑜𝑟𝑞𝑢𝑒𝑠 𝑜𝑓 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

b) Subscripts: 

𝑛1, 𝑛2 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡  𝑜𝑓  𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑢, 𝑙 =  𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑟𝑜𝑙𝑙𝑠 

𝑜 = 𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑒𝑓𝑓 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑜𝑙𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 

2. Mathematical Modelling and Model Analysis 

The mathematical formulations representing the equilibrium of horizontal and vertical forces are encapsulated as: 

(i) Backward Slip Zone (BSZ) 

𝑑(𝑡𝜎)

𝑑𝑥
+ 𝑝𝑢𝑡𝑎𝑛𝜃𝑢 + 𝑝𝑙𝑡𝑎𝑛𝜃𝑙 − (𝜏𝑢 + 𝜏𝑙) = 0 (1) 

𝑝 = 𝑝𝑢(1 + 𝜇𝑢𝑡𝑎𝑛𝜃𝑢) = 𝑝𝑙(1 + 𝜇𝑙𝑡𝑎𝑛𝜃𝑙) (2) 

Integrate equations one and two. 

𝑑(𝑡𝜎)

𝑑𝑥
+ (𝑝 + 𝜎)

𝑑𝑡

𝑑𝑥
= 𝜇𝑒𝑝  (3) 

The criterion for plane strain according to von Mises can be expressed as 

𝑝 + 𝜎 =
2

√3
𝜎0 (4) 

where 𝜎0represents the yielding shear stress of the material,  

To substitute equation (3) and equation (4) and rearrange them 

(1 + z2)
dF

dz
+ bF = 2z (5) 

 where b = μe√
Req

tf
 Req =

2R1R2
R1 + R2

z =
x

√Req + tf
F =

p

2

√3
σ0
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z = tanw  ; 

dF

dw
+ bF = 2tan w (6) 

within the forward slip zone is stated as follows: 

F = ce−bw +
2

b
[
w3

3
−

w2

b
+ sw − t] (7) 

where s = 1 +
2

b2
 ; t =

1

b
+
2

a3
 

(ii) Forward Slip Zone (FSZ) 

F0 = 1 −
σf
2

√3
σ0

  (8) 

c3 = F0 +
2t3
b3
  where t3 =

1

b3
+
2

b3
3 ; s3 = 1 +

2

b3
2 

the solution of the differential equation is as follows the formulation for the specific rolling pressure (FFSZ) 

FFSZ = (F0 +
2t3

b3
) e−b3w +

2

b3
[
w3

3
−

w2

a3
+ s3w− t3]  (9) 

Boundary conditions: x = L  or w = wi = tan−1
L

√[Reqt0]
 

Fi = 1 −
σb
2

√3
σ0

c1 = Bie
b1wi  

FBSZ = Bie
b1wie−a1w +

2

b1
[
w3

3
−

w2

b1
+ s1 − t1]  (10) 

t1 =
1

b1
+
2

b1
3 ;  Bi = Fi −

2

b1
[
wi
3

3
−
wi
2

b1
+ s1wi − t1] ; s1 = 1 +

2

b1
2 

(iii) Cross Shear Zone (CSZ) 

Boundary conditions:x = xn2 

Due to the continuity of the boundary conditions at  

c2 = c3e
B1wn2+ea2wn2(B2wn2

3 − B3wn2
2 + B4wn2 − B5) 

where B1 = a2 − a3, B2 =
2

3a3
−

2

3a2
B3 = 

2

3a3
2 −

2

a2
2 

B4 =
2s3
a3

−
2s2
a2
B5 =

2t3
a3

−
2t2
a2

 

from the constancy of volume, the position of the upper and lower neutral points xn1, xn2 

xn1 = R1√VA
xn2
2

R1
2 + (VA − 1)

tb
RA
  where VA =

Vl
Vu
, RA =

R1
2
(1 +

R1
R2
) 

(iv) Rolling Force 

The rolling force per unit width is given by integrating the normal rolling pressure over the arc length of contact 

once the yielding stress and coefficient of friction are known. 

P = PFSZ + PCSZ + PBSZ  (11) 
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PFSZ =
2

√3
σ0 ∫ FFSZ dx =

2

√3
σ0√Reqt0(FFSZ1 + FFSZ2)

Xn2

0
  (12)  

FFSZ1 =
−c3e

−a3wn2

a3
(1 + wn2

2 +
2wn2

a3
+
2

a3
2) +

c3
a3
+
2c3

a3
3  

FFSZ2 =
wn2
6

9a3
−
2wn2

5

5a3
2 +

1
3
+ s3

2a3
wn2
4 −

2

3a3
(
1

a3
+ t3)wn2

3 +
s3wn2

2

a3
−
2t3wn2

a3
 

PCSZ =
2

√3
σ0 ∫ FCSZ dx =

2

√3
σ0√Reqt0(FCSZ1 + FCSZ2)

Xn2

0
  (13) 

FCSZ1 = 
−c2e

−a2wn1

a2
(1 + wn1

2 +
2wn1

a2
+
2

a2
2) +

wn1
6

9a2
−
2wn1

5

5a2
2 +

1
3
+ s2

2a2
wn1
4 −

2

3a2
(
1

a2
+ t2)wn1

3 +
s2
a2
wn1
2

−
2t2
a2
wn1 

FCSZ2 =
−c2e

−a2wn2

a2
(1 + wn2

2 +
2wn2

a2
+
2

a2
2) −

wn1
6

9a2
−
2wn2

5

5a2
2 −

1
3
+ s2

2a2
wn2
4 +

2

3a2
(
1

a2
+ t2)wn2

3 −
s2
a2
wn2
2

+
2t2
a2
wn2 

PBSZ =
2

√3
σ0 ∫ FBSZ dx =

2

√3
σ0√Reqt0(FBSZ1 + FBSZ2)

L

0
  (14) 

Where: 

FBSZ1 =
−c1e

−a1wi

a1
(1 + wi

2 +
2wi

a1
+
2

a1
2) +

wi
6

9a1
−
2wi

5

5a1
2 +

1
3
+ s1

2a1
wi
4 − 

2
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1
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3 +
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a1
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a1
wi 
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−c1e

−a1wn1i

a1
(1 + wn1

2 +
2wn1

a1
+
2

a1
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wn1
6

9a1
+
2wn1

5
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2 −

1
3
+ s1

2a1
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4 +

2

3a1
(
1
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3 −
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+
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Fig. 2. For various front and back tensions, variations of rolling force with roll speed ratio 
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Each curve in Figure 2 represents a particular set of frictional stress conditions that are normalized by the yielding 

stress. The rolling process without any frictional stresses on the material is represented by the first curve. The 

rolling force slightly decreases as the velocity ratio rises. As the upper and lower roll speeds get closer to equality, 

this decrease is explained by a more balanced rolling condition. In comparison to the first curve for the same 

velocity ratio, the second curve illustrates the impact of adding forward frictional stress with a 25% reduction in 

rolling force. When rolling, forward friction helps to lessen resistance. Forward and backward frictional stresses 

acting equally are represented by the third curve. In comparison to the second curve, rolling force is further 

decreased. This suggests that when friction is balanced in both forward and backward directions, rolling conditions 

are more favorable. The effect of greater forward friction in comparison to backward friction is shown by the 

fourth curve: Out of all the cases, rolling force is the least. Increased forward friction greatly facilitates material 

deformation and lowers the rolling force needed. As the velocity ratio rises, rolling force falls. Compared to 

backward frictional stress, forward frictional stress more successfully lowers the rolling force. Rolling force is 

moderately reduced when forward and backward stresses are balanced, as in the third curve. The rolling process 

is optimized when there is less backward friction and more forward friction (as in the fourth curve), which reduces 

the rolling force. The rolling force and pressure distribution are influenced by contact length. The deformation 

zones (FSZ, BSZ, and CSZ) are affected by roll pressure. Points that are neutral. The places where roll surface 

velocity and material velocity coincide. 

(v) Rolling Torque 

Therefore, the rolling torque Tu and Tl exerted by the strip on the upper and lower rolls, respectively, can be 

calculated by integrating the moment of the frictional force along the arc of contact about the roll axis. 

Tu = Ru(μuPBSZ − μuPCSZ − μuPFSZ)  (15) 

Tl = Rl(μlPBSZ − μlPCSZ − μlPFSZ)  (16) 

 

Fig. 3. For various front and back tensions, variation of rolling torque with roll speed ratio. 
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The curves in Figure 3 are as follows: A frictionless rolling situation with no forward or backward frictional 

stresses is depicted by the first curve. In this instance, as the velocity ratio rises, the overall rolling torque falls. 

However, the torque requirements are higher than in other scenarios because there is no friction. Balanced forward 

and backward frictional stresses are represented by the second curve. Similar to the black curve, torque decreases 

as the velocity ratio increases, but because friction helps in both directions, the torque is lower. The third curve 

excludes backward friction and only includes forward frictional stress. In contrast to the second curve, there is 

less rolling torque. Both resistance and the torque needed to deform the material are decreased by forward friction. 

The fourth curve depicts a situation with moderate backward friction and increased forward friction. For every 

velocity ratio, this curve shows the lowest torque values. Increased forward friction greatly facilitates material 

flow, lowering torque and rolling resistance.  

The torque distribution along the roll surfaces is influenced by the contact length. Because they delineate areas of 

slip and no-slip, neutral points have an impact on torque behavior. Roll Radii Higher torques are usually associated 

with larger radii.  

 

Fig. 4. Variation of high-speed rolling torque with roll speed ratio for various front and rear tensions 

The curves in Figure 4 are as follows: the first curve shows a rolling state in which there are no forward or 

backward tensions. As the velocity ratio rises, the torque on the lower roll increases dramatically. When there are 

no tension stresses, more torque is needed than in other situations. Forward and backward tensions are balanced 

in the second curve. Although it is less than the first curve, the torque rises with the velocity ratio. By dispersing 

stresses uniformly throughout the roll interface, balanced tensions aid in lowering torque requirements. Forward 

tension without any backward tension is represented by the third curve. Since forward tension facilitates the 

material's deformation and lowers resistance, the torque is further reduced when compared to the red curve. The 

fourth curve indicates a state with moderate backward tension and increased forward tension. For every velocity 

ratio, this curve shows the lowest torque values. The least amount of torque is needed when forward tension is 

increased because it greatly lowers resistance. In every scenario, the torque on the lower roll rises as the velocity 
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ratio does. When low or moderate backward tension is paired with higher forward tension, less torque is needed, 

improving rolling conditions.  

In comparison to situations that favor higher forward tension, balanced forward and backward tensions (second 

curve) provide a moderate torque reduction. The torque is highest when there are no tension stresses (first curve), 

indicating more rolling resistance. The torque needed for deformation is influenced by the contact length. The 

torque behavior and stress distribution are influenced by the friction coefficient. The areas of slip and the torque 

that results from them are determined in part by neutral points. Tension Distribution: While backward tension 

impacts the backward slip zone (BSZ), forward tension lowers resistance in the forward slip zone (FSZ).  

 

Fig. 5. For various front and back tensions, variations of low-speed rolling torque with roll speed ratio 

The curves in Figure 4 are as follows: Rolling without any forward or backward tension stresses is represented by 

the first curve. As the velocity ratio rises, the upper roll torque gradually decreases. When frictional tensions are 

absent, torque magnitudes are comparatively higher than under other circumstances. A balanced rolling scenario 

with equal forward and backward tension stresses is represented by the second curve. Although it is less negative 

than the first curve, the torque on the upper roll decreases with the velocity ratio. Lower torque values are needed 

because balanced tensions lower resistance. Forward tension without any backward tension is represented by the 

third curve. In comparison to the second curve, the torque reduction is more substantial. Torque magnitudes are 

further reduced by forward tension, which lowers resistance in the forward slip zone. The fourth curve represents 

rolling with a moderate backward tension and a higher forward tension. The largest decrease in upper roll torque 

is seen in the fourth curve. The least amount of torque is needed when forward tension is increased because it 

reduces resistance. 
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Fig. 6. Rolling pressure distributions along the contact length for various friction coefficients at a fixed 

reduction of 30%, as compared by the Gow Yi Tzou model with present model 

2.1 The Upper Bound Approach to Plane of Velocity Interruption 

The plane of velocity interruption among the adjacent bodies subjected to rotational resistant bodies Assume an 

arbitrary plane of velocity interruption S having an orientation of the normal components of velocity are equal 

𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 

𝑟𝑖𝜔𝑖 𝑐𝑜𝑠( 𝛽𝑜 − 𝜓) = 𝑟𝑗𝜔𝑗 𝑐𝑜𝑠(𝜓 − 𝛽𝑜) 

𝑟𝑖𝜔𝑖(𝑐𝑜𝑠 𝛽𝑜  − 𝑠𝑖𝑛 𝛽𝑜  𝑡𝑎𝑛 𝜓) = 𝑟𝑗𝜔𝑗( 𝑐𝑜𝑠 𝛽𝑜 − 𝑡𝑎𝑛 𝜓 𝑠𝑖𝑛 𝛽𝑜) 

𝑟𝑖𝜔𝑖(𝑐𝑜𝑠 𝛽𝑜  𝑐𝑜𝑠 𝜓 − 𝑠𝑖𝑛 𝛽𝑜  𝑠𝑖𝑛 𝜓) = 𝑟𝑗𝜔𝑗(𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝛽𝑜 − 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝛽𝑜) 

𝑡𝑎𝑛 𝜓 =
𝑠𝑖𝑛 𝜓

𝑐𝑜𝑠 𝜓
=

(𝑥 − 𝑥𝑐)

√0.5𝐷2 − (𝑥 − 𝑥𝑐)
2
 

(𝑥 −
𝑥0𝑖 − 𝜉 𝑥0𝑗

1 − 𝜉
)

2

+ (𝑦 −
𝑦0𝑖 − 𝜉 𝑦0𝑗

1 − 𝜉
)

2

=
2𝐶𝜔

1 − 𝜉
+ (

𝑥0𝑖 − 𝜉 𝑥0𝑗

1 − 𝜉
)

2

+ (
𝑦0𝑖 − 𝜉 𝑦0𝑗

1 − 𝜉
)

2

(∵ 𝜉 =
𝜔𝑗

𝜔𝑖
) 

𝑡ℎ𝑒  ⥂⥂ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 

𝛥𝑢 = 𝑢𝑖𝑇 − 𝑢𝑗𝑇 = 𝑢𝑖 𝑠𝑖𝑛( 𝛽𝑜 − 𝜓) + 𝑢𝑗 𝑠𝑖𝑛(𝜓 − 𝛽𝑜) 

𝛥𝑢 = (
1

0.5𝐷
) [
𝜔𝑖(𝑦 − 𝑦0𝑖)(𝑦 − 𝑦𝑐) − 𝜔𝑖(𝑥 − 𝑥0𝑖)[−(𝑥 − 𝑥𝑐)] + 𝜔𝑗(𝑥 − 𝑥0𝑗)

+[−(𝑥 − 𝑥𝑐)] − 𝜔𝑗(𝑦 − 𝑦0𝑗)(𝑦 − 𝑦𝑐)
] 

𝛥𝑢 =  0.5𝐷 |𝜔𝑖 (1 −
𝜔𝑗

𝜔𝑖
)|  = 0.5𝐷|𝜔𝑖(1 − 𝜏)| 
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𝜑𝐸𝐹 = 2  𝑠𝑖𝑛
−1
𝐸𝐹

𝐷
= 2 𝑠𝑖𝑛−1√

(𝑥𝐸 − 𝑥𝐹)
2 + (𝑦𝐸 − 𝑦𝐹)

2

𝐷
 

𝐸𝐹 = 𝐷(𝜋 − 𝑠𝑖𝑛−1√
(𝑥𝐸 − 𝑥𝐹)

2 + (𝑦𝐸 − 𝑦𝐹)
2

𝐷
) 

Shear power losses along the velocity of plane when the both resistant bodies are in rotational 

𝑃𝑠 = ∫
𝜎𝑜

√3𝑆

𝐷|𝜔𝑖(1 − 𝜉)| 𝐸𝐹 

𝑃𝑠 = ∫
𝜎𝑜

√3𝑆

𝐷|𝜔𝑖(1 − 𝜉)| 𝐷 (𝜋 − 𝑠𝑖𝑛
−1√

(𝑥𝐸 − 𝑥𝐹)
2 + (𝑦𝐸 − 𝑦𝐹)

2

𝐷
) 

Shear power losses along the velocity of plane when the both resistant bodies are in translations 

𝑡𝑎𝑛 𝜃𝑖 = −
(𝑥 − 𝑥0𝑖)

(𝑦 − 𝑦0𝑖)
   𝑡𝑎𝑛 𝜃𝑗 = −

(𝑥 − 𝑥0𝑗)

(𝑦 − 𝑦0𝑗)
 

𝑡𝑎𝑛 𝜓 =
𝑡𝑎𝑛 𝜃𝑖 (𝑦 − 𝑦0𝑖) − 𝜉 𝑡𝑎𝑛 𝜃𝑗 (𝑦 − 𝑦0𝑗)

(𝑦 − 𝑦0𝑖) − 𝜉(𝑦 − 𝑦0𝑗)
 (∵ 𝜉 =

𝜔𝑗

𝜔𝑖
) 

𝜉 = 𝜏
𝑐𝑜𝑠 𝜃𝑗

𝑐𝑜𝑠 𝜃𝑖
[
(𝑦 − 𝑦0𝑖)

(𝑦 − 𝑦0𝑗)
] = 𝜏

𝑠𝑢𝑏𝜃𝑗

𝑠𝑖𝑛 𝜃𝑖
[
(𝑥 − 𝑥0𝑖)

(𝑥 − 𝑥0𝑗)
] [∵ 𝜏 =

𝑢𝑗

𝑢𝑖
] 

𝛥𝑢 = 𝑢𝑖√1 + 𝜏
2 − 2𝜏 𝑐𝑜𝑠 𝜑 

𝑃𝑠 = ∫
𝜎𝑜

√3𝑆

𝛥𝑢2𝑑𝑥

𝑢𝑖(𝑐𝑜𝑠 𝜃𝑖 − 𝜏 𝑐𝑜𝑠 𝜃𝑗)
 =

𝜎𝑜

√3

𝛥𝑢2(𝑥𝐸 − 𝑥𝐹)

𝑢𝑖(𝑐𝑜𝑠 𝜃𝑖 − 𝜏 𝑐𝑜𝑠 𝜃𝑗)
 

 

Fig. 7. Two rigid bodies in rotational motion-boundary of velocity discontinuity 
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(Courtesy: Betzalel Avitzur Professor and Director, Insitutue for Metal Forming, Department of Metallurgy and 

Materials Engineering, Lehigh niversity, Bethlehem, Pa. 18015) 

𝑣1𝑐𝑜𝑠(𝛾1 − 𝛽) = 𝑣2𝑐𝑜𝑠(𝛽 − 𝛾2)  (17a) 

𝑣1𝑐𝑜𝑠𝛾1 − 𝑣1𝑠𝑖𝑛𝛾1
𝑑𝑦

𝑑𝑥
= 𝑣2𝑐𝑜𝑠𝛾2 − 𝑣2𝑠𝑖𝑛𝛾2

𝑑𝑦

𝑑𝑥
  (17b) 

∫
𝑑𝑦

𝑑𝑥
𝑑𝑥 = ∫ (

𝑣2𝑐𝑜𝑠𝛾2−𝑣1𝑐𝑜𝑠𝛾1

𝑣2𝑠𝑖𝑛𝛾2−𝑣1𝑠𝑖𝑛𝛾1
) 𝑑𝑥  (17c) 

(𝑥 − 𝑋)2 + (𝑦 − 𝑌)2 =
𝐶1𝜔1

1−𝜆
+ (𝑋)2 + (𝑌)2  (17d) 

𝑤ℎ𝑒𝑟𝑒  𝑋 =
𝑥01−𝜆𝑥02

1−𝜆
; 𝑌 =

𝑦01−𝜆𝑦02

1−𝜆
; 𝐶1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛  

2.2 An Upper Bound Approach for Power Analysis of Cold Strip Rolling  

B. Avitzur et.al,[1] conducted experimental work and develop the model to calculate the separation force, the 

minimum power requirement and coefficient of friction for the mises material dimensionless parameter identified 

and it is proportionally increase with the maximum possible reduction, maximum percentage reduction was 

effected by the process variables like coefficient of friction standard unit. Assumed stress distribution: 

1. Separation Force P  

The separation force is directly formulated based on stress variation according to the experimental detail, it shows 

that if the roll separation force with no tensions is achieved experimentally then, the accurate value of the 

separating force can be achieved. 

𝑃 =
2

3
𝜎𝑜√𝑅𝑜(𝑡𝑖 − 𝑡𝑓) ∗ [1 −

1

2
 
𝜎𝑥𝑓+𝜎𝑥𝑏

2

3
𝜎𝑜

]   

2. Roll Power WR: 

if thefriction coefficient greater than the min value and the position of the neutral point moves towards the exit 

then the velocity of the exit is reduced and the requirement of power for deformation falls, if the friction coefficient 

equal to its minimum value the outlet velocity does not influence the power equilibrium 

𝑊̇𝑅 =
2

√3
𝜎𝑜𝑈𝑄 ∗ 𝑡𝑓√

𝑡𝑖
𝑡𝑓
− 1  ∗  𝐾 −

2

3

𝜎𝑥𝑏 − 𝜎𝑥𝑓
2

√3
𝜎𝑜

 

3. Torque T 

𝑇 =
2

√3
𝜎𝑜𝑄(𝑅𝑜𝑡𝑓)√

𝑡𝑖
𝑡𝑓
− 1   ∗ 𝐾 −

2

3

𝜎𝑥𝑏 − 𝜎𝑥𝑓
2

√3
𝜎𝑜

  

4. Position of the Neutral Point (when αn =0)  

for any percentage decrease under some possible condition, the friction coefficient and be high, if friction 

coefficient crosses its minimum value then the position of the neutral point changes form exit to entry, if it is 

continue i.e., greater friction coefficients the position of the neutral point moves near to the entrance, at the same 

time the exit velocity will rise. 

2𝑄 =

𝑙𝑛
𝑡𝑖
𝑡𝑓
+
𝜎𝑥𝑏−𝜎𝑥𝑓

2

√3
𝜎𝑜

𝜎𝑥𝑏−𝜎𝑥𝑓

2

√3
𝜎𝑜√

𝑡𝑖
𝑡𝑓
−1

[𝑙𝑛{
√𝑡𝑖−𝑡𝑓

𝑡𝑛
}+(

𝜎𝑥𝑏
2

√3
𝜎𝑜
−1)]∗2 𝑡𝑎𝑛−1√

𝑅𝑜
𝑡𝑓
𝛼𝑛−𝑡𝑎𝑛√

𝑡𝑖
𝑡𝑓
−1
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5. Torque (when αn =0) 

1)(
3

2
−=

f

i
foo

t

t
tRQT 

[1 −
1

2

𝜎𝑥𝑏−𝜎𝑥𝑓
2

√3
𝜎𝑜

]  

According to Whitton’s experimental data   the Separation force and the Torque formulations as follows 

( ) ( )fixbffioo ttBttBBP −+−+=  21
  

𝑇 = 𝐴𝑜 + 𝐴1 (𝜎𝑜𝜇√𝑡𝑖 − 𝑡𝑓
𝑓
) + 𝐴2(𝜎 𝜇𝑥𝑏 √𝑡𝑖 − 𝑡𝑓)  

2.3 An Upper Bound Approach Using Kinematically Admissible Velocity Fields (KAVF) and Kinematical 

Admissible Strain Rate Field (KASRF) in Cold-Strip Rolling 

Betzalel et al [2] Determine actual work done by the rolling by assuming the coulomb friction and shear stress 

experimental results are analysed and derived the mathematical expression for power consumption, shear stress, 

efficiency, minimum friction, maximum reduction, neutral point position finally the impact has been observed on 

the energy consumption. and also the influence of variables on power consumption has been observed.  

1. Upper Bound on Energy Consumption:  

The contact plane between stock and the rollers was assumed as a velocity discontinuity and uniform shear stress 

also the columb friction between rolls and stock. Kinematically admissible velocity field is which executes the 

uniform density whole the body and extreme conditions on the surface.  Kinematically admissible strain rate field 

(KASRF) is originated from a KAVF, the upper bound energy utilization is translated to the influence that the 

energy given by the roll power is same the roll power of elongation is consumed only in deformation zone. 

𝐽∗ =  𝐾√2 ∫ √𝜀𝑖𝑗𝜀𝑖𝑗
•

(𝑣)
𝑑𝑉 − ∫ 𝜏𝑖𝑠𝑖

𝑣𝑖 ∗ 𝑑𝑠  

2. Pressure of Rolls on Strip 

let the uniform pressure variation be selected, friction hill effect and roll flattening were omitted then the pressure 

of rollers on stock is given by the formulation given apart the uniform pressure variation and length of arc contact 

and friction coefficient were considered. 

𝑃 = 
2

3
𝜎𝑜 [1 −

1

3

𝜎𝑥𝑓−2𝜎𝑥𝑏
2

√3
𝜎𝑜

]  

Average Pressure with stone’s the approximations is significant for nominal reductions and mean front and back 

tensions. 

𝑃 =
2

3
𝜎𝑜 (1 −

1

3

𝜎𝑥𝑓−2𝜎𝑥𝑏
2

√3
𝜎𝑜

)
𝐸𝑥𝑝(

𝜇𝐿

𝑡𝑜
)−1

𝜇𝐿

𝑡𝑜

  

𝑡𝑜 =
𝑡𝑖+𝑡𝑓

2
 𝐿 = √𝑅𝑜(𝑡𝑖 − 𝑡𝑓) + [

8𝑅𝑜(1−𝜐
2)

𝜋𝐸
𝑝]
2

+
8𝑅𝑜(1−𝜐

2)

𝜋𝐸
𝑝  

3. Minimum Energy Required 

As you know the external power is transferred to the stock through the friction, the power required is optimized 

if the rolling is done with minimum shear factor when the position of the neutral point is at the exit. 
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𝐽∗ =
2

√3
𝜎𝑜𝑈𝑡𝑓

√
𝑡𝑖
𝑡𝑓
−1

𝑡𝑎𝑛−1√
𝑡𝑖
𝑡𝑓
−1

[𝑙𝑛
𝑡𝑖

𝑡𝑓
+

1

4
√
𝑡𝑖

𝑅𝑜
√
𝑡𝑖

𝑡𝑓
− 1 +

𝜎𝑥𝑏−𝜎𝑥𝑓
2

√3
𝜎𝑜

]  

4. Efficiency 

The efficiency factor is defined as the ratio of power of internal deformation to work required per unit volume, 

the efficiency factor is inversely proportional to the percentage reductions for moderate reductions such as 10-20 

% the efficiency factor is high, for higher reductions the efficiency factor is low. 

𝜉 =
𝑊𝑖

𝑊
  

𝑊 =

2

√3
𝜎𝑜

1+
𝑅𝑜
𝑡𝑓
𝛼𝑛
2
{𝑙𝑛

𝑡𝑖

𝑡𝑓
+

1

4
√
𝑡𝑖

𝑅𝑜
√
𝑡𝑖

𝑡𝑓
− 1 +

𝜎𝑥𝑓−𝜎𝑥𝑏
2

√3
𝜎𝑜

𝑅𝑜

𝑡𝑓
𝛼𝑛
2 +

𝑚

√
𝑡𝑓

𝑅𝑜

[√
𝑡𝑖

𝑡𝑓
− 1 − 𝑡𝑎𝑛−1√

𝑡𝑖

𝑡𝑓
− 1]}  

𝑊𝑖 =
2

√3
𝜎𝑜 𝑙𝑛

𝑡𝑖

𝑡𝑓
  

2.4 An Upper Bound Approach to Calculate of Roll Power and Friction Coefficient in Cold Strip Rolling 

with Tensions 

The roll power for internal deformation is given by  

𝑊𝑖 =
2

3
𝑣𝑓𝑡𝑓 {[𝜎𝑜𝑖 +

𝜎𝑜𝑓−𝜎𝑜𝑖

𝑡𝑖−𝑡𝑓
𝑡𝑖] 𝑙𝑛

𝑡𝑖

𝑡𝑓
− (𝜎𝑜𝑓 − 𝜎𝑜𝑖)}  (18) 

Wi=Internal power of deformation 

1. Co-efficient of Friction 

The friction coefficient is one process parameter which influencing the maximum percentage reduction the friction 

coefficient function of many process parameters such as surface roughness of the roller and stock, speed of the 

rollers and lubricants used to check the various conditions for maximum reductions with 20-inch roller diameter 

and the coefficient of friction 7%/ 

𝜇 =
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2
√
𝑡𝑓

𝑅𝑜

[𝜎𝑜𝑖+
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𝑡𝑖] 𝑙𝑛

𝑡𝑖
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−(𝜎𝑜𝑓−𝜎𝑜𝑖)+

𝜎𝑥𝑏−𝜎𝑥𝑓
2

√3

√3
2 (𝜎𝑥𝑏−𝜎𝑥𝑓)−(𝜎𝑜𝑓−𝜎𝑜𝑖)

√(
𝑡𝑖
𝑡𝑓
−1)−{√

3
2
[𝜎𝑥𝑏+

𝜎𝑥𝑓−𝜎𝑥𝑏
𝑡𝑖−𝑡𝑓

𝑡𝑖]−[𝜎𝑜𝑖+
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𝑡𝑖]× 𝑡𝑎𝑛
−1√(

𝑡𝑖
𝑡𝑓
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2.5 An Upper Bound Approach to Maximum Reduction in Cold Strip Rolling 

The equation for power balance: 

2(𝑊𝑅 −𝑊𝐹) =  𝑊𝑖 +𝑊𝑏 −𝑊𝑎  

Wi=Internal power of deformation Wa= Power Introduced by The front pull 

Wb= Power Deducted By the back pull Wf =Frictional Power losses 

𝑊𝑖 =
2

3
𝑣𝑓𝑡𝑓 {[𝜎𝑜𝑖 +

𝜎𝑜𝑓−𝜎𝑜𝑖

𝑡𝑖−𝑡𝑓
𝑡𝑖] 𝑙𝑛

𝑡𝑖

𝑡
− (𝜎𝑜𝑓 − 𝜎𝑜𝑖)}  

𝑊𝑎 = 𝜎𝑥𝑓 𝑡𝑓 𝑈  

UtW fxbb =
𝑊𝑅 −𝑊𝑓  
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= −
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 (19) 

coefficient of friction 
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 (20) 

 

Fig. 7. Effect of front load on the minimum coefficient of friction 

 

Fig. 8. Effect of friction and strip thickness (tf /Ro) on maximum reduction 
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Fig. 9. Effect of maximum reduction vs coefficient of friction 

 

 

Fig. 10. Effect of friction and back tension on efficiency 
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Fig. 11. Effect of friction and front tension on efficiency 

 

Fig. 12. Comparison of reduction vs efficiency values with Avitzur and present model 
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Fig. 13. Maximum length vs final thickness with Avitzur and present model 

3. Conclusions 

➢ Using a modified slab approach, a thorough analytical framework for asymmetric cold strip rolling has 

been created that can capture intricate deformation characteristics resulting from roll speed mismatch, 

frictional asymmetry, and applied tensions. Compared to traditional symmetric or partially asymmetric 

formulations, the suggested model provides a more physically representative description of material flow 

by methodically identifying three distinct deformation regions: forward slip zone, cross shear zone, and 

backward slip zone. 

➢ For both upper and lower rolls, closed-form solutions for rolling pressure, rolling force, and rolling torque 

are made possible by the derived equilibrium equations and boundary conditions. According to parametric 

analysis, deformation behavior, neutral point locations, and load requirements are strongly and coupledly 

influenced by roll speed ratio, frictional stress distribution, and front-back tension combinations. When 

forward friction predominates over backward friction, an increase in roll speed ratio consistently lowers 

rolling force and torque, indicating favorable energy transfer conditions and improved process efficiency. 

➢ The current formulation predicts smoother pressure distributions and more realistic torque trends, 

particularly under high asymmetry conditions, according to a comparative evaluation with well-established 

analytical models. A major drawback of previous slab-based models is addressed by the inclusion of cross 

shear effects, which greatly increases the precision of stress and power estimates. 

➢ The roll speed ratio, which has an ideal value of about 80%, is the most important control parameter 

influencing rolling performance, according to grey relational analysis. Front tension's contribution comes 

in second. By minimizing rolling force and torque, the optimized parameter set lowers energy consumption, 

improves strip surface quality, and lessens roll surface damage.  

➢ The robustness of the proposed model is reinforced by validation through confirmation tests, which show 

close agreement between analytical predictions and optimized outcomes. With direct relevance to industrial 

applications involving high-strength alloys and sophisticated rolling configurations, the developed 
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analytical approach offers a dependable and computationally efficient tool for the design, optimization, and 

control of asymmetric cold rolling processes. 
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