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Abstract: - The article develops and studies two possible diseases that can impact the predator population in an
ecological model.SIS spread horizontallywhen an infected predator came into touch with a suspicious predator.
Moreover, the second (SI illeness) is vertically transferred from environmental influence due toan external
source. Diseases cannot be spread from preadtor to victim through touch or predation. Holling type II and
linerafunctional response are utilized to show how healthy and suspectable predators feedon each other, while
linearincidence is utilized for demonstrationg the evolution of disorders. All possible equilibrium locations were
examined for this model. The model’s local and global dynamics are examined by numerical simulation, as
wellas the parameter sensitivity analysis.
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1. Introduction

Mathematical models in biology are generally grouped into two major classes: ecological models, which
describe interactions among species in an ecosystem, and epidemiological models, which examine the spread of
diseases within animal or human populations [15, 18]. The foundational SIS framework, first analyzed in [13],
marked an important step in the development of epidemiological modelling. As research progressed, it became
clear that combining ecological interactions with disease transmission leads to eco-epidemiological models,
which offer a more realistic understanding of population dynamics [3]. Several studies have incorporated
infection into prey—predator systems, particularly by introducing disease in the prey population [4, 6, 8, 23].
Other investigations have focused on models in which the predator species may become infected [8,9,17,20].
Kadhim and Azhar [11] explored a predator population experiencing two different types of infections under
linear and Holling type-II functional responses. Additional dynamical analyses involving various ecological
effects can be found in [14, 16, 21, 22]. The authors of [5,12,24,25] examined stability behaviour and the
existence of Hopf bifurcation in intraguild predation models with ratio-dependent responses. Several researchers
[26-29] have also employed different types of functional responses in both epidemiological and ecological
models.

In recent years, there has been increasing interest in prey—predator frameworks that include disease in either the
prey or the predator population [1,2,7,10,19]. However, to the best of our knowledge, no work has examined a
three-species prey—predator system involving two interacting predator species, Holling type-II functional
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responses, and infection within the predator population. Motivated by this gap, we formulate and study a non-
delayed eco-epidemiological model that captures these interactions.

2. Mathematical Formulation

The model captures the interactive behaviour among the prey and predator populations. The growth of prey is
influenced by birth, natural mortality, competition, and predation, while the predators grow by consuming prey
and decline due to natural death and intraspecies competition.

a;PQ a;PR
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Table 1: Description of the parameters used in the model

Parameter Biological Representation
/ Birth rate of prey
bo Natural death rate of prey
co Intraspecies competition rate of prey
ki Fear effect caused by predator O
2 Fear effect caused by predator R
a Attack rate of predator Q on prey P
@ Attack rate of predator R on prey P
by, by Half-saturation constants for predators Q and R
c1, ¢ Inhibitory effect constants for predators Q and R
S, o Conversion efficiency rates
u, uz; Vi, 2 Intraspecies competition rates of predators
di, da Natural death rates of predators

Accompanied by initial conditions F (0) > 0, G(0) > 0, and H(0) > 0,that there are sixteen parameters
which can be reduced to make the model easy to deal with it by dimensionless parameters and variables to

simplify the system.
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By accordance with the following dimensionless system

L S . R
dt 1+myq+m,r sP—P m, +msp +p2  mg + myp + p? sP»
dq mopq )
qdt  m +mep + 02 Tm p+p2_m1°q — My1qT — Mypq
4 5
dr myspr

2
— = — My, % — Mysqr — Myt
dt  mg+m;p + p? 14 159 16

With p (0) >0, g0) >0, and » (0) > 0. Note that there is reduced in number of parameters from seventeen in the
system to fifteen in the system. It is easy to exam about all the functions of the system are continuous and have
continuous partial derivatives on the following positive three-dimensional space R™: p (0) >0, ¢ (0) >0, r (0) > 0.

So, the solution of the system exists and unique. Moreover, with the non-negative initial conditions all the
solution of the system uniformly bound as illustrated in the following theorem.

3. Positivity and Boundedness
In this section we discuss the positivity and bounded solution of the system (2.2)

Positivity and Boundedness of Solutions

THEOREM 3.1 Intheregion A € R*3all solutions of the system remain positive and uniformly bounded,

Were
q r 2(1 —mz —mg)(1 —my)
A=, qr)ER:0<p<(1-my),p+—+—<
[A=(.q 3 P DP et " ]
And
U =minl —m3z — mg, My, Myg
Proof:
From the first equation of the system, we have
dp p
—=<1- -p?=(01- (1—7)
ot (1-mz)p—p* =1 —-my)p a—my)

This implies that

lim;,supp(t) < (1 —mj3)
Let

w=p+£+—
myg Myg3

Differentiating w with respect to t gives

dw p 2 pq pr pq my
T T o o . M3p—pT— 2 7 Mgp+—F——————— — ——
dt 14+ m;q+myr my+mgp+p? mg+m;p+p my+msp+p mg
mqq my; T My , Mys Mye
——qr——q+t———————5 1" ———qr———r
My My me +m;p +p=  My3 my3 my3

Simplifying, we obtain
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d_W < (1 — — ) — & — %
dt = mz — Mg)pP - q Mg
Using the definition of p, we further derive
d—W<2(1— —mg)p — ( +i+i)
dt = mz —Mg)p — U\P Mo | My
Since biologically 1 — m3; — mg > 0, it follows that
dw
dt
Applying Gron wall’s inequality yields

+uw < 2(1 — mz — mg)(1 — m3)

20—mm3; —mg)(1—m
w(t) < ( 3 #s)( 3)ast_)oo

Thus p(t), q(t), r(t) remains positive and uniformly bounded in A.

4. The Existence of Equilibrium Points

In the below study, it appears there are at most in system six equilibrium points which will be studied of

the stability at each of these points, explicit computation appears as follows:
* The equilibrium point is trivial as £(0, 0,0) .

* Ei1(p,0,0),p"=1—m3—mg which exist under the survival condition 1 —m3 —mg > 0.

1 [ mqgp
myo Lmy+msp+p?

* E,=(9,40),3 = - mlz] where P is the positive root of the equation.

Nip” + N,p® + Nop® + Nyp* + Ngp3 + Ngp? + N,p + Ny = 0

Were
There is atleast one positive my, < #ﬁﬁﬁ’
N, >0,Ng <0,
OrN; <0,Ng>0
o  First predator free equilibrium is denoted by E; = (p, 0, #) where # is given by

S R 1
r= myg Lmg+m,p+p2 m16]’

P is positive root,

D\p” + Dyp® + D3p® + Dap* + Dsp> + Dep? + D7p + Dg = 0,

mie < ml3p Dy >0,Dg <0,

m+m
6
D1 <0,Dg >0,
1 q T
o E,=(p'qg"z" =— M3 —p — - —mg=0
+=0"a"2).0: 14mqq+myr 3P Mma+msp+p?  me+m,p+p? 8 >
mgp
=——2  _mg—myr—my, =0
92 Matmepip? 109 11 12 >
mi3P
=— 8 mr—Msg—My =0
9s P— 14 154 16 >
r= my3p—(me+myp+p?)(mysq+mye)
my4(me+m;p+p?) ’

Substitute the equations
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1

q
h ) = - My—p—-—
1P 0) 1+mq+m mysp — (M + myp + p?)(My5q + Mye) TP m, + mgp + p?
! z my4(me + myp + p?)
_ My3p — (me + myp + Pz)(qu +mys)
my,(mg + myp + p?)
ps =0
_ Mop myzp — (Mg + m;p + p?)(my5q +mye)|
h,(,q) = ———————5 —Myoq — My — My =0

my + mgp + p? my4(me + myp + p?)

h.(0,y) = Eiq* + E,q + E;=0
h,(0,y) =Ciq+C, =0
E = mé (memyy — mymys)(Mmymyy, — mymys)
E, = m¢mi{,(1 + mymyms + mymymg) — mgmémy,(mys + mymys + my) — mymymim,,mys(mz + mg)
— mymmim,,m;6 + 2mym,mim,smy,
E3y = —mymimi, (1 — mz —mg) — mymmy,myg[1 + mymg(mz + mg)] + mymymimi,
C1 = mymg(myomy, — myymy5)
Cy = mymg[my,(my, +my3) — myymye]
—E, — E? — 4E,E,

4, = 2E; >0
_—Ey+ EZ — 4E,E;4
qz2 = 2E,
Gy
a3 = C,
The following conditions are satisfied
Ei >0
E; >0
Ci>0C<0
or
C; <0,C2>0
q1 > q3
dh,
d 0q
o9 5,
dg  Ohy
ap

mysp” > (Mg + m;p* +p*2)(My5q" + mye)
By finding the jacobian matrix
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b, g

o9, 09:,
q p q 9q g2
ap aq

4] ms + 2
99, _ _,  a(ms +2p)

%
p ar
%
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993
r

W+g3

r(m; + 2p)

ap B?

J(Eop) can be written as
}\1 = 1 —_ m3 +
}\2 = —Mmq, <

}\3 = —Myg <

BS

mg
0
0

The above is locally asymptotically stable when it follows the condition

1<mz+mg
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A

[ . p 14
my+msp+p me+m;p+p
S
my + mgp + p?

S
0 0 S
mg + m,p + p?

)\12=—A_m

my3p
Az = NS
mg+m,p+p

The above-mentioned values is negative, then it is said to be locally asymptotically stable if the below

Mye

condition satisfies

mop my3p
— = <My = < My
my + msp + p? me + m;p + p?
The Jacobian matrix can be written as
J(Ey) = [a;/j]
Where
q'(ms + 2p)”
my +mspV + 9
—m;p”
B2V
—myp’ p’
BY  mg 4 m,pY +p?

Q. = Molma = p")%q"
21 - O =

af; =p'|-1+

vV
ai; =

AV
a3 =

m, + mgpY + p?
vV \"

Az, = —Mq0q
vV \"

Qz3 = —M11q

) VA
az, =az; =0

\
v _ mq3p
a33 - =

——m
mg + m,p + p? 16

With
BY =1+m9
By = m, + mgp¥ + p'?
BY = mg + m,p¥ + p¥?
The characteristic equation of J (E>) is
(A2 =T, A+ Det,)(a¥; —2) =0

1e.,
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2 \2 \% \% \2 \% \2
A% = (af; + az)A + af a3, — afraz,

If the condition

my3p”

<mysq” +my

V(ims + 2pV
q"( ;zv P)<1
2
P2 < m,

These are the activated eigen values of J (E») and root of the characteristic equation arrives negative real
parts.

Similarly, jaccobian matrix can be written as
J(E3) = [ajl—

Then the J(£3) equation can be written as

ie.,

(A — (@1 + TQ33)A + aan) G@s) — Gaz ey )@z — N =0

If the condition

mep _
- —  — < mllr + m12
my + mgp + p?

7(m, + sz)

me +m;p + p?

pY2 < mg

Arrives this shows that the eigen values of J(£3) and roots of equation have a negative real part, now the

jaccobian matrix of interior equilibrium point can be represented as

Ey = (pq° 1)
J(Eq) = [aj]
Were,

X (ms +2p")q" (m; +2p*)r”
a;; =p | -1+ B2* B2+
2 3

a =4 B2+
2

— *

Qzz = —My0q

X

Qdz3 = —Mq1q
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az; =
B2
3
— *
— *

Were
Bf =1+ mq" +myr*
B} =m, +mgp* +p*?
B} = mg+m,p* +p*?
The below theorem excute the local stability criterion of interior equilibrium point. Assume that system has

an interior equilibrium point, it is locally asymptotically stable if the following conditions are met

(ms +2p")q" (m; +2p")r”
B;? B;?

p*? < min{m,, my}

My M5 < MygMyy

momys(m, — p*z) me — p*z momy,(ms — P*Z)

*2 2% *2
myomy3B; B3 my my3B;

N my3(mg — pz*)

L[ M2 1
my1q B2 < mMmysp B2 + B_§
3 1

5. ensitivity Analysis:

The outcomes of deterministic model systems are governed by the input parameters of model system,
which may show some uncertainty in their selection or determination. We employed a local sensitivity
analysis to evaluate the impact of uncertainty and the sensitivity of the outputs of numerical simulations to
variations in each parameter of the system using the method of partial rank correlation coefficients
(PRCC) and Latin hypercube sampling. The parameters with significant impact on the outcomes of
numerical simulations are determined by sensitivity analysis. To generate the LHS matrices. We assume
that all the model parameters are uniformly distributed. Notice that the PRCC value lies between -1 and
1. Negative (positive) values represent a negative (positive) correlation of the model outcomes with its
parameter. A negative (positive) correlation indicates that a negative (positive) change the parameter will
decrease (increase) the model output. Bigger absolute value of the PRCC represents the larger correlation
of the parameter with the outcome. The PRCC values are represented by bar graphs in Figure 5.
6. Hopf Bifurcation

THEOREM 6.1 (Hopf bifurcation at the coexistence equilibrium) Consider system (2.2) and let E*(h1) =
(P*, O, R*) be a coexistence equilibrium depending smoothly on the harvesting parameter /;. Let the
characteristic polynomial of the Jacobian matrix J* = J(P*, Q% R*) at E* be
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A3+ A1(h)A? + Ax(h)A+ As(h) = 0,
where A1(h1), A2(h1) and As(h) are defined
Ay = —tr(J¥), A = sum of the principal 2 X 2 minors of J¥, Az = —det(J).
Assume that there exists hy > 0 such that
A (h7) >0,
A,(h7) >0,
Az(hi) >0,

A1 (h1)Az(hy) = A3(hy)
and the transversality condition

i(A (h)Ay(hy) — A3(hy)) #0
dh1 1 1 2 1 3 1 hl:h;

Then, as h, passes through hj,system(2.2) undergoes a Hopf bifurcation hj,system(2.2) undergoes a Hopf

bifurcation at the equilibrium E*(h]), and a family of nontrivial periodic solutions bifurcates from E*.
7. Numerical Simulation

In this part, we give the numerical simulation for the system (2.2) using MATLAB Ode45 software
with 500 step size and, set of parameter values p1 = 0.2, p» = 0.2, p3 = 0.01, p4 = 0.3, ps = 0.2, ps =
0.3,p7 = 0.2,ps = 0.1,p9 = 0.7, and pi1o = 0.2,p11 = 0.1,p12 = 0.1, p13 = 0.7, p1a =0.2, p15 = 0.1,
pis = 0.1 The rate of the u; does not affect the dynamics of the system (2.2). So, we fix the value for u as
0.5, 0.7, 0.9. The effect of changing the conversion rate u> of vulnerable predator from prey on the
dynamical changes of the system (ref eqn2) is investigated by setting 4> = 0.6, 0.8 and leaving the other
parameters the same as given above. Then, the solutions diagram of the system are plotted in the Figure.
All prey species start to decline, and all predator species start to increase when the exchange rate between
prey and vulnerable predator grows, yet the system remains at an asymptotic stable coexistence point.
Now, under the impact of changing the infection rate of u3, we study the proposed system numerically
with u3 = 0.3, 0.4 and then time evaluation plots are given in Figure 1. Again, the system has an
asymptotically stable equilibrium point. According to Figure 2, the value of the prey species and
susceptible predator species decreases as the infection rates increase, while the prey species and infected
predator species can begin to increase. For the small rate of recovering as us = 0.1 then the system (2.2) is
locally asymptotically stable, but for the small increment of us = 0.3 the prey will die out and survival
susceptible to predator and infected predator only. Then, the rate at which the effect us = us = 0.3, 0.8 and
the results which have been shown in Figure 3. For the rate of us = u9 = 0.2, 0.4 then the system (2.2) shows
that the prey species are extinct and longtime survival only other two species, which is projected in Figure
3. Then the value of u7 = u1o = 0.6,0.8

Predator (w)
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Figure 1: Phase portrait of the system (2,2)
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Figure 2: Phase portrait of harvesting species
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Figure 4: Time Series of harvesting species
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Figure 5: Sensitivity Analysis Bar Graph

8. Conclusion

We designed and evaluated the Holling type II functional response in the sick predator-prey system in
this work. The model is composed of three separate, nonlinear differential equations that represent the
behavior of three distinct populations: prey F', predators G that are prone to becoming ill, and predators H
that are already ill. To assess the role of sensitivity and uncertainty of the numerical simulations with
respect to variations in each parameter of the model system, we have also employed a local sensitivity
analysis using PRCC. To validate our analytical results and understand the impact of changing the
infection rates u3, u7 and recovery rates us, us on the system’s dynamical changes (2.2), the system 2.2) was
numerically examined for the same set of initial conditions and various parameters, yielding the following

results:

1. There is no periodic oscillation existing in system 2.2 through a set of fictitious parameters as in

numerical simulation.

2. Changing the parameters u; i = 2, 3, - - -, 10 and leaving the rest of the parameter values un-

changed from the numerical simulation section has no impact on the dynamical character of the
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system (2.2), and the solution trajectories are getting closer to the point of interior equilibrium.

. One of the most important outcomes is that, when both diseases are present at the same time, the

ecosystem cannot be destroyed.

. The following parameters us, us, us, us and uo plays a crucial role in the proposed diseased

predator-prey system.
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