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Abstract: - The article develops and studies two possible diseases that can impact the predator population in an 

ecological model.SIS spread horizontallywhen an infected predator came into touch with a suspicious predator. 

Moreover, the second (SI illeness) is vertically transferred from environmental influence due toan external 

source. Diseases cannot be spread from preadtor to victim through touch or predation. Holling type II and 

linerafunctional response are utilized to show how healthy and suspectable predators feedon each other, while 

linearincidence is utilized for demonstrationg the evolution of disorders. All possible equilibrium locations were 

examined for this model. The model’s local and global dynamics are examined by numerical simulation, as 

wellas the parameter sensitivity analysis.  
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1. Introduction 

Mathematical models in biology are generally grouped into two major classes: ecological models, which 

describe interactions among species in an ecosystem, and epidemiological models, which examine the spread of 

diseases within animal or human populations [15, 18]. The foundational SIS framework, first analyzed in [13], 

marked an important step in the development of epidemiological modelling. As research progressed, it became 

clear that combining ecological interactions with disease transmission leads to eco-epidemiological models, 

which offer a more realistic understanding of population dynamics [3]. Several studies have incorporated 

infection into prey–predator systems, particularly by introducing disease in the prey population [4, 6, 8, 23]. 

Other investigations have focused on models in which the predator species may become infected [8,9,17,20]. 

Kadhim and Azhar [11] explored a predator population experiencing two different types of infections under 

linear and Holling type-II functional responses. Additional dynamical analyses involving various ecological 

effects can be found in [14, 16, 21, 22]. The authors of [5,12,24,25] examined stability behaviour and the 

existence of Hopf bifurcation in intraguild predation models with ratio-dependent responses. Several researchers 

[26–29] have also employed different types of functional responses in both epidemiological and ecological 

models. 

In recent years, there has been increasing interest in prey–predator frameworks that include disease in either the 

prey or the predator population [1,2,7,10,19]. However, to the best of our knowledge, no work has examined a 

three-species prey–predator system involving two interacting predator species, Holling type-II functional 
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responses, and infection within the predator population. Motivated by this gap, we formulate and study a non-

delayed eco-epidemiological model that captures these interactions. 

2. Mathematical Formulation 

The model captures the interactive behaviour among the prey and predator populations. The growth of prey is 

influenced by birth, natural mortality, competition, and predation, while the predators grow by consuming prey 

and decline due to natural death and intraspecies competition. 

 

𝑑𝑃

𝑑𝑇
=

𝑙𝑃

1+𝑘1𝑞+𝑘2𝑟
− 𝑏0𝑃 − 𝑐0𝑃

2 −
𝑎1𝑃𝑄

𝑏1+𝑐+1𝑃+𝑃2 −
𝑎2𝑃𝑅

𝑏2+𝑐2𝑃+𝑃2 − 𝐻1P, 

𝑑𝑄

𝑑𝑇
=

𝑓1𝑎1𝑃𝑄

𝑏1 + 𝑐1𝑃 + 𝑃2
− 𝑢1𝑄

2 − 𝑣1𝑄𝑅 − 𝑑1𝑄, 

𝑑𝑅

𝑑𝑇
=

𝑓2𝑎2𝑃𝑅

𝑏2 + 𝑐2𝑃 + 𝑃2
− 𝑢2𝑅

2 − 𝑣2𝑄𝑅 − 𝑑2𝑅 

 

                                      Table 1: Description of the parameters used in the model 

Parameter Biological Representation 

l Birth rate of prey 

b0 Natural death rate of prey 

c0 Intraspecies competition rate of prey 

k1 Fear effect caused by predator Q 

k2 Fear effect caused by predator R 

a1 Attack rate of predator Q on prey P 

a2 Attack rate of predator R on prey P 

b1, b2 Half-saturation constants for predators Q and R 

c1, c2 Inhibitory effect constants for predators Q and R 

f1, f2 Conversion efficiency rates 

u1, u2; v1, v2 Intraspecies competition rates of predators 

d1, d2 Natural death rates of predators 

Accompanied by initial conditions F (0) ≥ 0, G(0) ≥ 0, and H(0) ≥ 0,that there are sixteen parameters 

which can be reduced to make the model easy to deal with it by dimensionless parameters and variables to 

simplify the system. 

𝑡 = 𝑙𝑇, 𝑝 =
𝑐0

𝑙
𝑝, 𝑞 =

𝑎1𝑐0

𝑙3
𝑞, 𝑟 =

𝑎2𝑐0
2

𝑙3
𝑅,𝑚1 =

𝑘1𝑙
3

𝑎1𝑐0
2 , 𝑚2 =

𝑘2𝑙
3

𝑎2𝑐0
2 , 𝑚3 =

𝑏0

𝑙
, 

𝑚4 =
𝑏1𝑐0

2

𝑙2
, 𝑚5 =

𝑐1𝑐0

𝑙
, 𝑚6 =

𝑏2𝑐0
2

𝑙2
, 𝑚7 =

𝑐2𝑐0

𝑙
, 

𝑚8 =
ℎ1

𝑙
, 𝑚9 =

𝑓1𝑎1𝑐0

𝑙2
, 
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3 

𝑚10 =
𝑢1𝑙

2

𝑎1𝑐0
2 , 𝑚11 =

𝑣1𝑙
2

𝑎2𝑐0
2 , 𝑚12 =

𝑑1

𝑙
, 𝑚13 =

𝑓2𝑎2𝑐0

𝑙2
, 𝑚14 =

𝑢2𝑙
2

𝑎2𝑐0
2 , 𝑚15 =

𝑣2𝑙
2

𝑎1𝑐0
2 , 𝑚16 =

𝑑2

𝑙
. 

 

By accordance with the following dimensionless system 

 
𝑑𝑝

𝑑𝑡
=

𝑝

1 + 𝑚1𝑞 + 𝑚2𝑟
− 𝑚3𝑝 − 𝑝2 −

𝑝𝑞

𝑚4 + 𝑚5𝑝 + 𝑝2
−

𝑝𝑟

𝑚6 + 𝑚7𝑝 + 𝑝2
− 𝑚8𝑝, 

𝑑𝑞

𝑑𝑡
=

𝑚9𝑝𝑞

𝑚4 + 𝑚5𝑝 + 𝑝2
− 𝑚10𝑞

2 − 𝑚11𝑞𝑟 − 𝑚12𝑞 

𝑑𝑟

𝑑𝑡
=

𝑚13𝑝𝑟

𝑚6 + 𝑚7𝑝 + 𝑝2
− 𝑚14𝑟

2 − 𝑚15𝑞𝑟 − 𝑚16𝑟 

 

With p (0) ≥ 0, q0) ≥ 0, and r (0) ≥ 0. Note that there is reduced in number of parameters from seventeen in the 

system to fifteen in the system. It is easy to exam about all the functions of the system are continuous and have 

continuous partial derivatives on the following positive three-dimensional space R+: p (0) ≥ 0, q (0) ≥ 0, r (0) ≥ 0. 

So, the solution of the system exists and unique. Moreover, with the non-negative initial conditions all the 

solution of the system uniformly bound as illustrated in the following theorem. 

 

3. Positivity and Boundedness 

In this section we discuss the positivity and bounded solution of the system (2.2) 

 

    Positivity and Boundedness of Solutions 

THEOREM 3.1 In the region Λ ⊆ R+, all solutions of the system remain positive and uniformly bounded, 

Were 

[Λ = (𝑝, 𝑞, 𝑟) ∈ 𝑅𝟛
+: 0 ≤ 𝑝 ≤ (1 − 𝑚3), 𝑝 +

𝑞

𝑚𝑞
+

𝑟

𝑚13

≤
2(1 − 𝑚3 − 𝑚8)(1 − 𝑚3)

μ
] 

And 

𝜇 = 𝑚𝑖𝑛1 − 𝑚3 − 𝑚8, 𝑚12, 𝑚16 

 

Proof:  

From the first equation of the system, we have 

𝑑𝑝

𝑑𝑡
≤ (1 − 𝑚3)𝑝 − 𝑝2 = (1 − 𝑚3)𝑝 (1 −

𝑝

(1 − 𝑚3)
) 

This implies that 

lim𝑡→∞𝑠𝑢𝑝𝑝(𝑡) ≤ (1 − 𝑚3) 

Let 

𝑤 = 𝑝 +
𝑝

𝑚9

+
𝑟

𝑚13

 

 

 

Differentiating w with respect to t gives 

𝑑𝑤

𝑑𝑡
=

𝑝

1 + 𝑚1𝑞 + 𝑚2𝑟
− 𝑚3𝑝 − 𝑝2 −

𝑝𝑞

𝑚4 + 𝑚5𝑝 + 𝑝2
−

𝑝𝑟

𝑚6 + 𝑚7𝑝 + 𝑝2
− 𝑚8𝑝 +

𝑝𝑞

𝑚4 + 𝑚5𝑝 + 𝑝2
−

𝑚10

𝑚9

𝑞2

−
𝑚11

𝑚9

𝑞𝑟 −
𝑚12

𝑚9

𝑞 +
𝑝𝑟

𝑚6 + 𝑚7𝑝 + 𝑝2
−

𝑚14

𝑚13

𝑟2 −
𝑚15

𝑚13

𝑞𝑟 −
𝑚16

𝑚13

𝑟 

Simplifying, we obtain  
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m +m p̂+p̂2 

𝑑𝑤

𝑑𝑡
≤ (1 − 𝑚3 − 𝑚8)𝑝 −

𝑚12

𝑚9

𝑞 −
𝑚16

𝑚13

𝑟 

Using the definition of μ, we further derive 

𝑑𝑤

𝑑𝑡
≤ 2(1 − 𝑚3 − 𝑚8)𝑝 − μ (𝑝 +

𝑞

𝑚9

+
𝑟

𝑚13

) 

Since biologically 1 − 𝑚3 − 𝑚8 > 0, it follows that 

𝑑𝑤

𝑑𝑡
+ μ𝑤 ≤ 2(1 − 𝑚3 − 𝑚8)(1 − 𝑚3) 

Applying Gron wall’s inequality yields 

𝑤(𝑡) ≤
2(1 − 𝑚3 − 𝑚8)(1 − 𝑚3)

𝜇
 𝑎𝑠 𝑡 → ∞ 

Thus p(t), q(t), r(t) remains positive and uniformly bounded in Λ. 

 

4. The Existence of Equilibrium Points 

In the below study, it appears there are at most in system six equilibrium points which will be studied of 

the stability at each of these points, explicit computation appears as follows: 

• The equilibrium point is trivial as E0(0, 0, 0) . 

• E1 ( p̂ ,  0, 0), pˆ = 1 − m3 − m8 which exist under the survival condition 1 − m3 − m8 > 0. 

• 𝐸2 = (𝑝̂, 𝑞̂, 0), 𝑞̂ =
1

𝑚10
[

𝑚9𝑝

𝑚4+𝑚5𝑝+𝑝2̂ − 𝑚12]𝑤ℎ𝑒𝑟𝑒 𝑝̂ is the positive root of the equation. 

𝑁1𝑝
7 + 𝑁2𝑝

6 + 𝑁3𝑝
5 + 𝑁4𝑝

4 + 𝑁5𝑝
3 + 𝑁6𝑝

2 + 𝑁7𝑝 + 𝑁8 = 0 

Were 

There is atleast one positive 𝑚12 <
𝑚9𝑝

𝑚4+𝑚5𝑝+𝑝2̂, 

𝑁1 > 0,𝑁8 < 0, 

Or 𝑁1 < 0,𝑁8 > 0 

• First predator free equilibrium is denoted by 𝐸3 = (𝑝̂, 0, 𝑟̂) where 𝑟̂ is given by 

𝑟̂ =
1

𝑚14
[

𝑚13𝑝

𝑚6+𝑚7𝑝+𝑝2̂ − 𝑚16], 

𝑝̂ is positive root, 

D1p7 + D2p6 + D3p5 + D4p4 + D5p3 + D6p2 + D7p + D8 = 0, 

m16 <  m13pˆ 
, D1 > 0, D8 < 0, 

6 7 

D1 < 0, D8 > 0, 

• 𝐸4 = (𝑝∗, 𝑞∗, 𝑧∗),𝑔1 =
1

1+𝑚1𝑞+𝑚2𝑟
− 𝑚3 − 𝑝 −

𝑞

𝑚4+𝑚5𝑝+𝑝2 −
𝑟

𝑚6+𝑚7𝑝+𝑝2 − 𝑚8 = 0, 

𝑔2 =
𝑚9𝑝

𝑚4+𝑚5𝑝+𝑝2 − 𝑚10𝑞 − 𝑚11𝑟 − 𝑚12 = 0, 

𝑔3 =
𝑚13𝑝

𝑚6+𝑚7𝑝+𝑝2 − 𝑚14𝑟 − 𝑚15𝑞 − 𝑚16 = 0, 

𝑟 =
𝑚13𝑝−(𝑚6+𝑚7𝑝+𝑝2)(𝑚15𝑞+𝑚16)

𝑚14(𝑚6+𝑚7𝑝+𝑝2)
, 

Substitute the equations 
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ℎ1(𝑝, 𝑞) =
1

1 + 𝑚1𝑞 + 𝑚2 [
𝑚13𝑝 − (𝑚6 + 𝑚7𝑝 + 𝑝2)(𝑚15𝑞 + 𝑚16)

𝑚14(𝑚6 + 𝑚7𝑝 + 𝑝2)
]
− 𝑚3 − 𝑝 −

𝑞

𝑚4 + 𝑚5𝑝 + 𝑝2

−
𝑚13𝑝 − (𝑚6 + 𝑚7𝑝 + 𝑝2)(𝑚15𝑞 + 𝑚15)

𝑚14(𝑚6 + 𝑚7𝑝 + 𝑝2)
 

𝑝8 = 0 

 

 

 

ℎ2(𝑝, 𝑞) =
𝑚9𝑝

𝑚4 + 𝑚5𝑝 + 𝑝2
− 𝑚10𝑞 − 𝑚12 − 𝑚11 [

𝑚13𝑝 − (𝑚6 + 𝑚7𝑝 + 𝑝2)(𝑚15𝑞 + 𝑚16)

𝑚14(𝑚6 + 𝑚7𝑝 + 𝑝2)
] = 0 

 

 

ℎ1(0, 𝑦) = 𝐸1𝑞
2 + 𝐸2𝑞 + 𝐸3 = 0 

ℎ2(0, 𝑦) = 𝐶1𝑞 + 𝐶2 = 0 

𝐸1 = 𝑚6
2(𝑚6𝑚14 − 𝑚4𝑚15)(𝑚1𝑚14 − 𝑚2𝑚15) 

𝐸2 = 𝑚6
2𝑚14

2 (1 + 𝑚1𝑚4𝑚3 + 𝑚1𝑚4𝑚8) − 𝑚4𝑚6
2𝑚14(𝑚15 + 𝑚1𝑚15 + 𝑚1) − 𝑚2𝑚4𝑚6

3𝑚14𝑚15(𝑚3 + 𝑚8)
− 𝑚2𝑚𝑚6

3𝑚14𝑚16 + 2𝑚2𝑚4𝑚6
2𝑚15𝑚16 

𝐸3 = −𝑚4𝑚6
3𝑚14

2 (1 − 𝑚3 − 𝑚8) − 𝑚4𝑚6
2𝑚14𝑚16[1 + 𝑚2𝑚6(𝑚3 + 𝑚8)] + 𝑚2𝑚4𝑚6

2𝑚16
2  

𝐶1 = 𝑚4𝑚6(𝑚10𝑚14 − 𝑚11𝑚15) 

𝐶2 = 𝑚4𝑚6[𝑚14(𝑚12 + 𝑚13) − 𝑚11𝑚16] 

𝑞1 =
−𝐸1 − √𝐸2

2 − 4𝐸1𝐸3

2𝐸1

> 0 

𝑞2 =
−𝐸2 + √𝐸2

2 − 4𝐸1𝐸3

2𝐸1

< 0 

𝑞3 = −
𝐶2

𝐶1

> 0 

The following conditions are satisfied 

E1 > 0 

E3 > 0 

C1 > 0, C2 < 0 

or 

C1 < 0, C2 > 0 

q1 > q3 

𝑑𝑝

𝑑𝑞
= −

∂ℎ2

∂𝑞
∂ℎ2

∂𝑝

> 0 

𝑚13𝑝
∗ > (𝑚6 + 𝑚7𝑝

∗ + 𝑝∗2)(𝑚15𝑞
∗ + 𝑚16) 

By finding the jacobian matrix 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 47 No. 01 (2026) 

__________________________________________________________________________________ 

152 

𝑝
∂𝑔1

∂𝑝
+ 𝑔1 𝑝

∂𝑔1

∂𝑞
𝑝

∂𝑔1

∂𝑟

𝑞
∂𝑔2

∂𝑝
𝑞

𝜕𝑔2

𝜕𝑞
+ 𝑔2 𝑞

∂𝑔2

∂𝑟

𝑟
∂𝑔3

∂𝑝
𝑟
∂𝑔3

∂𝑞
𝑟
∂𝑔3

∂𝑟
+ 𝑔3

 

 

∂𝑔1

∂𝑝
= −1 +

𝑞(𝑚5 + 2𝑝)

𝐵2
2 +

𝑟(𝑚7 + 2𝑝)

𝐵3
2  

∂𝑔1

∂𝑞
= −

𝑚1

𝐵1
2 −

1

𝐵2

 

∂𝑔1

∂𝑟
= −

𝑚2

𝐵1
2 −

1

𝐵3

 

∂𝑔2

∂𝑝
=

𝑚9(𝑚4 − 𝑝2)

𝐵2
2  

∂𝑔2

∂𝑞
= −𝑚10 

∂𝑔2

∂𝑟
= −𝑚11 

∂𝑔3

∂𝑝
=

𝑚13(𝑚6 − 𝑝2)

𝐵3
2  

∂𝑔3

∂𝑞
= −𝑚15 

∂𝑔3

∂𝑟
= −𝑚14 

 

𝐽(𝐸0) =

1 − 𝑚3 − 𝑚8 0 0
0 −𝑚12 0
0 0 −𝑚16

 

J (E0) can be written as 

λ1 = 1 − 𝑚3 + 𝑚8 

λ2 = −𝑚12 < 0 

λ3 = −𝑚16 < 0 

The above is locally asymptotically stable when it follows the condition 

1 < 𝑚3 + 𝑚8 
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[
 
 
 
 
 
 𝑝̂ −𝑚1𝑝̂ +

𝑝̂

𝑚4 + 𝑚5𝑝̂ + 𝑝2̂
−

𝑝̂

𝑚6 + 𝑚7𝑝̂ + 𝑝2̂

0
𝑚9𝑝̂

𝑚4 + 𝑚5𝑝̂ + 𝑝2̂
− 𝑚12 0

0 0
𝑚13𝑝̂

𝑚6 + 𝑚7𝑝̂ + 𝑝2̂
− 𝑚16

]
 
 
 
 
 
 

 

 

λ11 = −𝑝̂ 

λ12 =
𝑚9𝑝̂

𝑚4 + 𝑚5𝑝̂ + 𝑝2̂
− 𝑚12 

λ13 =
𝑚13𝑝̂

𝑚6 + 𝑚7𝑝̂ + 𝑝2̂
− 𝑚16 

The above-mentioned values is negative, then it is said to be locally asymptotically stable if the below 

 condition satisfies 

 

𝑚9𝑝̂

𝑚4 + 𝑚5𝑝̂ + 𝑝2̂
< 𝑚12

𝑚13𝑝̂

𝑚6 + 𝑚7𝑝̂ + 𝑝2̂
< 𝑚16 

The Jacobian matrix can be written as 

𝐽(𝐸2) = [𝑎𝑖𝑗
∨ ] 

Where 

𝑎11
∨ = 𝑝∨ [−1 +

𝑞∨(𝑚5 + 2𝑝)∨

𝑚4 + 𝑚5𝑝
∨ + 𝑝̂

] 

𝑎12
∨ =

−𝑚1𝑝
∨

𝐵1
2∨  

𝑎13
∨ =

−𝑚2𝑝
∨

𝐵1
2∨ −

𝑝∨

𝑚6 + 𝑚7𝑝
∨ + 𝑝2̂

 

𝑎21
∨ =

𝑚9(𝑚4 − 𝑝∨)2𝑞∨

𝑚4 + 𝑚5𝑝
∨ + 𝑝2̂

 

𝑎22
∨ = −𝑚10𝑞

∨ 

𝑎23
∨ = −𝑚11𝑞

∨ 

𝑎31
∨ = 𝑎32

∨ = 0 

𝑎33
∨ =

𝑚13𝑝
∨

𝑚6 + 𝑚7𝑝̂ + 𝑝2̂
− 𝑚16 

With 

𝐵1
∨ = 1 + 𝑚1𝑦̂ 

𝐵2
∨ = 𝑚4 + 𝑚5𝑝

∨ + 𝑝∨2 

𝐵3
∨ = 𝑚6 + 𝑚7𝑝

∨ + 𝑝∨2 

The characteristic equation of J (E2) is 

(λ2 − 𝑇𝑟1λ + 𝐷𝑒𝑡1)(𝑎33
∨ − λ) = 0 

i.e., 
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λ2 − (𝑎11
∨ + 𝑎22

∨ )λ + 𝑎11
∨ 𝑎22

∨ − 𝑎12
∨ 𝑎21

∨  

If the condition  

 

𝑚13𝑝
∨

𝐵3 ∨
< 𝑚15𝑞

∨ + 𝑚16 

𝑞∨(𝑚5 + 2𝑝∨)

𝐵2
2∨ < 1 

𝑝∨2 < 𝑚4 

These are the activated eigen values of J (E2) and root of the characteristic equation arrives negative real 

parts. 

Similarly, jaccobian matrix can be written as 

J (E3) = [aij] 

Then the J (E3) equation can be written as  

(λ2 − 𝑇𝑟2λ + 𝐷𝑒𝑡2)(𝑎22̅̅ ̅̅ − λ) = 0 

i.e., 

(λ2 − (𝑎11̅̅ ̅̅ + 𝑎33̅̅ ̅̅ )λ + 𝑎(11)̅̅ ̅̅ ̅̅  𝑎(33)̅̅ ̅̅ ̅̅  −  𝑎(13)̅̅ ̅̅ ̅̅  𝑎(31)̅̅ ̅̅ ̅̅    )(𝑎22̅̅ ̅̅ − λ) = 0 

If the condition 

𝑚9𝑝̅

𝑚4 + 𝑚5𝑝̅ + 𝑝2̅̅ ̅
< 𝑚11𝑟̅ + 𝑚12 

𝑟̅(𝑚7 + 2𝑝2)

𝑚6 + 𝑚7𝑝̅ + 𝑝2̅̅ ̅
< 1 

𝑝∨2 < 𝑚6 

 

 

Arrives this shows that the eigen values of J (E3) and roots of equation have a negative real part, now the 

jaccobian matrix of interior equilibrium point can be represented as 

E4 = (p∗, q∗, r∗) 

J (E4) = [aij] 

Were, 

𝑎11 = 𝑝∗ (−1 +
(𝑚5 + 2𝑝∗)𝑞∗

𝐵2
2∗ +

(𝑚7 + 2𝑝∗)𝑟∗

𝐵3
2∗ ) 

𝑎12 = 𝑝∗ (
𝑚1

𝐵1
2∗ +

1

𝐵2
∗) 

𝑎13 = −𝑝∗ (
𝑚2

𝐵1
∗ +

1

𝐵3
∗) 

𝑎21 = 𝑞∗
𝑚9(𝑚4 − 𝑝∗2)

𝐵2
2∗  

𝑎22 = −𝑚10𝑞
∗ 

𝑎23 = −𝑚11𝑞
∗ 
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𝑎31 = 𝑟∗
𝑚13(𝑚6 − 𝑝∗2)

𝐵3
∗2  

𝑎32 = −𝑚15𝑟
∗ 

𝑎33 = −𝑚14𝑟
∗ 

Were 

𝐵1
∗ = 1 + 𝑚1𝑞

∗ + 𝑚2𝑟
∗ 

𝐵2
∗ = 𝑚4 + 𝑚5𝑝

∗ + 𝑝∗2 

𝐵3
∗ = 𝑚6 + 𝑚7𝑝

∗ + 𝑝∗2 

The below theorem excute the local stability criterion of interior equilibrium point. Assume that system has 

an interior equilibrium point, it is locally asymptotically stable if the following conditions are met 

(𝑚5 + 2𝑝∗)𝑞∗

𝐵2
∗2 +

(𝑚7 + 2𝑝∗)𝑟∗

𝐵3
∗2 < 1 

𝑝∗2 < min{𝑚4, 𝑚6} 

𝑚11𝑚15 < 𝑚10𝑚14 

𝑚9𝑚15(𝑚4 − 𝑝∗2)

𝑚10𝑚13𝐵2
∗2 <

𝑚6 − 𝑝∗2

𝐵3
2∗ <

𝑚9𝑚14(𝑚3 − 𝑝∗2)

𝑚11𝑚13𝐵2
∗2  

𝑚11𝑞
∗
𝑚13(𝑚6 − 𝑝2∗)

𝐵3
2∗ < 𝑚15𝑝

∗ (
𝑚2

𝐵1
2∗ +

1

𝐵3
∗) 

 

5. ensitivity Analysis: 

 The outcomes of deterministic model systems are governed by the input parameters of model system, 

which may show some uncertainty in their selection or determination. We employed a local sensitivity 

analysis to evaluate the impact of uncertainty and the sensitivity of the outputs of numerical simulations to 

variations in each parameter of the system using the method of partial rank correlation coefficients 

(PRCC) and Latin hypercube sampling. The parameters with significant impact on the outcomes of 

numerical simulations are determined by sensitivity analysis. To generate the LHS matrices. We assume 

that all the model parameters are uniformly distributed. Notice that the PRCC value lies between -1 and 

1. Negative (positive) values represent a negative (positive) correlation of the model outcomes with its 

parameter. A negative (positive) correlation indicates that a negative (positive) change the parameter will 

decrease (increase) the model output. Bigger absolute value of the PRCC represents the larger correlation 

of the parameter with the outcome. The PRCC values are represented by bar graphs in Figure 5. 

6. Hopf Bifurcation 

 

THEOREM 6.1 (Hopf bifurcation at the coexistence equilibrium) Consider system (2.2) and let E∗(h1) = 

(P ∗, Q∗, R∗) be a coexistence equilibrium depending smoothly on the harvesting parameter h1. Let the 

characteristic polynomial of the Jacobian matrix J ∗ = J (P ∗, Q∗, R∗) at E∗ be 
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λ3 + A1(h1)λ2 + A2(h1)λ + A3(h1) = 0, 

where A1(h1), A2(h1) and A3(h1) are defined 

A1 = −tr(J ∗), A2 = sum of the principal 2 × 2 minors of J ∗, A3 = − det(J ∗). 

Assume that there exists ℎ1
∗ > 0 such that 

𝐴1(ℎ1
∗) > 0, 

𝐴2(ℎ1
∗) > 0, 

𝐴3(ℎ1
∗) > 0, 

𝐴1(ℎ1
∗)𝐴2(ℎ1

∗) = 𝐴3(ℎ1
∗) 

and the transversality condition 

|
𝑑

𝑑ℎ1

(𝐴1(ℎ1)𝐴2(ℎ1) − 𝐴3(ℎ1))|
ℎ1=ℎ1

∗
≠ 0 

Then, as ℎ1 passes through ℎ1
∗ ,system(2.2) undergoes a Hopf bifurcation ℎ1

∗ ,system(2.2) undergoes a Hopf 

bifurcation at the equilibrium 𝐸∗(ℎ1
∗), and a family of nontrivial periodic solutions bifurcates from 𝐸∗. 

7. Numerical Simulation 

In this part, we give the numerical simulation for the system (2.2) using MATLAB Ode45 software 

with 500 step size and, set of parameter values p1 = 0.2, p2 = 0.2, p3 = 0.01, p4 = 0.3, p5 = 0.2, p6 = 

0.3, p7 = 0.2, p8 = 0.1, p9 = 0.7, and p10 = 0.2, p11 = 0.1, p12 = 0.1, p13 = 0.7, p14 =0.2, p15 = 0.1, 

p16 = 0.1 The rate of the u1 does not affect the dynamics of the system (2.2). So, we fix the value for u1 as 

0.5, 0.7, 0.9. The effect of changing the conversion rate u2 of vulnerable predator from prey on the 

dynamical changes of the system (ref eqn2) is investigated by setting h2 = 0.6, 0.8 and leaving the other 

parameters the same as given above. Then, the solutions diagram of the system are plotted in the Figure. 

All prey species start to decline, and all predator species start to increase when the exchange rate between 

prey and vulnerable predator grows, yet the system remains at an asymptotic stable coexistence point. 

Now, under the impact of changing the infection rate of u3, we study the proposed system numerically 

with u3 = 0.3, 0.4 and then time evaluation plots are given in Figure 1. Again, the system has an 

asymptotically stable equilibrium point. According to Figure 2, the value of the prey species and 

susceptible predator species decreases as the infection rates increase, while the prey species and infected 

predator species can begin to increase. For the small rate of recovering as u4 = 0.1 then the system (2.2) is 

locally asymptotically stable, but for the small increment of u4 = 0.3 the prey will die out and survival 

susceptible to predator and infected predator only. Then, the rate at which the effect u5 = u8 = 0.3, 0.8 and 

the results which have been shown in Figure 3. For the rate of u6 = u9 = 0.2, 0.4 then the system (2.2) shows 

that the prey species are extinct and longtime survival only other two species, which is projected in Figure 

3. Then the value of u7 = u10 = 0.6, 0.8 
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Figure 1: Phase portrait of the system (2,2) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Phase portrait of harvesting species 

 

 

 

 

 

Figure 3: Time Series of the system (2.2) 
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Figure 4: Time Series of harvesting species 

 

 

 

 

 

                                                    Figure 5: Sensitivity Analysis Bar Graph 

 

8. Conclusion 

We designed and evaluated the Holling type II functional response in the sick predator-prey system in 

this work. The model is composed of three separate, nonlinear differential equations that represent the 

behavior of three distinct populations: prey F , predators G that are prone to becoming ill, and predators H 

that are already ill. To assess the role of sensitivity and uncertainty of the numerical simulations with 

respect to variations in each parameter of the model system, we have also employed a local sensitivity 

analysis using PRCC. To validate our analytical results and understand the impact of changing the 

infection rates u3, u7 and recovery rates u4, u8 on the system’s dynamical changes (2.2), the system 2.2) was 

numerically examined for the same set of initial conditions and various parameters, yielding the following 

results: 

 

1. There is no periodic oscillation existing in system 2.2 through a set of fictitious parameters as in 

numerical simulation. 

2. Changing the parameters ui, i = 2, 3, · · ·, 10 and leaving the rest of the parameter values un- 

changed from the numerical simulation section has no impact on the dynamical character of the 
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system (2.2), and the solution trajectories are getting closer to the point of interior equilibrium. 

 

3. One of the most important outcomes is that, when both diseases are present at the same time, the 

ecosystem cannot be destroyed. 

4. The following parameters u4, u5, u6, u8 and u9 plays a crucial role in the proposed diseased 

predator-prey system. 
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