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Abstract: This study presents a mathematical model to analyze the combined effects of 

prescribed heat sources, velocity slip, and thermal slip on the stagnation point boundary layer 

flow of a non-Newtonian Williamson nanofluid. The investigation incorporates a time-varying 

magnetic field and considers two thermal boundary conditions—prescribed surface temperature 

and prescribed heat flux—within the framework of the Buongiorno nanofluid model. To account 

for fluid movement through porous media, the Darcy–Forchheimer model is employed. Using 

similarity transformations, the governing partial differential equations are reduced to a set of 

nonlinear ordinary differential equations. These equations are then numerically solved using the 

Keller-box method, an implicit finite difference approach well-suited for handling nonlinear 

boundary value problems. Numerical results for velocity, temperature, and concentration profiles 

are illustrated through 2D plots, while 3D visualizations highlight the influence of various 

parameters on the skin friction coefficient, Nusselt number, and Sherwood number. The findings 

contribute to a deeper understanding of Williamson nanofluid dynamics in porous environments 

and hold potential applications in the optimization of nanofluid-based thermal systems.  

 

Keywords Williamson nanofluid, Darcy-Forchheimer model, slip effects, MHD, Mixed 
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1  Introduction 
 

Owing to their unique flow characteristics, non-Newtonian fluids have become a focus of 

extensive investigation, especially due to their relevance in a variety of industrial processes, 

including those in the chemical sector, biomedical devices, and mechanical systems [40]. Their 

usage extends to numerous physical processes such as the fabrication of glass fibers, the 

production of adhesive tapes, and the drawing of paper films [10]. To characterize the complex 

rheological behavior of these fluids—exemplified by materials like honey, paint, and 

toothpaste—several mathematical models have been proposed, including the Cross, Power-law, 

Ellis, Carreau, and Casson nanofluid models. Among these, the Williamson model, introduced in 

1929 [46], provides a nonlinear framework capable of capturing the flow dynamics of 

pseudoplastic fluids through appropriate mathematical formulations. A broad range of research 
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has employed the Williamson nanofluid model to explore flow and heat transfer phenomena in 

non-Newtonian media [32], [2], [7], [21], [47], [6], [36], [23], [15], [18]. A pioneering study by 

Nadeem and Hussain [33] presented the initial analysis of heat transfer characteristics in 

Williamson nanofluids. Subsequently, Khan and Khan [20] investigated the boundary layer 

behavior of such fluids using the Homotopy Analysis Method (HAM). Building on this, Kho et 

al. [19] examined the combined effects of velocity and thermal slip on heat and mass transfer in 

Williamson nanofluid flow. Recent advancements in the thermal analysis of these fluids are 

well-documented in studies such as [13], [11], [41], [24], [25], reflecting the growing importance 

of the Williamson model in modern fluid dynamics research. 

 

A porous medium consists of a solid matrix with interconnected voids, characterized by 

porosity (void fraction) and permeability (fluid flow capability) [3], [29]. While porosity 

indicates a material’s fluid retention capacity, permeability defines how easily fluid flows 

through it. Thermally induced convection in porous media finds applications in insulation, 

underground waste disposal, food processing, metallurgy, and microelectronics. Attia [4] 

examined stagnation flow over a permeable surface and found that increasing porosity reduces 

boundary layer thickness and increases wall shear stress. Mohammed and Dawood [30] studied 

unsteady mixed convection in saturated porous media using the Brinkman–Forchheimer model. 

Darcy’s law laid the foundation for modeling fluid flow through porous media, particularly under 

low permeability and velocity conditions. However, it fails to account for inertial and boundary 

effects at higher porosities and flow rates [45]. To address this, Forchheimer introduced a 

nonlinear correction involving a velocity-squared term [27], [38], [5], [17]. Pal and Mondal [37] 

explored boundary layer flow over a vertically stretching sheet in non-Darcy porous media. 

Ganesh et al. [8] analyzed nanofluid flow with second-order slip, Ohmic heating, and viscous 

dissipation using the Darcy–Forchheimer model over a stretching surface. Similarly, Kumar et al. 

[22] applied the same model to study 3D stagnation flow of Casson fluid.  

 

In scenarios where the no-slip boundary condition 

fails, partial slip conditions—where fluid velocity at the 

boundary is non-zero—must be considered [44]. Slip flow 

arises when fluid near the surface moves at a different 

velocity than the boundary itself. The slip length 𝐿𝑠 
quantifies this behavior, defined as the extrapolated distance 

beneath the surface where tangential velocity becomes zero. The 

corresponding slip velocity is given by 𝑉𝑠 = 𝐿𝑠
𝜕𝑢

𝜕𝑦
, and is 

influenced by factors such as shear stress, surface roughness, 

and fluid viscosity. Although the no-slip condition is a 

cornerstone of classical boundary layer theory, partial slip conditions often provide a more 

accurate representation of real-world applications in engineering and industry. The presence of 

nanoparticles has been identified as a contributing factor to velocity slip at boundaries [9]. 

Additional causes include contact with lubricated or porous surfaces [43]. Recent studies have 

explored these effects: Noghrehabadi et al. [35] analyzed slip behavior with varying nanoparticle 

concentrations over a stretching surface, while Mukhopadhyay [31] solved for boundary layer 

flow with slip using the shooting method. Ibrahim and Shankar [42] examined nanofluid flow 

Figure a: Partial slip boundary 
condition. 
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with velocity, thermal, and solutal slip over a permeable stretching sheet. Similarly, Malvandi et 

al. [28] and Ramya et al. [39] investigated combined slip effects on unsteady and nonlinear 

stretching flows of nanofluids 

   

This study aims to model and analyze the combined influence of unsteadiness, magnetic 

field, mixed convection, and slip conditions on the stagnation point flow of Williamson nanofluid 

over a linearly stretching sheet embedded in a porous medium. The Darcy–Forchheimer model is 

employed, considering two thermal boundary conditions: prescribed surface temperature (PST) 

and prescribed heat flux (PHF). This work extends the study by Thakur and Sood [3], which 

investigated MHD mixed convection of Williamson nanofluid under PST and PHF using 

MATLAB’s bvp4c solver. In contrast, the present analysis adopts the Keller-box method and 

incorporates slip effects, adding a novel dimension to the problem. 

 

 

2  Analytical framework of the study 
 

This study examines unsteady, 

two-dimensional mixed convection and 

stagnation point flow of a Williamson 

nanofluid over a linearly stretching surface in a 

porous medium, incorporating slip boundary 

conditions. As shown in Figure 2, the sheet 

stretches bidirectionally along the 𝑥-axis from 

𝑡 = 0, with flow developing in the 𝑦-direction. 

A magnetic field of strength 
𝐵0

√1−𝛾𝑡
 is applied 

along the 𝑦 -axis in the region 𝑦 > 0 . The 

surface and free stream velocities are defined as 

𝑈𝑤(𝑥) =
𝑎𝑥

1−𝛾𝑡
 and 𝑈∞(𝑥) =

𝑏𝑥

1−𝛾𝑡
, where 𝑎 >

0  and 𝑏 ≥ 0  are stretching and stagnation 

parameters, respectively. Both velocities vary with 𝑥 , 

indicating spatial dependence from the stagnation point. 

External and induced electric fields are neglected.  

 

2.1  Governing Equations 
 

In Cartesian coordinate systems, the flow behavior is characterized by a set of partial differential 

equations, incorporating the Boussinesq approximation, as follows (see [12], [1], & [16] ):  

 

         
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                       (1)          

  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝑑𝑈∞

𝑑𝑡
+ 𝑈∞

𝑑𝑈∞

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦2
+ √2𝜈Γ

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
+

𝜈

𝑘∗
(𝑈∞ − 𝑢) + 𝐹(𝑈∞

2 − 𝑢2) + 

Figure b: Schematic representation of 
the system. 
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𝜎
𝐵2

𝜌
(𝑈∞ − 𝑢) + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞),                                             (2) 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
,                                                          (3) 

 

with dominated boundary conditions,  

 

𝑢 = 𝑈𝑤 + 𝜉1𝜈𝑓
𝜕𝑢

𝜕𝑦
=

𝑎𝑥

1−𝛾𝑡
+ 𝜉1

𝜕𝑢

𝜕𝑦
,    𝑣 = 0,    𝐶 = 𝐶𝑤 = 𝐶∞ +

𝐴𝑥

1−𝛾𝑡
     𝑎𝑡     𝑦 = 0,

𝑢 = 𝑈∞ =
𝑏𝑥

1−𝛾𝑡
,    𝐶 → 𝐶∞      𝑎𝑠     𝑦 → ∞,

 (4) 

 

where 𝜈 =
𝜇

𝜌
, 𝐵 =

𝐵0

√1−𝛾𝑡
, 𝑘∗ = 𝑘0(1 − 𝛾𝑡), 𝛾𝑡 < 1, here 𝑘0  is a constant which gives initial 

permeability, 𝛾  and 𝐴  are positive constants (𝑠−1 ), 𝑇∞  is ambient fluid temperature, 𝐶∞  is 

ambient fluid concentration, 𝐹 =
𝐶𝑏

𝑥√𝑘∗
 characterizes the non-uniform inertia coefficient of the 

porous medium, 𝑔  is acceleration due to gravity, 𝛽𝑇  and 𝛽𝐶  are thermal and concentration 

expansion coefficient and 𝜉1 is the velocity slip length.  

 

2.2  Similarity transformations 
 

The following similarity transformations, adapted from the approach in Majeed et al. [?], are 

applied: 

 

 𝜓 = √
𝑎𝜈

1−𝛾𝑡
𝑥𝑓(𝜂),    𝜂 = √

𝑎

𝜈(1−𝛾𝑡)
𝑦,    𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
. (5) 

  

Here, 𝜓  denotes the stream function, satisfying 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
. The quantity 𝐶𝑤 

represents the wall concentration, while 𝑓 and 𝜙 are expressed as functions of the similarity 

variable 𝜂. 

 

Eq. (1) is being identically verified while considering eq. (5), rest of the eqs. (2) & (3) are 

transformed as,  

 

 𝑓′′′ + 𝑓𝑓′′ +𝑊𝑒𝑓′′𝑓′′′ − 𝑓′
2
+ 𝜖2 + (𝑀 + 𝜆)(𝜖 − 𝑓′) + 𝐹𝑟(𝜖2 − 𝑓′

2
) 

 −𝛽 (
𝜂

2
𝑓′′ + 𝑓′ − 𝜖) + 𝐺(𝜃 + 𝑁𝜙) = 0, (6) 

 𝜙′′ − 𝑆𝑐 [𝛽 ((
𝜂

2
𝜙′ + 𝜙) + 𝑓′𝜙 − 𝑓𝜙′)] +

1

𝑁𝑏𝑡
𝜃′′ = 0, (7) 

 

where, the prime symbol (′) indicates differentiation with respect to the similarity variable 𝜂, 

and the dimensionless parameters are defined as follows: 
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 𝑊𝑒 = Γ𝑥√
2𝑎3

𝜈(1−𝛾𝑡)3
,    𝐹𝑟 =

𝐶𝑏

√𝑘∗
,    𝑀 =

𝜎𝐵0
2

𝜌𝑎
,    𝜆 =

𝜈

𝑘0𝑎
,    𝐺 =

𝐺𝑟𝑥

𝑅𝑒𝑥2
,    𝛽 =

𝛾

𝑎
 

 

𝑁 =
𝛽𝐶(𝐶𝑤−𝐶∞)

𝛽𝑇(𝑇𝑤−𝑇∞)
,    𝑁𝑏𝑡 =

𝑇∞𝐷𝐵(𝐶𝑤−𝐶∞)

𝐷𝑇(𝑇𝑤−𝑇∞)
,    𝑆𝑐 =

𝜈

𝐷𝐵
,    𝜖 =

𝑏

𝑎
      𝑎𝑛𝑑    𝐺𝑟𝑥 =

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝑥
3

𝑣2
 

 

The resulting boundary conditions in terms of similarity variables (5) are:  

 

 
𝑓(𝜂) = 0,    𝑓′(𝜂) − 𝑆1𝑓

′′(𝜂) = 1,    𝜙(𝜂) = 1      𝑎𝑡     𝜂 = 0,

𝑓′(𝜂) = 𝜖,    𝜙(𝜂) = 0      𝑎𝑠     𝜂 → ∞.
 (8) 

 

Here, 𝑆1 = 𝜉1√
𝑎

𝜈(1−𝛾𝑡)
 is the velocity slip parameter. 

 

3  Evaluation of Heat Propagation Behavior 
 

The thermal energy equation for the system is formulated as:  

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+
𝜌𝑝𝐶𝑝

𝜌𝐶
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

], (9) 

where 𝛼 =
𝑘

𝜌𝐶
,𝜌𝐶  and 𝜌𝑝𝐶𝑝  characterizes heat capacity of nanofluid and heat capacity of 

nanoparticles respectively. The thermal analysis is carried out for two distinct heat transfer cases: 

 

3.1  Governing equations for the PST case 
 

In this case, the boundary conditions are:  

 

 
𝑇 = 𝑇𝑤 + 𝜉2

𝜕𝑇

𝜕𝑦
= 𝑇∞ +

𝑆𝑥

1−𝛾𝑡
+ 𝜉2

𝜕𝑇

𝜕𝑦
     𝑎𝑡     𝑦 = 0,

𝑇 → 𝑇∞     𝑎𝑠     𝑦 → ∞.
 (10) 

 

Here 𝑆 is a positive constant. 𝑆 = 0 corresponds to forced convection limit i.e. an absence of 

buoyancy force whereas 𝑆 > 0 and 𝑆 < 0 represent assisting and opposing flows respectively. 

According to the imposed similarity transformations, the non-dimensional temperature 𝜃(𝜂) is 

defined as:  

 

 𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
. (11) 

 

Here, 𝑇𝑤 is the temperature at the wall. 

 

While considering eq. (11), eq. (9) is transformed as:  

 

 𝜃′′ − 𝑃𝑟 [𝛽 (
𝜂

2
𝜃′ + 𝜃) + 𝑓′𝜃 − 𝑓𝜃′] +

𝑁𝑐

𝐿𝑒
𝜙′𝜃′ +

𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
𝜃′
2
= 0, (12) 
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where, the prime symbol (′)  denotes derivatives with respect to 𝜂 , and the dimensionless 

parameters are specified as:  

 𝑃𝑟 =
𝜈

𝛼
,    𝑁𝑐 =

𝜌𝑝𝐶𝑝

(𝜌𝐶)
(𝐶𝑤 − 𝐶∞), 

  

 𝑁𝑏𝑡 =
𝑇∞𝐷𝐵(𝐶𝑤−𝐶∞)

𝐷𝑇(𝑇𝑤−𝑇∞)
,    𝐿𝑒 =

𝛼

𝐷𝐵
. 

 

The resulting boundary conditions in terms of similarity variables are:  

 

 
𝜃(𝜂) − 𝑆2𝜃

′(𝜂) = 1     𝑎𝑡    𝜂 = 0,
𝜃(𝜂) = 0     𝑎𝑠    𝜂 → ∞.

 (13) 

 

Here, 𝑆2 = 𝜉2√
𝑎

𝜈(1−𝛾𝑡)
 is the thermal slip parameter. 

 

 

3.2  Governing equations for the PHF case 
 

In this case, the boundary conditions are:  

 

 
−𝜅

𝜕𝑇

𝜕𝑦
= 𝑞𝑤 = 𝑇∞ +

𝐷𝑥

1−𝛾𝑡
     𝑎𝑡     𝑦 = 0,

𝑇 → 𝑇∞      𝑎𝑠     𝑦 → ∞.
 (14) 

  

Defining 𝑇 =
𝐷𝑥

𝜅(1−𝛾𝑡)
√
𝜈(1−𝛾𝑡)

𝑎
ℎ(𝜂) + 𝑇∞. 

 

Here, 𝑞𝑤 represents the rate of heat transfer and 𝐷 is a positive constant. 

 

According to the imposed similarity transformations, the non-dimensional scaled temperature 

Θ(𝜂) is defined as:  

 Θ(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
. (15) 

 

While considering eq. (15), eq. (9) is transformed as:  

 

 Θ′′ − 𝑃𝑟 [
𝛽

2
(𝜂Θ′ + Θ) + 𝑓′Θ − 𝑓Θ′] +

𝑁𝑐

𝐿𝑒
𝜙′Θ′ +

𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
Θ′
2
= 0, (16) 

 

where, the prime symbol (′)  denotes derivatives with respect to 𝜂 , and the dimensionless 

parameters are specified as:  

 𝑃𝑟 =
𝜈

𝛼
,    𝑁𝑐 =

𝜌𝑝𝐶𝑝

(𝜌𝐶)
(𝐶𝑤 − 𝐶∞), 
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 𝑁𝑏𝑡 =
𝑇∞𝐷𝐵(𝐶𝑤−𝐶∞)

𝐷𝑇(𝑇𝑤−𝑇∞)
,    𝐿𝑒 =

𝛼

𝐷𝐵
. 

 

The resulting boundary conditions in terms of similarity variables are:  

 

 
Θ′(𝜂) = −1     𝑎𝑡    𝜂 = 0,
Θ(𝜂) = 0     𝑎𝑠    𝜂 → ∞.

 (17) 

 

 

4  Parameters of empirical importance 
 

Skin-friction coefficient, local Nusselt number, and Sherwood number are specified to be:  

 

 𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2(𝑥)

,    𝑁𝑢 =
𝑥𝑞𝑤

𝜅(𝑇𝑤−𝑇∞)
,    𝑆ℎ =

𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
, 

 

where 𝜏𝑤 is used for the shear stress of Williamson nanofluid at the surface of the wall, 𝑞𝑤 

gives the heat flux from the wall, and 𝑞𝑚 gives the mass flux of the nanoparticle volume fraction 

from the wall. These terms are given as: 

 

𝜏𝑤 = 𝜇 [
𝜕𝑢

𝜕𝑦
+

Γ

√2
(
𝜕𝑢

𝜕𝑦
)
2

]
𝑦=0

,    𝑞𝑤 = −𝜅 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

,     and     𝑞𝑚 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

. 

 

Upon imposing the similarity transformations and dominated boundary conditions, the 

non-dimensional forms of skin friction coefficient, local Nusselt number, and Sherwood number 

are specified as:  

 

 𝐶𝑓𝑥 = 𝐶𝑓(𝑅𝑒)
1

2 = (𝑓′′(𝜂) +
𝑊𝑒

2
𝑓′′(𝜂)2)

𝜂=0
, 

 

 𝑁𝑢𝑥 = 𝑁𝑢(𝑅𝑒)
−
1

2 = {

(−𝜃′(𝜂))𝜂=0, PSTCase,

(
1

Θ(𝜂)
)
𝜂=0

, PHFCase, 

  

𝑆ℎ𝑥 = 𝑆ℎ(𝑅𝑒)
−
1
2 = (−𝜙′(𝜂))𝜂=0, 

 

 where 𝑅𝑒 =
𝑈𝑤(𝑥)

𝜈(1−𝛾𝑡)
𝑥 is the Reynold’s number. 

 

5  Execution of the Keller Box Scheme 
 
Keller-box method is one such scheme which is capable of giving numerical solutions to 

non-linear cases over some fixed region in the province of the problem. Keller-box method is an 

implicit finite difference scheme advanced by Cebeci and Bradshaw in 1984 which is very 
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popular because of its accuracy and convergence. To obtain the solution utilizing Keller-Box 

method comprises of the following steps: 

  

    • First, we reduce the system of non-linear differential equations into a system of first  

      order differential equation  

    • We further substitute the functions by mean values and their derivatives with central  

      difference formulas and as a result we will get a system of non-linear algebraic  

      difference equations where the number of unknowns is equal to the number of  

      difference equations and boundary conditions.  

    • Then we use Newton’s linearization technique to linearize the non-linear terms in  

      the difference equations. (if they are non linear).  

    • Lastly, Block tri-diagonal scheme is used to solve the resultant system.  

 

 

Transformation to first order system 

 

To write equations in first order system, we have to introduce new dependent variable 𝑚, 𝑛, 𝑞, 

𝑠 such that  

 

 𝑓′ = 𝑚,    𝑚′ = 𝑛,    𝜃′ = 𝑞 (𝑃𝑆𝑇),    Θ′ = 𝑞 (𝑃𝐻𝐹)    𝜙′ = 𝑠, (18) 

  

where (′) shows the differentiation with 𝜂. Therefore, equations can be written as:  

  

𝑛′ +𝑊𝑒𝑛𝑛′ + 𝑓𝑛 −𝑚2 + 𝜖2 − 𝛽 (
𝜂

2
𝑛 +𝑚 − 𝜖) + (𝑀 + 𝜆)(𝜖 − 𝑚) + 𝐹𝑟(𝜖2 −𝑚2) +

𝐺(𝜃 + 𝑁𝜙) = 0, (19) 

  

𝑞′ +
𝑁𝑐

𝐿𝑒
𝑠𝑞 +

𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
𝑞2 − 𝑃𝑟 [𝛽 (

𝜂

2
𝑞 + 𝜃) + 𝑚𝜃 − 𝑓𝑞] = 0, (𝑃𝑆𝑇) (20) 

  

𝑞′ +
𝑁𝑐

𝐿𝑒
𝑠𝑞 +

𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
𝑞2 − 𝑃𝑟 [

𝛽

2
(𝜂𝑞 + ℎ) + 𝑢ℎ − 𝑓𝑞] = 0, (𝑃𝐻𝐹) (21) 

𝑠′ − 𝑆𝑐 [𝛽 (
𝜂

2
𝑠 + 𝜙) + 𝑢𝜙 − 𝑓𝑠] +

1

𝑁𝑏𝑡
𝑞′ = 0. (22) 

  

The boundary conditions are formed as: 

  

Prescribed surface temperature  

 

 
𝑓 = 0,    𝑚 = 1,    𝜃 = 1,    𝜙 = 1,      𝑎𝑡     𝜂 = 0,
𝑚 = 𝜖,    𝜃 = 0,    𝜙 = 0,      𝑎𝑠     𝜂 → ∞.

} (23) 

  

Prescribed heat flux  

 

 
𝑓 = 0,    𝑚 = 1,    𝑞 = −1,    𝜙 = 1,      𝑎𝑡     𝜂 = 0,
𝑚 = 𝜖,    Θ = 0,    𝜙 = 0,      𝑎𝑠     𝜂 → ∞.

} (24) 
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Finite difference scheme 

 
Now the finite difference approximation to equations (18-22) produce the following set of 

equations :  

 

 𝑓𝑗 − 𝑓𝑗−1 − ℎ𝑗(𝑚𝑗 +𝑚𝑗−1)/2 = 0, (25) 

 𝑚𝑗 −𝑚𝑗−1 − ℎ𝑗(𝑛𝑗 + 𝑛𝑗−1)/2 = 0, (26) 

 𝜃𝑗 − 𝜃𝑗−1 − ℎ𝑗(𝑞𝑗 + 𝑞𝑗−1)/2 = 0, (𝑃𝑆𝑇) (27) 

 Θ𝑗 − Θ𝑗−1 − ℎ𝑗(𝑞𝑗 + 𝑞𝑗−1)/2 = 0, (𝑃𝐻𝐹) (28) 

 𝜙𝑗 − 𝜙𝑗−1 − ℎ𝑗(𝑠𝑗 + 𝑠𝑗−1)/2 = 0, (29) 

  

  

𝑛𝑗 − 𝑛𝑗−1 +
𝑊𝑒

2
(𝑛𝑗 + 𝑛𝑗−1)(𝑛𝑗 − 𝑛𝑗−1) +

ℎ𝑗

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑛𝑗 + 𝑛𝑗−1) −

ℎ𝑗

4
(𝑚𝑗 +𝑚𝑗−1)

2 

    −𝛽ℎ𝑗 (
𝜂

4
(𝑛𝑗 + 𝑛𝑗−1) +

1

2
(𝑚𝑗 +𝑚𝑗−1) − 𝜖) + (𝑀 + 𝜆)

ℎ𝑗

2
(2𝜖 − (𝑚𝑗 +𝑚𝑗−1)) +

        𝐹𝑟
ℎ𝑗

4
(4𝜖2 − (𝑚𝑗 +𝑚𝑗−1)

2) +𝐺
ℎ𝑗

2
(𝜃𝑗 + 𝜃𝑗−1 + 𝑁(𝜙𝑗 + 𝜙𝑗−1)) = 0, (30) 

 

𝑞𝑗 − 𝑞𝑗−1 +
𝑁𝑐
𝐿𝑒

ℎ𝑗

4
(𝑠𝑗 + 𝑠𝑗−1)(𝑞𝑗 + 𝑞𝑗−1) +

𝑁𝑐
𝐿𝑒𝑁𝑏𝑡

ℎ𝑗

4
(𝑞𝑗 + 𝑞𝑗−1)

2 − ℎ𝑗𝑃𝑟(𝛽 

+
1

2
(𝜃𝑗 + 𝜃𝑗−1)) +

1

4
(𝑚𝑗 +𝑚𝑗−1)(𝜃𝑗 + 𝜃𝑗−1) −

1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑞𝑗 + 𝑞𝑗−1)) = 0, (31) 

 

𝑞𝑗 − 𝑞𝑗−1 +
𝑁𝑐
𝐿𝑒

ℎ𝑗

4
(𝑠𝑗 + 𝑠𝑗−1)(𝑞𝑗 + 𝑞𝑗−1) +

𝑁𝑐
𝐿𝑒𝑁𝑏𝑡

ℎ𝑗

4
(𝑞𝑗 + 𝑞𝑗−1)

2 − ℎ𝑗𝑃𝑟
𝛽

2
 

+
1

2
(Θ𝑗 + Θ𝑗−1)) +

1

4
(𝑚𝑗 +𝑚𝑗−1)(Θ𝑗 + Θ𝑗−1) −

1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑞𝑗 + 𝑞𝑗−1)) = 0, (32) 

 

𝑠𝑗 − 𝑠𝑗−1 − ℎ𝑗𝑆𝑐(𝛽 (
𝜂

4
(𝑠𝑗 + 𝑠𝑗−1) +

1

2
(𝜙𝑗 + 𝜙𝑗−1)) +

1

4
(𝑚𝑗 +𝑚𝑗−1)(𝜃𝑗 + 𝜃𝑗−1) 

−
1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑠𝑗 + 𝑠𝑗−1)) +

1

𝑁𝑏𝑡
(𝑞𝑗 − 𝑞𝑗−1) = 0. (33) 

 

These equations are inflicted for 𝑗 = 1,2,3, . . . . , 𝐽 − 1  and at 𝑗 = 0 , 𝑗 = 𝐽 , the boundary 

conditions for both prescribed heat sources (PST and PHF) are respectively:  

 

 𝑓0 = 0,    𝑚0 = 1,    𝜃0 = 1,    𝜙0 = 1,    𝑚𝐽 = 𝜖,    𝜃𝐽 = 0,    𝜙𝐽 = 0.} (34) 

  

 𝑓0 = 0,    𝑚0 = 1,    𝑞0 = −1,    𝜙0 = 1,    𝑚𝐽 = 𝜖,    Θ𝐽 = 0,    𝜙𝐽 = 0.} (35) 

  

Newton’s linearization method 

 
To solve these non-linear equations (25 - 33), we have employed Newton’s method. For that we 
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have introduced following iterates [ 𝑓𝑗
𝑖 , 𝑚𝑗

𝑖, 𝑛𝑗
𝑖 , 𝜃𝑗

𝑖(𝑃𝑆𝑇), Θ𝑗
𝑖(𝑃𝐻𝐹), 𝑞𝑗

𝑖 , 𝜙𝑗
𝑖 , 𝑠𝑗

𝑖 ], where 𝑖 =

0,1,2, . . ... For the higher iterates, we set:  

 

𝑓𝑗
𝑖+1 = 𝑓𝑗

𝑖 + 𝛿𝑓𝑗
𝑖 ,    𝑚𝑗

𝑖+1 = 𝑚𝑗
𝑖 + 𝛿𝑚𝑗

𝑖,    𝑛𝑗
𝑖+1 = 𝑛𝑗

𝑖 + 𝛿𝑣𝑗
𝑖,

𝜃𝑗
𝑖+1 = 𝜃𝑗

𝑖 + 𝛿𝜃𝑗
𝑖   (𝑃𝑆𝑇),    𝑞𝑗

𝑖+1 = 𝑞𝑗
𝑖 + 𝛿𝑞𝑗

𝑖 ,        Θ𝑗
𝑖+1 = Θ𝑗

𝑖 + 𝛿Θ𝑗
𝑖   (𝑃𝐻𝐹),

𝜙𝑗
𝑖+1 = 𝜙𝑗

𝑖 + 𝛿𝜙𝑗
𝑖 ,    𝑠𝑗

𝑖+1 = 𝑠𝑗
𝑖 + 𝛿𝑠𝑗

𝑖.

 (36) 

 

Then we substituted the right-hand side of these equations in (25 - 33) and ignore the higher 

order terms in 𝛿. Formulated linear equations are (drop superscript 𝑖 for simplicity):  

 
𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 − ℎ𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1)/2 = (𝑟1)𝑗,

𝛿𝑚𝑗 − 𝛿𝑚𝑗−1 − ℎ𝑗(𝛿𝑛𝑗 + 𝛿𝑛𝑗−1)/2 = (𝑟2)𝑗,

𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 − ℎ𝑗(𝛿𝑞𝑗 + 𝛿𝑞𝑗−1)/2 = (𝑟3)𝑗,

𝛿Θ𝑗 − 𝛿Θ𝑗−1 − ℎ𝑗(𝛿𝑞𝑗 + 𝛿𝑞𝑗−1)/2 = (𝑟3)𝑗,

𝛿𝜙𝑗 − 𝛿𝜙𝑗−1 − ℎ𝑗(𝛿𝑠𝑗 + 𝛿𝑠𝑗−1)/2 = (𝑟4)𝑗,

(𝑎1)𝑗𝛿𝑛𝑗 + (𝑎2)𝑗𝛿𝑛𝑗−1 + (𝑎3)𝑗𝛿𝑓𝑗 + (𝑎4)𝑗𝛿𝑓𝑗−1 + (𝑎5)𝑗𝛿𝑚𝑗 + (𝑎6)𝑗𝛿𝑚𝑗−1
+(𝑎7)𝑗𝛿𝜃𝑗 + (𝑎8)𝑗𝛿𝜃𝑗−1 + (𝑎9)𝑗𝛿𝜙𝑗 + (𝑎10)𝑗𝛿𝜙𝑗−1 = (𝑟5)𝑗,

(𝑏1)𝑗𝛿𝑞𝑗 + (𝑏2)𝑗𝛿𝑞𝑗−1 + (𝑏3)𝑗𝛿𝑓𝑗 + (𝑏4)𝑗𝛿𝑓𝑗−1 + (𝑏5)𝑗𝛿𝑚𝑗 + (𝑏6)𝑗𝛿𝑚𝑗−1
+(𝑏7)𝑗𝛿𝜃𝑗 + (𝑏8)𝑗𝛿𝜃𝑗−1 + (𝑏9)𝑗𝛿𝑠𝑗 + (𝑏10)𝑗𝛿𝑠𝑗−1 = (𝑟6)𝑗,

(𝑏1)𝑗𝛿𝑞𝑗 + (𝑏2)𝑗𝛿𝑞𝑗−1 + (𝑏3)𝑗𝛿𝑓𝑗 + (𝑏4)𝑗𝛿𝑓𝑗−1 + (𝑏5)𝑗𝛿𝑚𝑗 + (𝑏6)𝑗𝛿𝑚𝑗−1
+(𝑏7)𝑗𝛿Θ𝑗 + (𝑏8)𝑗𝛿Θ𝑗−1 + (𝑏9)𝑗𝛿𝑠𝑗 + (𝑏10)𝑗𝛿𝑠𝑗−1 = (𝑟6)𝑗,

(𝑐1)𝑗𝛿𝑠𝑗 + (𝑐2)𝑗𝛿𝑠𝑗−1 + (𝑐3)𝑗𝛿𝑓𝑗 + (𝑐4)𝑗𝛿𝑓𝑗−1 + (𝑐5)𝑗𝛿𝑚𝑗 + (𝑐6)𝑗𝛿𝑚𝑗−1
+(𝑐7)𝑗𝛿𝜙𝑗 + (𝑐9)𝑗𝛿𝜙𝑗−1 + (𝑐9)𝑗𝛿𝑞𝑗 + (𝑐10)𝑗𝛿𝑞𝑗−1 = (𝑟7)𝑗.}

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (37) 

 

where  

 (𝑎1)𝑗 = 1 +𝑊𝑒𝑛𝑗 − 𝛽
ℎ𝑗

4
𝜂 +

ℎ𝑗

2
𝑓
𝑗−

1

2

, (𝑎2)𝑗 = −1 −𝑊𝑒𝑛𝑗−1 − 𝛽
ℎ𝑗

4
𝜂 +

ℎ𝑗

2
𝑓
𝑗−

1

2

, 

 (𝑎3)𝑗 =
ℎ𝑗

2
𝑛
𝑗−

1

2

, (𝑎4)𝑗 = (𝑎3)𝑗, 

 (𝑎5)𝑗 = −ℎ𝑗𝑚𝑗−1
2

−
ℎ𝑗

2
𝛽 −

ℎ𝑗

2
(𝑀 + 𝜆) − ℎ𝑗𝐹𝑟𝑚𝑗−1

2

, (𝑎6)𝑗 = (𝑎5)𝑗, 

 (𝑎7)𝑗 =
ℎ𝑗

2
𝐺, (𝑎8)𝑗 = (𝑎7)𝑗, 

 (𝑎9)𝑗 =
ℎ𝑗

2
𝐺𝑁, (𝑎10)𝑗 = (𝑎9)𝑗, 

  

 (𝑏1)𝑗 = 1 +
𝑁𝑐

𝐿𝑒

ℎ𝑗

2
𝑠
𝑗−

1

2

+
𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
ℎ𝑗𝑞𝑗−1

2

− ℎ𝑗𝑃𝑟 (𝛽
𝜂

4
−
1

2
𝑓
𝑗−

1

2

) , (𝑏2)𝑗 = (𝑏1)𝑗 − 2, 

 (𝑏3)𝑗 = 𝑃𝑟
ℎ𝑗

2
𝑞
𝑗−

1

2

, (𝑏4)𝑗 = (𝑏3)𝑗, 

 (𝑏5)𝑗 = −𝑃𝑟
ℎ𝑗

2
𝜃
𝑗−

1

2

  (𝑃𝑆𝑇), (𝑏6)𝑗 = (𝑏5)𝑗, 
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 (𝑏5)𝑗 = −𝑃𝑟
ℎ𝑗

2
Θ
𝑗−

1

2

  (𝑃𝐻𝐹), 

 (𝑏7)𝑗 = −𝑃𝑟
ℎ𝑗

2
(𝑚

𝑗−
1

2

+ 𝛽)  (𝑃𝑆𝑇), (𝑏8)𝑗 = (𝑏7)𝑗, 

 (𝑏7)𝑗 = −𝑃𝑟
ℎ𝑗

2
(𝑚

𝑗−
1

2

+
1

2
𝛽)  (𝑃𝐻𝐹), 

 (𝑏9)𝑗 =
𝑁𝑐

𝐿𝑒

ℎ𝑗

2
𝑞
𝑗−

1

2

(𝑏10)𝑗 = (𝑏9)𝑗, 

 (𝑐1)𝑗 = 1 − ℎ𝑗𝑆𝑐 (𝛽
𝜂

4
−
1

2
𝑓
𝑗−

1

2

) , (𝑐2)𝑗 = (𝑐1)𝑗 − 2, 

 (𝑐3)𝑗 = 𝑆𝑐
ℎ𝑗

2
𝑠
𝑗−

1

2

, (𝑐4)𝑗 = (𝑐3)𝑗, 

 (𝑐5)𝑗 = −𝑆𝑐
ℎ𝑗

2
𝑠
𝑗−

1

2

, (𝑐6)𝑗 = (𝑐5)𝑗, 

 (𝑐7)𝑗 = −𝑆𝑐
ℎ𝑗

2
(𝛽 + 𝑚

𝑗−
1

2

), (𝑐8)𝑗 = (𝑐7)𝑗, 

 (𝑐9)𝑗 =
1

𝑁𝑏𝑡
, (𝑐10)𝑗 = −(𝑐9)𝑗. 

  

 (𝑟1)𝑗 = 𝑓𝑗−1 − 𝑓𝑗 + ℎ𝑗𝑚𝑗−1
2

, 

 (𝑟2)𝑗 = 𝑚𝑗−1 −𝑚𝑗 + ℎ𝑗𝑛𝑗−1
2

, 

 (𝑟3)𝑗 = 𝜃𝑗−1 − 𝜃𝑗 + ℎ𝑗𝑞𝑗−1
2

  (𝑃𝑆𝑇), 

 (𝑟3)𝑗 = Θ𝑗−1 − Θ𝑗 + ℎ𝑗𝑞𝑗−1
2

  (𝑃𝐻𝐹), 

 (𝑟4)𝑗 = 𝜙𝑗−1 − 𝜙𝑗 + ℎ𝑗𝑠𝑗−1
2

, 

 (𝑟5)𝑗 = 𝑛𝑗−1 − 𝑛𝑗 −
𝑊𝑒

2
(𝑛𝑗

2 − 𝑛𝑗−1
2 ) − ℎ𝑗𝑓𝑗−1

2

𝑛
𝑗−

1

2

+ ℎ𝑗𝑚𝑗−1
2

2 + 𝛽ℎ𝑗 (
𝜂

2
𝑛
𝑗−

1

2

+

𝑚
𝑗−

1

2

) + (𝑀 + 𝜆)ℎ𝑗𝑚𝑗−1
2

− 𝐹𝑟ℎ𝑗𝑚𝑗−1
2

2 − ℎ𝑗𝐺(𝜃𝑗−1
2

+ 𝑁𝜙
𝑗−

1

2

), 

 (𝑟6)𝑗 = 𝑞𝑗−1 − 𝑞𝑗 − ℎ𝑗
𝑁𝑐

𝐿𝑒
𝑠
𝑗−

1

2

𝑞
𝑗−

1

2

− ℎ𝑗
𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
𝑞
𝑗−

1

2

2 + ℎ𝑗𝑃𝑟(𝛽 (
𝜂

2
𝑞
𝑗−

1

2

+ 𝜃
𝑗−

1

2

) +

𝑢
𝑗−

1

2

𝜃
𝑗−

1

2

− 𝑓
𝑗−

1

2

𝑞
𝑗−

1

2

)  (𝑃𝑆𝑇), 

 

 (𝑟6)𝑗 = 𝑞𝑗−1 − 𝑞𝑗 − ℎ𝑗
𝑁𝑐

𝐿𝑒
𝑠
𝑗−

1

2

𝑞
𝑗−

1

2

− ℎ𝑗
𝑁𝑐

𝐿𝑒𝑁𝑏𝑡
𝑞
𝑗−

1

2

2 + ℎ𝑗𝑃𝑟(
𝛽

2
(𝜂𝑞

𝑗−
1

2

+ Θ
𝑗−

1

2

) +

𝑚
𝑗−

1

2

Θ
𝑗−

1

2

− 𝑓
𝑗−

1

2

𝑞
𝑗−

1

2

)  (𝑃𝐻𝐹), 

 

 (𝑟7)𝑗 = 𝑠𝑗−1 − 𝑠𝑗 + ℎ𝑗𝑆𝑐 (𝛽 (
𝜂

2
𝑠
𝑗−

1

2

+ 𝜙
𝑗−

1

2

) + 𝑚
𝑗−

1

2

𝜙
𝑗−

1

2

− 𝑓
𝑗−

1

2

𝑠
𝑗−

1

2

) −
1

𝑁𝑏𝑡
(𝑞𝑗 −

𝑞𝑗−1). 

 

 For iterates, the boundary conditions (34 - 35) take the following form respectively:  
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𝛿𝑓0 = 0,    𝛿𝑚0 = 0,    𝛿𝜃0 = 0,    𝛿𝜙0 = 0,
𝛿𝑚𝐽 = 0,    𝛿𝜃𝐽 = 0,    𝛿𝜙𝐽 = 0.

} (38) 

  

 
𝛿𝑓0 = 0,    𝛿𝑚0 = 0,    𝛿𝑞0 = 0,    𝛿𝜙0 = 0,
𝛿𝑚𝐽 = 0,    𝛿Θ𝐽 = 0,    𝛿𝜙𝐽 = 0.

} (39) 

  

Block tridiagonal structure 

 
The linearized system of equations (37) can be written in the matrix form as: 

 

 

[
 
 
 
 
 
 
[𝐴1] [𝐶1]

[𝐵2] [𝐴2] [𝐶2]

[𝐵3] [𝐴3] [𝐶3]

⋱ ⋯
[𝐵𝑗−1] [𝐴𝑗−1] [𝐶𝑗−1]

[𝐵𝑗] [𝐴𝑗] ]
 
 
 
 
 
 

[
 
 
 
 
 
 
[𝛿1]
[𝛿2]
[𝛿3]
⋮
[𝛿j−1]

[𝛿J] ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
[𝑟1]
[𝑟2]
[𝑟3]
⋮
[𝑟j−1]

[𝑟j] ]
 
 
 
 
 
 

 

or  

 [𝐴][𝛿] = [𝑟] (40) 

 

where the elements for both prescribed heat mechanisms are respectively: 

 

 [𝛿1] =

[
 
 
 
 
 
 
 
[𝛿𝑛0]

[𝛿𝑞0]

[𝛿𝑠0]

[𝛿𝑓1]

[𝛿𝑛1]

[𝛿𝑞1]

[𝛿𝑠1] ]
 
 
 
 
 
 
 

, [𝛿𝑗] =

[
 
 
 
 
 
 
 
 
[𝛿𝑚𝑗−1]

[𝛿𝜃𝑗−1]

[𝛿𝜙𝑗−1]

[𝛿𝑓j]

[𝛿𝑛j]

[𝛿𝑞j]

[𝛿𝑠j] ]
 
 
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽, [𝛿1] =

[
 
 
 
 
 
 
 
[𝛿𝑛0]

[𝛿𝑞0]

[𝛿𝑠0]

[𝛿𝑓1]

[𝛿𝑛1]

[𝛿𝑞1]

[𝛿𝑠1] ]
 
 
 
 
 
 
 

 , 

  [𝛿𝑗] =

[
 
 
 
 
 
 
 
 
[𝛿𝑢𝑗−1]

[𝛿Θ𝑗−1]

[𝛿𝜙𝑗−1]

[𝛿𝑓j]

[𝛿𝑛j]

[𝛿𝑞j]

[𝛿𝑠j] ]
 
 
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽, [𝑟𝑗] =

[
 
 
 
 
 
 
 
(𝑟1)𝑗
(𝑟2)𝑗
(𝑟3)𝑗
(𝑟4)𝑗
(𝑟5)𝑗
(𝑟6)𝑗
(𝑟7)𝑗]

 
 
 
 
 
 
 

, 1 ≤ 𝑗 ≤ 𝐽 

 

For PST condition: 
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 [𝐴1] =

[
 
 
 
 
 
 
0 0 0 1 0 0 0
𝑑 0 0 0 𝑑 0 0
0 𝑑 0 0 0 𝑑 0
0 0 𝑑 0 0 0 𝑑
(𝑎2)1 0 0 (𝑎3)1 (𝑎1)1 0 0
0 (𝑏2)1 (𝑏10)1 (𝑏3)1 0 (𝑏1)1 (𝑏9)1
0 (𝑐10)1 (𝑐2)1 (𝑐3)1 0 (𝑐9)1 (𝑐1)1 ]

 
 
 
 
 
 

 

 

For PHF case: 

 

 [𝐴1] =

[
 
 
 
 
 
 
0 0 0 1 0 0 0
𝑑 0 0 0 𝑑 0 0
0 −1 0 0 0 𝑑 0
0 0 𝑑 0 0 0 𝑑
(𝑎2)1 (𝑎8)1 0 (𝑎3)1 (𝑎1)1 0 0
0 (𝑏8)1 (𝑏10)1 (𝑏3)1 0 (𝑏1)1 (𝑏9)1
0 0 (𝑐2)1 (𝑐3)1 0 (𝑐9)1 (𝑐1)1 ]

 
 
 
 
 
 

 

 

For both prescribed heat cases: 

 

 [𝐴𝑗] =

[
 
 
 
 
 
 
 
𝑑 0 0 1 0 0 0
−1 0 0 0 𝑑 0 0
0 −1 0 0 0 𝑑 0
0 0 −1 0 0 0 𝑑
(𝑎6)𝑗 (𝑎8)𝑗 (𝑎10)𝑗 (𝑎3)𝑗 (𝑎1)𝑗 0 0

(𝑏6)𝑗 (𝑏8)𝑗 0 (𝑏3)𝑗 0 (𝑏1)𝑗 (𝑏9)𝑗
(𝑐6)𝑗 0 (𝑐8)𝑗 (𝑐3)𝑗 0 (𝑐9)𝑗 (𝑐1)𝑗 ]

 
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽 

 

 [𝐵𝑗] =

[
 
 
 
 
 
 
 
0 0 0 −1 0 0 0
0 0 0 0 𝑑 0 0
0 0 0 0 0 𝑑 0
0 0 0 0 0 0 𝑑
0 0 0 (𝑎4)𝑗 (𝑎2)𝑗 0 0

0 0 0 (𝑏4)𝑗 0 (𝑏2)𝑗 (𝑏10)𝑗
0 0 0 (𝑐4)𝑗 0 (𝑐10)𝑗 (𝑐2)𝑗 ]

 
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽 
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 [𝐶𝑗] =

[
 
 
 
 
 
 
 
𝑑 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
(𝑎5)𝑗 (𝑎7)𝑗 (𝑎9)𝑗 0 0 0 0

(𝑏5)𝑗 (𝑏7)𝑗 0 0 0 0 0

(𝑐5)𝑗 0 (𝑐7)𝑗 0 0 0 0]
 
 
 
 
 
 
 

, 1 ≤ 𝑗 < 𝐽 

Here 𝑑 = −
ℎ𝑗

2
. 

 

Now, we will solve equation (40) by LU decomposition, for that we assume 𝐴 is non-singular 

matrix and can be factored into:  

 [𝐴] = [𝐿][𝑈] (41) 

  

where  

 [𝐿] =

[
 
 
 
 
 
[𝛼1]

[𝛽2] [𝛼2]

⋱
⋱ [𝛼𝐽−1]

[𝛽𝐽] [𝛼𝐽]]
 
 
 
 
 

, [𝑈] =

[
 
 
 
 
 
[𝐼1] [Γ1]

[𝐼] [Γ2]

⋱ ⋱
[𝐼] [Γ𝐽−1]

[𝐼] ]
 
 
 
 
 

 

 

These [𝛼𝑗], [Γ𝑗] and [𝛽𝑗] are 7 × 7 ordered matrices from which their elements are determined 

by following equations:  

 

   
[𝛼1] = [𝐴1]

[𝐴1][Γ1] =  [𝐶1]

[𝛼𝑗] = [𝐴𝑗] − [𝛽𝑗][Γ𝑗−1], 𝑗 = 2,3, . . . 𝐽

[𝐴j][Γj] =  [𝐶j], 𝑗 = 2,3, . . . 𝐽 }
 
 

 
 

                                             (42) 

  

By substituting equation (41) in (40), we get  

 

 [𝐿][𝑈][𝛿] = [𝑟] (43) 

 

Now assuming,  

 

 [𝑈][𝛿] = [𝑊] (44) 

 

therefore, equation (43) becomes  

 

 [𝐿][𝑊] = [𝑟], (45) 
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where  

 [𝑊] =

[
 
 
 
 
[𝑊1]
[𝑊2]
⋮
[𝑊j−1]

[𝑊j] ]
 
 
 
 

, 1 ≤ 𝑗 ≤ 𝐽 

 

Here [𝑊𝑗] are column matrices of order 7 × 1 and elements can be obtained by solving equation 

(45) such as:  

 

 [𝛼1][𝑊1] = [𝑟1],   [𝛼𝑗][𝑊𝑗] = [𝑟𝑗] − [𝛽𝑗][𝑊𝑗−1], 2 ≤ 𝑗 ≤ 𝐽. (46) 

 

The elements of Γ𝑗, 𝛼𝑗 and 𝑊𝑗 are calculated by applying forward sweep, after that the elements 

of 𝛿 is easily calculated from the equation (44) by using backward sweep and the elements are: 

  

 [𝛿𝐽] = [𝑊𝐽],   [𝛿𝑗] = [𝑊𝑗] − [Γ𝑗][𝛿𝑗+1], 1 ≤ 𝑗 ≤ 𝐽 − 1. (47) 

 

These iteration processes are repeated until the desired convergence criterion is obtained i.e. 

|𝛿𝑣0
(𝑖)| < 𝜖, where 𝜖 is desired level of accuracy. 

 

 

6  Discussion on results and outcomes 
 

This section presents the effects of key dimensionless parameters 𝛽, 𝑁, 𝐺, 𝐹𝑟, 𝐿, 𝑊𝑒, 𝑁𝑏𝑡, 𝑁𝑐, 
𝑆𝑐, 𝑃𝑟, 𝐿𝑒, and 𝜖—on velocity 𝑓′(𝜂), temperature 𝜃(𝜂), and nanoparticle concentration 𝜙(𝜂), 
illustrated through graphical results. For validation, a comparison (Table:1) is made with 

previous studies by Mahapatra and Gupta [26], Nazar et al. [34], Ishak et al. [14], and Thakur 

and Sood [3]. The strong agreement confirms the accuracy and reliability of the present 

numerical results. 

 

𝝐  Mahapatra 

& Gupta[26]   

Nazar et 

al.[34] 

Ishak et 

al.[14] 

Thakur & 

Sood [3] 

 Present study  

            

0.10 -0.9694 -0.9694 -0.9694 -0.9694 -0.9694 

0.20 -0.9181 -0.9181 -0.9181 -0.9181 -0.9181 

0.50 -0.6673 -0.6673 -0.6673 -0.6673 -0.6673 

2.00 2.0176 2.0176 2.0175 2.0187 2.0187 

  

  

Table 1: A comparative analysis of values of 𝑓′′(0) for different values of 𝜖 where 𝑊𝑒 = 𝐹𝑟 =
𝜆 = 𝑀 = 𝛽 = 𝐺 = 𝑁 = 𝑆1 = 𝑆2 = 0 
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6.1  

Findings 
 

To analyze 

the 

problem’s 

physics, the 

following 

parameter 

values are 

fixed unless 

stated 

otherwise: 

𝑀 = 0.5 , 

𝑊𝑒 = 0.2 , 

𝐹𝑟 = 0.2 , 

𝜆 = 0.5, 𝜖 =
0.2 , 𝐿𝑒 = 5 , 

𝑃𝑟 = 2 , 

𝑁𝑏𝑡 = 2, 𝑁𝑐 = 2.5, 𝑆𝑐 = 5, 𝛽 = 0.1, 𝑁 = 0.6, 𝐺 = 2, 𝑆1 = 0.5, 𝑆2 = 0.5. Graphs provide a 

comparative view of the two heat transfer cases: PST and PHF. The effects of 𝐺, 𝑁, 𝛽, and 𝑀 

on velocity 𝑓′(𝜂) are shown in Figure 1. Figure 1a indicates that increasing 𝐺 enhances 𝑓′(𝜂) 
due to stronger viscous forces and greater temperature gradients near the wall, which intensify 

fluid motion. Similarly, Figure 1b shows that rising 𝑁  boosts velocity, as buoyancy forces 

increase with decreasing fluid temperature. In Figure 1c, unsteadiness (𝛽 > 0) initially reduces 

𝑓′(𝜂) near the surface, thinning the momentum boundary layer, but farther from the surface, 

velocity increases due to temporal effects. Finally, Figure 1d demonstrates that higher 𝑀 reduces 

velocity, as the Lorentz force resists fluid motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
(b) 

(c) (d) 
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Figure 1: The velocity profiles 𝑓′(𝜂) for deviating values of 𝐺, 𝑁, 𝛽 and 𝑀. 

  

 
 

  

Figure 2: The velocity profiles 𝑓′(𝜂) for deviating values of 𝜖, 𝑊𝑒, 𝜆 and 𝐹𝑟. 

 

Figure 2 illustrates the effects of 𝜖, 𝑊𝑒, 𝜆, and 𝐹𝑟 on the velocity profile 𝑓′(𝜂). As shown in 

Figure 2a, increasing 𝜖 (0 < 𝜖 < 1) enhances fluid motion near the surface and thickens the 

velocity boundary layer. In Figure 2b, 𝑓′(𝜂)  decreases with rising 𝑊𝑒 , since a higher 

Williamson parameter reduces the fluid’s relaxation time, leading to slower motion. Figure 2c 

shows a decline in velocity with increasing 𝜆, attributed to increased flow resistance due to 

higher porosity, which also thins the momentum boundary layer. Lastly, Figure 2d reveals that 

greater Forchheimer numbers reduce 𝑓′(𝜂)  due to lower permeability, which restricts fluid 

movement through the porous medium. Figure 3a shows that increasing 𝜖  leads to a sharp 

decline in the temperature profile 𝜃(𝜂) due to enhanced fluid velocity, which promotes faster 

(a) (b) 

(c) (d) 
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heat diffusion and reduces fluid temperature. In contrast, Figure 3b illustrates that higher porosity 

restricts flow, raising 𝜃(𝜂) and thickening the thermal boundary layer. As seen in Figure 3c, 

𝜃(𝜂) increases with the Forchheimer number 𝐹𝑟, as greater drag (linked to higher 𝐶𝑏) elevates 

thermal resistance. Finally, Figure 3d reveals that rising magnetic parameter 𝑀 boosts 𝜃(𝜂), 
attributed to the Lorentz force, which suppresses fluid motion and increases surface temperature. 

 

Figure 4a shows that increasing the thermal convection parameter 𝐺 reduces 𝜃(𝜂) and thins the 

thermal boundary layer due to stronger temperature gradients. Similarly, Figure 4b reveals a 

decline in 𝜃(𝜂) with higher buoyancy ratio 𝑁, as enhanced buoyancy-driven flow intensifies 

convective heat transfer. In Figure 4c, 𝜃(𝜂)  initially decreases near the surface with rising 

unsteadiness parameter 𝛽, due to suppressed heat diffusion. However, beyond a certain distance, 

the profile reverses, showing an increase in temperature as the thermal effects dominate further 

from the surface. Figure 5a shows that increasing ε leads to a sharp decline in the temperature 

profile θ(η) due to enhanced fluid velocity, which promotes faster heat diffusion and reduces 

fluid temperature. In contrast, Figure 5b illustrates that higher porosity restricts flow, raising θ(η) 

and thickening the thermal boundary layer. As seen in Figure 5c, θ(η) increases with the 

Forchheimer number Fr, as greater drag (linked to higher 𝐶𝑏 ) elevates thermal resistance. 

Finally, Figure 5d reveals that rising magnetic parameter M boosts θ(η), attributed to the Lorentz 

force, which suppresses fluid motion and increases surface temperature. 

 

Figure 6a shows that increasing 𝜖 reduces the nanoparticle concentration 𝜙(𝜂) due to enhanced 

external flow, which diminishes the fluid volume fraction. In Figure 6b, higher local porosity 

parameter 𝜆  leads to increased 𝜙(𝜂) , likely due to pressure-driven outward movement of 

nanoparticles near the wall. Figure 6c indicates that 𝜙(𝜂) rises with Forchheimer number 𝐹𝑟, 

and Figure 6d reveals a similar trend with the magnetic parameter 𝑀. A stronger magnetic field 

slows fluid motion, promoting nanoparticle accumulation within the porous medium. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 

 

Figure  3: The temperature profiles 𝜃(𝜂) for deviating values of 𝜖, 𝜆, 𝐹𝑟, and 𝑀.  

 

Figure 7a shows that increasing the thermophoresis parameter 𝑁𝑏𝑡 leads to a decline in 𝜙(𝜂), 
as intensified particle motion causes greater dispersion and collisions. As seen in Figure 7b, 

higher Schmidt number 𝑆𝑐 —which inversely relates to Brownian diffusivity—reduces 

nanoparticle concentration due to limited diffusion. Figure 7c illustrates that rising 

unsteadiness parameter 𝛽 lowers 𝜙(𝜂), likely due to reduced heat and mass transfer from the 

stretching surface. Figures Figure 7d and Figure 7e also show decreasing concentration with 

increasing 𝐺  and 𝑁 , as stronger convection and buoyancy enhance dispersion, reducing 

accumulation near the surface. 
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Figure 4: The temperature profiles 𝜃(𝜂) for deviating values of 𝐺, 𝑁 and 𝛽. 
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Figure 5: The temperature profiles 𝜃(𝜂) for deviating values of 𝑁𝑐, 𝑁𝑏𝑡, 𝑃𝑟, and 𝐿𝑒. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 

Figure  6: The concentration profiles 𝜙(𝜂) for deviating values of 𝜖, 𝜆, 𝐹𝑟 and 𝑀.  

  

 

 

Figure 8 illustrates how the skin-friction coefficient 𝐶𝑓𝑥(𝑅𝑒)
1/2 varies with 𝑊𝑒 and 𝜖 under 

different values of 𝜆, 𝐹𝑟, 𝐺, and 𝛽. As shown in Figure 8a and Figure 8b, 𝐶𝑓𝑥(𝑅𝑒)
1/2 increases 

with higher 𝑊𝑒 and 𝐹𝑟, but decreases as 𝜆 increases, with consistent trends observed for both 

PST and PHF cases. In Figure 8c and Figure 8d, 𝐶𝑓𝑥(𝑅𝑒)
1/2 rises with increasing 𝜖 and 𝐺, 

while a slight decline is noted for increasing 𝛽 . The influence of 𝐺  is more pronounced 

compared to that of 𝛽. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure  7: The concentration profiles 𝜙(𝜂) for deviating values of 𝑁𝑏𝑡, 𝑆𝑐, 𝛽, and 𝐺.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure  8:  The variation of 𝐶𝑓𝑥𝑅𝑒
1

2 with We and 𝜖 for deviating values of 𝜆, 𝐹𝑟, 𝐺 and 𝛽.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure  9:  The variation of 𝑁𝑢𝑥𝑅𝑒
−
1

2 with We and 𝜖 for deviating values of 𝜆, 𝐹𝑟, 𝐺 and 𝛽.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure  10:  The variation of 𝑆ℎ𝑥𝑅𝑒
−
1

2 with We and 𝜖 for deviating values of 𝜆, 𝐹𝑟, 𝐺 and 𝛽.  

   

Figure 9 shows the variation of the local Nusselt number 𝑁𝑢𝑥(𝑅𝑒)
−1/2 with respect to 𝑊𝑒 and 

𝜖  for different values of 𝜆 , 𝐹𝑟 , 𝐺 , and 𝛽 . Figures 9a and 9b reveal a uniform decline in 

𝑁𝑢𝑥(𝑅𝑒)
−1/2 with increasing 𝑊𝑒, 𝐹𝑟, and 𝜆. Conversely, 9c and 9d show that 𝑁𝑢𝑥(𝑅𝑒)

−1/2 

increases with higher 𝜖, 𝐺, and 𝛽. These trends are linked to enhanced temperature gradients 

between the sheet and the fluid, and increased external flow, which accelerates heat transfer near 

the surface. While the effect of 𝛽 is moderate under PHF conditions, it is more prominent in 

PST. Overall, heat transfer improves in both PST and PHF cases with increasing 𝐺  and 𝛽 . 

Figure 10 illustrates how the local Sherwood number 𝑆ℎ𝑥(𝑅𝑒)
−1/2 varies with 𝑊𝑒 and 𝜖 under 

different values of 𝜆, 𝐹𝑟, 𝐺, and 𝛽. Figures 10a and 10b show a slight but consistent decrease in 

𝑆ℎ𝑥(𝑅𝑒)
−1/2 with increasing 𝑊𝑒, 𝐹𝑟, and 𝜆 for both PST and PHF cases. In contrast, Figures 

10c and 10d demonstrate that 𝑆ℎ𝑥(𝑅𝑒)
−1/2 rises with higher values of 𝜖, 𝐺, and 𝛽. 

 

7  Concluding Remarks 
 

This study presents a computational model for the stagnation point flow of Williamson 

nanofluid over a linearly stretching sheet embedded in a porous medium, using the 

Darcy–Forchheimer framework. The main objective is to analyze the influence of key physical 
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parameters on flow, heat, and mass transfer under both PST and PHF conditions. The graphical 

results provide clear insights, with each figure comparing both thermal cases. The key 

conclusions are as follows: 

 

 

    • In both PST and PHF heat transfer cases, the porous medium reduces momentum 

boundary layer thickness while increasing thermal thickness. Velocity and temperature profiles 

exhibit similar trends with unsteadiness but differ for other parameters, whereas concentration 

profiles remain largely consistent across all parameters such as 𝐺, 𝑁, 𝜆, 𝜖, 𝛽, and 𝑀. 

 

    • An increase in unsteadiness, thermal convection parameter, and velocity ratio 

enhances the local Nusselt number, indicating improved heat transfer—more significantly in the 

PST case than in PHF. Enhanced heat transfer under such conditions is useful in thermal 

management systems, such as cooling of electronics or heat exchangers using nanofluids. 

 

    • In both PST and PHF scenarios, higher permeability favors conductive heat transfer, 

as fluid resistance decreases. This behavior is applicable in porous heat sinks and energy systems 

where efficient conduction through porous materials is essential. 

 

    • The local Sherwood number increases with rising unsteadiness, thermal convection, 

and velocity ratio parameters, indicating enhanced convective mass transfer. This effect is 

particularly beneficial in applications such as membrane filtration, chemical reactors, and drug 

delivery systems, where efficient solute transport is critical. 
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