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Abstract :- A multi-order fractional differential model was proposed with two fractional Cattaneo derivatives 

with respect to time and a Caputo symmetrized fractional temperature gradient with respect to space. A unique 

solution in the form of integral was developed for the proposed heat transfer model using contour integral methods. 

Numerical examples in graphical forms are provided using the solutions established. The effects of varying 

parameters of the model are studied from the numerical examples given. 
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1. Introduction 

The so-called Fourier heat transmission differential equation which is obtained from the combination of the 

constitutive Fourier law (2) and energy balance equation (3) produces an unlimited speed of heat transmission due 

to its parabolic nature [1, 2]. There are myriads of natural phenomena that the model cannot adequately describe. 

To take into many problems which occur natural with finite speed, a relaxation time was introduced to the Fourier 

law (2) to produce a constitutive Cattaneo heat model equation (1) 

𝒒(𝒙, 𝒕) + 𝝉𝝏𝒕𝒒(𝒙, 𝒕) = −𝝀𝝏𝒙𝑻(𝒙, 𝒕)                 (1) 

𝒒(𝒙, 𝒕) = −𝝀𝝏𝒙𝑻(𝒙, 𝒕) (2) 

𝝆𝒄𝝏𝒕𝑻(𝒙, 𝒕) = −𝝀𝝏𝒙𝒒(𝒙, 𝒕)  (3) 

where from equation (1,2,3) ρ is density of medium, τ represents relaxation time, c is specific heat capacity, 𝒒(𝒙, 𝒕) 

is heat flux, 𝑻(𝒙, 𝒕) denotes temperature of medium and 𝝀 describe the thermal conductivity of the medium. The 

telegraph equation (4) which is an example of hyperbolic equation can be generated by combining (1) and (3). 

𝝏𝒕
𝟐𝑻(𝒙, 𝒕) + 𝝉𝝏𝒕𝑻(𝒙, 𝒕) = −𝝀𝝏𝒙

𝟐𝑻(𝒙, 𝒕)  (4) 

Equations such as (1) and (4) which are hyperbolic differential equations facilitate a fixed speed of heat 

transmission in a medium ([2],[1]). 

Experiments conducted using the classical Cattaneo-type and Jeffry-type hyperbolic differential model equations 

in certain porous materials using laser pulse heating suggest that there are still discrepancies between 

experimentally produced data and theoretical predictions of the models ([1]). Successful application of fractional 

calculus in solving many practical problems in the field of science and non-science domains is due to their global 

dependency or nonlocal property [3–5,1]. The one-dimensional multi-order fractional derivative heat transmission 

equation is modeled by the system  

𝝏𝒕𝑻(𝒙, 𝒕) = −𝝏𝒙𝒒̅(𝒙, 𝒕)  (5) 

𝝏𝟎
𝑪

𝒕
𝜷−𝟏

𝒒̅(𝒙, 𝒕) + 𝝉 𝝏𝟎
𝑪

𝒕
𝜶−𝟏𝒒̅(𝒙, 𝒕) = 𝕯 𝜺𝒂

 𝑪
𝒃
𝝑𝑻(𝒙, 𝒕)  (6) 

where for the fractional scalar orders of equation (6), 𝟎 < 𝜷 ≤ 𝜶 ≤ 𝟐, 𝟎 < 𝝑 < 𝟏, 𝒒̅ = 𝒒

𝝆𝑪
, and 𝕯 = 𝝀

𝝆𝑪
 is the 

thermal diffusivity. The differential equation is subject to the following assumptions:  

1. the temperature on any point along the one-dimensional medium at time 𝒕 = 𝟎 is fixed at a value of 𝑻𝟎. 

2. heat flux on any point along the one-dimensional medium, 𝒒(𝒙, 𝒕) at time 𝒕 = 𝟎 is zero. 
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3. temperature at the two extreme ends of the one- dimensional medium is zero at any time, t as one 

approaches any of the two infinite endpoints (−∞, +∞). 

4. heat flux at the two extreme ends of the one- dimensional medium is zero at any time, t as one approaches 

any of the two infinite endpoints (−∞, +∞). 

This differential model can be applied to both finite and infinite length media depending on how the boundary 

points are fixed. By combining equation (5) and (6) of the model, a single model differential equation is generated. 

𝝏𝟎
𝑪

𝒕
𝜷

𝑻(𝒙, 𝒕) + 𝝉 𝝏𝟎
𝑪

𝒕
𝜶𝑻(𝒙, 𝒕) =   𝕯𝝏𝒙( 𝜺𝒂

 𝑪
𝒃
𝝑𝑻(𝒙, 𝒕) )  (7) 

Some limiting cases of the model (7) are listed as follows: When 𝝑 = 𝟏 in equation (6) and (7), the fractional 

Cattaneo heat conduction models studied in the articles [1] and [6] are obtained respectively. For 𝟏 < 𝜶 < 𝟐 and 

𝜷 = 𝟐 in equation (6), the fractional Cattaneo heat conduction equation studied in [2] is obtained. From equation 

(7), the telegraph equation is derived (i.e when  𝜶 = 𝟐, 𝜷 = 𝟏, 𝝑 = 𝟏), the heat diffusion equation when 𝝉 = 𝟎, 

𝜷 = 𝟏,𝝑 = 𝟏  and lastly the wave equation when 𝝑 = 𝟏, 𝜷 = 𝟐, 𝜶 = 𝟐. This work is arranged with the current 

section 1 dealing with the introductory aspects of the differential problem stated in (7) and how the rest of the 

study is formatted in the remaining sections. Section 2 contains propositions, notations needed to enhance 

understanding of the mathematical model problem and the space domain that is considered ideal for deploying 

the tools relevant in solving the problem. Section 3 provides the requisite theorems necessary in establishing a 

distinct solution which exists within the boundary conditions of the model. Section 4 provides an exact solution 

using contour integration. Numerical examples are provided using the explicit solution obtained. 

2. Mathematical Preliminaries  

In this section, the operating space of Schwartz tempered distributions in the ℝ𝒏is denoted by 𝑺′(ℝ𝒏). The 

subspaces 𝑺+
′ (ℝ𝒏) and 𝑺−

′ (ℝ𝒏)  of the Schwartz space 𝑺′(ℝ) are defined in the sets [𝟎, ∞) and [−∞, 𝟎) 

respectively.  

For 𝟎 ≤ 𝜶 < 𝟏 and −∞ ≤ 𝒂 ≤ 𝒃 ≤ ∞ ∈ ℝ, the left Caputo derivative and right Caputo derivative of a function  

𝒖: [𝒂, 𝒃] → ℝ are defined as: 

𝑫𝒂+
𝑪

𝒕
𝜶𝒖(𝒕) = 𝟏

𝜞(𝟏−𝜶)
∫ 𝒖′(𝒔)

(𝒕−𝒔)𝜶𝒅𝒔
𝒕

𝒂
  

𝑫𝒕
𝑪

𝒃−
𝜶 𝒖(𝒕) = −

𝟏

𝜞(𝟏−𝜶)
∫ 𝒖′(𝒔)

(𝒕−𝒔)𝜶𝒅𝒔
𝒕

𝒃
  

In [2], the fractional Caputo derivative with respect to space, 𝒙 of order 𝝑 ∈ [𝟎, 𝟏) of definitely continuous 

function 𝒖 is defined as  

𝜺𝒂
𝑪

𝒃
𝝑𝒖(𝒙) = 𝟏

𝟐
( 𝑫𝒂

𝑪
𝒙
𝝑 − 𝑫𝒙

𝑪
𝒃
𝝑)𝒖(𝒙)  

= 𝟏

𝟐

𝟏

𝜞(𝟏−𝝑)
∫ 𝒖′(𝜽)

|𝒙−𝜽|𝝑

𝒃

𝒂
𝒅𝜽  (8) 

For simplicity and with 𝒂 = −∞ and 𝒃 = ∞,  𝜺𝒂
𝑪

𝒃
𝝑𝒖(𝒙) is written as 𝜺𝒙

𝝑𝒖(𝒙). 

𝜺𝒙
𝝑𝒖(𝒙) = 𝟏

𝟐

𝟏

𝜞(𝟏−𝝑)
|𝒙|−𝝑 ∗ 𝒖′(𝒙) = 𝐬𝐢𝐧 𝝅𝝑

𝟐

𝒅

𝒅𝒙
𝑰𝟏−𝝑𝒖(𝒙)  

Where 𝑰𝝑 is the Riesz potential. To deal with fractional operators in the distributional space, a family of operators 

(𝑱𝜶)𝜶 ∈ 𝑺+
′  is introduced as  

𝑱𝜶(𝒕) = {
𝑯(𝒕)𝒕𝜶−𝟏

𝚪(𝜶)
,    𝜶 > 𝟎

     
𝒅𝒏

𝒅𝒕𝒏𝑱𝜶 +𝒏(𝒕),    𝜶≤𝟎,        𝜶+𝒏 >𝟎,   𝒏∈ℕ  
  

and (𝑱̌𝜶)
𝜶

∈ 𝑺−
′ (ℝ𝒏) as 𝑱̌𝜶(𝒕) = 𝑱𝜶(−𝒕).  

Where 𝑯 represents a Heaviside function. For 𝜶 < 𝟎, 𝑱̌𝜶 ∗ and 𝑱𝜶 ∗ respectively denote convolution of left and 

right sided fractional differentiation of a function 𝒖 which is continuous, hence 
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𝑫𝒂+
𝑪

𝒕
𝜶𝒖 = 𝑱𝟏−𝜶 ∗ 𝒖′ and 𝑫𝒕

𝑪
𝒃−
𝜶 𝒖 = −𝑱̌𝜶 ∗ 𝒖′ 

By choosing 𝒗𝟏, 𝒗𝟐, 𝒗𝟑 ∈  𝑺′(ℝ) and 𝝍 ∈ 𝑺(ℝ), Fourier and Laplace transforms including some of their 

properties are defined. 

Fourier transform, 𝓕𝝍(𝝃) = 𝝍̂(𝝃): = ∫ 𝝍(𝒙)𝒆−𝒊𝝃𝒙∞

−∞
𝒅𝒙, 𝝃 ∈ ℝ 

𝓕(𝒗𝟏 ∗ 𝒗𝟐)(𝝃) = 𝓕𝒗𝟏(𝝃)𝒙𝓕𝒗𝟐(𝝃), 𝓕[𝒅𝒏𝒗

𝒅𝒙𝒏] = (𝒊𝝃)𝒏 𝓕𝒗(𝝃), 𝒏 ∈ ℕ, 𝓕𝜹(𝝃) = 𝟏  

⟨𝓕𝒗, 𝝍⟩ = ⟨𝝍,𝓕𝒗⟩  

Fourier inverse transform, 𝓕−𝟏(𝒗(𝝃))𝒙 ≔
𝟏

𝟐𝝅
∫ 𝒗(𝝃)𝒆𝒊𝝃𝒙∞

−∞
𝒅𝝃 

Laplace transform and its properties:  

Laplace transform, 𝓛𝒗(𝒔): = ∫ 𝒗(𝒕)𝒆−𝒔𝒕∞

𝟎
𝒅𝒕 

𝓛(𝒗𝟏 ∗ 𝒗𝟐)(𝒔) = 𝓛𝒗𝟏(𝒔)𝒙𝓛𝒗𝟐(𝒔)      𝓛[ 𝑫𝟎
𝑪

𝒕
𝜶𝒗](𝒔) = 𝒔𝜶𝓛𝒗(𝒔), 𝜶 ≥ 𝟎         𝓛𝜹(𝒔) = 𝟏  

Inverse Laplace transform, 𝓛−𝟏𝒗(𝒔): =  
𝟏

𝟐𝝅𝒊
∫ 𝒗(𝒔)𝒆𝒔𝒕𝝈+𝒊∞

𝝈−𝒊∞
𝒅𝒔, 𝒕 > 𝟎 

3. Establishing a Unique Solution that Exist for the System Equations (5), (6). 

The aim of this part of the study is to establish a solution to the system (5) and (6). To start the section, some 

propositions and remarks are stated. 

Proposition 1 (𝑻(𝒙, 𝒕), 𝒒(𝒙, 𝒕)) ∈ 𝑬𝟐 is a solution that is generalized for the systems (5), (6) and satisfy the initial 

conditions only if 

𝝏𝒕𝑻(𝒙, 𝒕) = −𝝏𝒙𝒒̅(𝒙, 𝒕) +  𝑻𝟎(𝒙)𝜹(𝒕)  (9) 

𝝏𝟎
𝑪

𝒕
𝜷−𝟏

𝒒(𝒙, 𝒕) + 𝝉 𝝏𝟎
𝑪

𝒕
𝜶−𝟏𝒒(𝒙, 𝒕) = −𝝀𝜺𝒙

𝝑𝑻(𝒙, 𝒕)  (10) 

Holds in E. 

Remarks 1: (i) if (𝑻(𝒙, 𝒕), 𝒒(𝒙, 𝒕)) ∈ 𝑬𝟐 as in Proposition 1, then the boundary conditions of the system (5), (6) 

are equally satisfied, since 𝑻, 𝒒 ∈ 𝑬, implies the boundary conditions are confined within solution domain. 

(ii) suppose (𝑻(𝒙, 𝒕), 𝒒(𝒙, 𝒕)) ∈ 𝑬𝟐 is a solution that is generalized for (5), (6) including the initial conditions, 

then 𝑻(𝒙, 𝒕) is a generalized solution to the equivalent form of (9) and (10), i.e 

𝝏𝒕𝑻 = 𝕯𝓛−𝟏 (
𝒔

𝝉𝒔𝜶+𝒔𝜷) 𝝏𝒙𝜺𝒙
𝝑𝑻 + 𝑻𝟎(𝒙)𝜹(𝒕)   (11) 

is valid in E. 

Main Theorem Let 𝑻𝟎 ∈ 𝑬 and 𝒙 ∈ ℝ, then a solution 𝑻(𝒙, 𝒕) ∈ 𝑬𝟐 which is unique to (11) exist and is defined 

by 

𝑻(𝒙, 𝒕) =
𝑻𝟎∗𝒎𝟎

𝟐𝝅𝒊
∫ ((𝝉𝒒𝜶𝒆𝒊𝜶𝝅 + 𝒒𝜷𝒆𝒊𝜷𝝅)

𝒄∞

𝟎
𝒆

𝒊𝒃𝟎(
𝝉𝒒𝜶𝒆𝒊𝜶𝝅+𝒒𝜷𝒆𝒊𝜷𝝅

Ω )
𝒄

|𝒙|
  

−(𝝉𝒒𝜶𝒆−𝒊𝜶𝝅 + 𝒒𝜷𝒆−𝒊𝜷𝝅)
𝒄
𝒆

𝒊𝒃𝟎(
𝝉𝒒𝜶𝒆−𝒊𝜶𝝅+𝒒𝜷𝒆−𝒊𝜷𝝅

Ω )
𝒄

|𝒙|
) 

𝒆−𝒒𝒕

𝒒
𝒅𝒒  

Where   𝒄 =
𝟏

𝟏+𝝑
,      𝛀 = 𝝀 𝐬𝐢𝐧(𝝅𝝑

𝟐
),          𝒃𝟎 = 𝒆

𝒊𝝅
𝟏+𝝑,           𝒎𝟎 =

𝟏

𝟐𝐬𝐢𝐧 (
𝝅

𝟏+𝝑)
(

𝟏

𝛀
)𝒄  

To proof the main theorem, a lemma is stated as follows: 

𝒍𝒆𝒎𝒎𝒂.
𝟏 : Consider the functions 𝒖, 𝒖𝟎 ∈ 𝑺′(ℝ) in Laplace transform state, with 

𝒇(𝒔), 𝒘(𝒔) ∈ ℂ,     𝝎(𝒔) ∈ ℂ\(−∞, 𝟎]. Then 
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𝝏𝒙𝜺𝒙
𝝑𝒖̃ − 𝒘(𝒔)𝒖̃ = −𝒇(𝒔)𝒖𝟎̃  (12) 

has a unique solution in Fourier-Laplace transform domain given by 

𝒖̂̃ =
𝒇(𝒔)𝒖𝟎̂̃

𝐬𝐢𝐧(𝝅𝝑
𝟐

)|𝝃|𝟏+𝝑+𝒘(𝒔)
  (13) 

To obtain (13), first take the Laplace transform of the system (9) and (10) as 

follows: 

𝒔𝑻̃ = −𝝏𝒙𝒒̃ + 𝑻̃𝟎(𝒙)   (14) 

𝒔𝜷−𝟏𝒒̃ + 𝝉𝒔𝜶−𝟏𝒒̃ = −𝝀𝜺𝒙
𝝑𝑻̃  (15) 

For simplification of the model (with  𝝆𝒄 = 𝟏) in (5) and (6), 𝕯 =
𝝀

𝝆𝒄
→ 𝝀, 𝒒̅ =

𝒒

𝝆𝒄
→ 𝒒. Substituting (15) into 

(14) yields  

𝝏𝒙(𝜺𝒙
𝝑𝑻̃) −

𝒔(𝝉𝒔𝜶−𝟏+𝒔𝜷−𝟏)

𝝀
𝑻̃ = −𝑻̃𝟎(𝒙)

(𝝉𝒔𝜶−𝟏+𝒔𝜷−𝟏)

𝝀
   (16) 

By setting 𝒘(𝒔) ≔
𝒔(𝝉𝒔𝜶−𝟏+𝒔𝜷−𝟏)

𝝀
 and 𝒇(𝒔) ≔

(𝝉𝒔𝜶−𝟏+𝒔𝜷−𝟏)

𝝀
, and taking the Fourier transform, equation (16) has a 

solution of the form as in (13). 

 With 𝒍𝒆𝒎𝒎𝒂.
𝟏  a unique solution (13) is guaranteed for the model system. A second lemma is considered to verify 

that the unique solution (13) exist. 

𝒍𝒆𝒎𝒎𝒂.
𝟐 : If 𝝉, 𝛀 > 𝟎 and 𝟎 < 𝜷 ≤ 𝜶 ≤ 𝟐(𝟎 < 𝜷 ≤ 𝟏, 𝟏 ≤ 𝜶 ≤ 𝟐), then there exist a unique 𝒓𝟎 > 𝟎 and 𝝍𝟎 ∈

(
𝝅

𝜶
,

𝝅

𝜶−𝜷
), such that a unique solution 𝒔𝟎 = 𝒓𝟎𝒆𝒊𝝍𝟎 and its complex conjugate 𝒔̅𝟎 are zeros of the function, 𝒛(𝒔). 

𝒛(𝒔) = 𝝉𝒔𝜶 + 𝒔𝜷 + 𝛀  

Where 𝛀 = 𝐬𝐢𝐧 (𝝅𝝑

𝟐
)|𝝃|𝟏+𝝑 and 𝒛(𝒔) is the denominator of equation (13) when 𝒇(𝒔) and 𝒘(𝒔) are substituted. 

Proof of 𝒍𝒆𝒎𝒎𝒂.
 𝟐  

By considering a solution of the form 𝒔 = 𝒓𝒆𝒊𝝍 and splitting 𝒛(𝒔) = 𝟎 into its real and imaginary parts, the 

following equations are obtained 

𝝉𝒓𝜶𝐜𝐨𝐬 (𝜶𝝍) + 𝒓𝜷𝐜𝐨𝐬 (𝜷𝝍) + 𝛀 = 𝟎  (17) 

𝝉 𝒓𝜶𝐬𝐢𝐧(𝜶𝝍) + 𝒓𝜷 𝐬𝐢𝐧(𝜷𝝍) = 𝟎  (18) 

The complex solution 𝒔𝟎 = 𝒓𝟎𝒆𝒊𝝍𝟎 and its conjugate solution  𝒔̅𝟎 = 𝒓𝟎𝒆−𝒊𝝍𝟎 both satisfy (17), (18). This implies 

that a change in argument from positive to negative does not affect the solution. As a result, the focus is on the 

upper half complex plane only. For 𝝍 = 𝟎, equation (17) cannot be considered true as the left-hand side will 

always be greater than zero since τ, Ω > 0. For 𝝍 = 𝝅, equation (18) will not be valid as 𝐬𝐢𝐧(𝜷𝝅) > 𝟎. For 𝝍 ∈

(𝟎,
𝝅

𝟐
], equation (18) cannot be satisfied since all terms will be positive. If a solution exists then it must be in 𝝍 ∈

(𝝅

𝟐
, 𝝅). If a solution exists, its real part must be negative. we therefore consider 𝝍 ∈ (𝝅

𝜶
, 𝝅) where 𝐬𝐢𝐧 (𝜷𝝍) > 𝟎 

and 𝐬𝐢𝐧(𝜶𝝍) < 𝟎 for a solution to equation (18). For 𝒓𝜷 ≠ 𝟎 in (18)  

𝒓 = (
𝐬𝐢𝐧 (𝜷𝝍)

−𝛕𝐬𝐢𝐧 (𝜶𝝍)
)

𝟏
𝜶−𝜷

  

Substituting 𝒓 into equation (17), yields 

𝒈(𝝍) ≔ (
(𝐬𝐢𝐧(𝜷𝝍))𝜷

(𝐬𝐢𝐧(𝜶𝝍))𝜶)

𝟏

𝜶−𝜷
𝐬𝐢𝐧((𝜶 − 𝜷)𝝍) = 𝛀𝝉

𝜷
𝜶−𝜷  (19) 
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The requirement that 𝐬𝐢𝐧((𝜶 − 𝜷)𝝍) > 𝟎 is upheld since 𝛀𝝉
𝜷

𝜶−𝜷 > 𝟎 for equation (19). The arguments of the 

solutions on the upper half complex plane are further 

restricted to the interval (see ([7])) 

𝝅

𝜶
< 𝝍 < 𝒎𝒊𝒏 (𝝅, 𝝅

𝜶−𝜷
). 

𝒈(𝝍) is continuous and positive on the interval (𝝅

𝜶
, 𝝅

𝜶−𝜷
) with limits 

𝐥𝐢𝐦
𝝍→

𝝅
𝜶

+
𝒈(𝝍) = ∞ and 𝐥𝐢𝐦

𝝍→
𝝅

𝜶−𝜷

− 𝒈(𝝍) = 𝟎 

This implies that there exist a 𝝍𝟎 such that 𝒈(𝝍𝟎) = 𝛀𝝉
𝜷

𝜶−𝜷. Therefore, a solution to (17), (18) exist and is given 

by 𝒔𝟎 = 𝒓𝟎𝒆𝒊𝝍𝟎, where 𝒓𝟎 = (
(𝒔𝒊𝒏(𝜷𝝍𝟎))𝜷

(𝒔𝒊𝒏(𝜶𝝍𝟎))𝜶)

𝟏

𝜶−𝜷
. The function 𝒈(𝝍) is monotonically decreasing if 

𝒅𝒈(𝝍)

𝒅𝝍
< 𝟎. 

Proof: 

𝒅𝒈(𝝍)

𝒅𝝍
= −

𝐬𝐢𝐧(𝜷𝝍)
𝜷

𝜶−𝜷−𝟏

(𝜶−𝜷)(− 𝐬𝐢𝐧(𝜶𝝍))
𝜷

𝜶−𝜷+𝟏
𝒎𝟎(𝝍)  

with 𝒎𝟎(𝝍) ≔ 𝜶𝟐𝒔𝒊𝒏𝟐(𝜷𝝍) + 𝜷𝟐𝒔𝒊𝒏𝟐(𝜶𝝍) − 𝟐𝜶𝜷 𝐬𝐢𝐧(𝜶𝝍) 𝐬𝐢𝐧(𝜷𝝍) 𝐜𝐨𝐬((𝜶 − 𝜷)𝝍) > 𝟎. 

For 𝝍 ∈ (𝝅

𝜶
, 𝝅

𝜶−𝜷
),   𝐬𝐢𝐧(𝜷𝝍) > 𝟎, 𝐬𝐢𝐧(𝜶𝝍) < 𝟎,   𝐜𝐨𝐬((𝜶 − 𝜷)𝝍) ≤ 𝟏. This reduces 𝒎𝟎 to a perfect square as 

𝒎𝟎 = (𝜷 𝐬𝐢𝐧(𝜶𝝍) − 𝜶𝐬𝐢𝐧 (𝜷𝝍))𝟐 > 𝟎  

Evidently, 𝒎𝟎(𝝍) > 𝟎 proves that 
𝒅𝒈(𝝍)

𝒅𝝍
< 𝟎. Since there exist a unique 𝝍𝟎 ∈ (𝝅

𝜶 
, 𝝅

𝜶−𝜷
) such that 𝒈(𝝍𝟎) = Ω𝝉

𝜷
𝜶−𝜷 

and g(ψ) is strictly monotonically decreasing function, 𝒔𝟎 is the unique solution to (17) and (18). We used the 

approach adopted by ([8][9]) to examine existence and uniqueness of solutions (𝒔𝟎, 𝒔̅𝟎). An alternative approach 

in examining existence of solutions (roots) exist (see proposition 2 in [7]). 

Proof of Main Theorem 

To establish the unique solution as stated in the main theorem, determine the Fourier inverse transform of (13) as 

obtained from 𝒍𝒆𝒎𝒎𝒂.
𝟏 .  

𝓕−𝟏 (
𝟏

𝐬𝐢𝐧(𝝅𝝑
𝟐

)|𝒙|𝟏+𝝑+𝒘(𝒔)
) (𝒙) =

𝟏

𝟐𝝅
∫

𝒆𝒊𝝃𝒙𝒅𝝃

𝒔𝒊𝒏(𝝅𝝑
𝟐

)|𝒙|𝟏+𝝑+𝒘(𝒔)

∞

−∞
. 

With the Cauchy residue theorem  

𝟏

𝟐𝝅𝒊
∫ 𝒖̂̃(𝝃, 𝒔)𝒆𝒊𝝃𝒙

𝚪
𝒅𝝃 = ∑ 𝑹𝒆𝒔 (𝒖̂̃(𝝃𝒌))𝒏

𝒌=𝟏   (20) 

where 𝚪 is the Hankel contour integration path. For calculations involving contour integrals see ([7],[8],[10]). The 

residues for 𝒙 ≥ 𝟎, 𝒘(𝒔) ∈ ℂ\(−∞, 𝟎] from the contour path 𝚪 using fig.1 is calculated as follows  

∫ 𝒖̂̃(𝝃, 𝒔)𝒆𝒊𝝃𝒙𝒅𝝃
𝒓

𝜺
+ ∫ 𝒖̂̃(𝝃, 𝒔)𝒆𝒊𝝃𝒙𝒅𝝃

𝑪𝒓
+ ∫ 𝒖̂̃(𝝃, 𝒔)𝒆𝒊𝝃𝒙𝒅𝝃

𝜸𝜺
+ ∫ 𝒖̂̃(𝝃, 𝒔)𝒆𝒊𝝃𝒙𝒅𝝃

𝜺

𝒓
= 𝟐𝝅𝒊 ∑ 𝑹𝒆𝒔 (𝒖̂̃(𝝃𝒌))𝒏

𝒌=𝟏   (21) 
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Fig. 1. Contour integration path 

Solving for the residue in (21), the Fourier inverse solution of (13) is given as  

𝒖̃(𝒙, 𝒔) = 𝒖𝟎 ∗ 𝒎𝟎(𝝉𝒔𝜶 + 𝒔𝜷)
𝒄 𝟏

𝒔
𝒆

𝒊𝒃𝟎(𝝉𝒔𝜶+𝒔𝜷

𝛀 )
𝒄

𝒙
, 𝒙 ≥ 𝟎  (22) 

where 𝒎𝟎,     𝒃𝟎,        𝒄,    𝛀  are explained in the main theorem.  

Considering −∞ < 𝒙 < 𝟎, the poles in (13) will be negative and the corresponding solution will be given as  

𝒖̃(𝒙, 𝒔) = 𝒖𝟎 ∗ 𝒎𝟎(𝝉𝒔𝜶 + 𝒔𝜷)
𝒄 𝟏

𝒔
𝒆

−𝒊𝒃𝟎(𝝉𝒔𝜶+𝒔𝜷

𝛀 )
𝒄

𝒙
  (23) 

This implies for any 𝒙 ∈ ℝ, the solution in the Laplace transform domain is given by 

𝒖̃(𝒙, 𝒔) = 𝒖𝟎 ∗ 𝒎𝟎(𝝉𝒔𝜶 + 𝒔𝜷)
𝒄 𝟏

𝒔
𝒆

−𝒊𝒃𝟎(𝝉𝒔𝜶+𝒔𝜷

𝛀 )
𝒄

|𝒙|
  (24) 

𝒖̃(𝒙, 𝒔) is a multivalued function with no singularities. The most obvious branch point is located at 𝒔 = 𝟎. Since 

𝒖̃(𝒙, 𝒔) does not have singularities, its Laplace transform inverse can be calculated with Cauchy integral formula 

for a closed curve as 

∮ 𝒖̃
𝚪𝜸,

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔 = 𝟎  (25) 

where the path of integration over the close contour in fig. 2 is given by 

∮ =
𝚪𝜸

∫ +
𝑯𝑲𝑨

∫ +
𝑨𝑩

∫ +
𝑩𝑪𝑫

∫ +
𝑫𝑬

∫ + ∫  
𝑮𝑯𝑬𝑭𝑮
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Fig. 2. Bromwich contour path 

With Jordan’s Lemma, contributions from  ∫  
𝑯𝑲𝑨

 and ∫  
𝑬𝑭𝑮

  𝒓𝒆𝒅𝒖𝒄𝒆𝒔 𝒕𝒐 zero as 𝑹 → 𝟎. The solution after 

inverting 𝒖̃(𝒙, 𝒔) using Laplace transform is  

𝒖(𝒙, 𝒕) = ∫ 𝒖̃
𝑮𝑯

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔 =
𝟏

𝟐𝝅𝒊
∫ 𝒖̃

𝝈+𝒊∞

𝝈−𝒊∞
(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔  (26) 

From fig. 2, if 𝒔 = 𝒒𝒆𝒊𝝅 is along the path AB and 𝒔 = 𝒒𝒆−𝒊𝝅 along DE, then 

𝟐𝝅𝒊𝒖(𝒙, 𝒕) = − ∫ 𝒖̃
𝑨𝑩

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔|𝒔=𝒒𝒆𝒊𝝅 − ∫ 𝒖̃
𝑫𝑬

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔|𝒔=𝒒𝒆−𝒊𝝅 − ∫ 𝒖̃
𝑩𝑪𝑫

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔|𝒔=𝜺𝒆𝒊𝝍  (27) 

𝐥𝐢𝐦
𝜺→𝟎

∫ 𝒖̃
𝑩𝑪𝑫

(𝒙, 𝒔)𝒆𝒔𝒕𝒅𝒔|𝒔=𝜺𝒆𝒊𝝍 = 𝒖𝟎 ∗ 𝒎𝟎 𝐥𝐢𝐦
𝜺→𝟎

∫ (𝝉𝜺𝜶𝒆𝒊𝜶𝝍 + 𝜺𝜷𝒆𝒊𝜷𝝍)
𝒄
𝒆

−𝒊𝒃𝟎(𝝉𝜺𝜶𝒆𝒊𝜶𝝍+𝜺𝜷𝒆𝒊𝜷𝝍

𝜴 )
𝒄

|𝒙|−𝝅

𝝅
𝒊𝒅𝝍 = 𝟎  (28) 

By calculating the remaining integrals in (27), the unique solution as stated in the main theorem is established as  

𝟐𝝅𝒊𝒖(𝒙, 𝒕) =  

𝒖𝟎 ∗ 𝒎𝟎 ∫ ((𝝉𝒒𝜶𝒆𝒊𝜶𝝅 + 𝒒𝜷𝒆𝒊𝜷𝝅)
𝒄
𝒆

𝒊𝒃𝟎(
𝝉𝒒𝜶𝒆𝒊𝜶𝝅+𝒒𝜷𝒆𝒊𝜷𝝅

𝛀 )
𝒄

|𝒙|
− (𝝉𝒒𝜶𝒆−𝒊𝜶𝝅 +

∞

𝟎

𝒒𝜷𝒆−𝒊𝜷𝝅)
𝒄
𝒆

𝒊𝒃𝟎(
𝝉𝒒𝜶𝒆−𝒊𝜶𝝅+𝒒𝜷𝒆−𝒊𝜷𝝅

𝜴 )
𝒄

|𝒙|
)

𝒆−𝒒𝒕

𝒒
𝒅𝒒  (29) 

4. Numerical Examples  

In all numerical examples, only the unique solution, 𝒖(𝒙, 𝒕) valid for 𝒙 ≥ 𝟎 is considered. Fixed values of the 

constants 𝝀, 𝝉, 𝜶, 𝛀, 𝜷 were used in the examples. Values of 𝝉 and 𝝀 are arbitrarily fixed at 𝝉 = 𝟎. 𝟏 and 𝝀 = 𝟏. 

Example 1 In this example, fixed {𝜶 = 𝟏. 𝟗, 𝜷 = 𝟎. 𝟓, 𝒕 = 𝟏. 𝟎} for figure 3(a), and {𝜶 = 𝟏. 𝟖, 𝜷 = 𝟎. 𝟕, 𝒕 =

𝟏. 𝟎} for figure 3(b) are considered. A plot of temperature along different spatial coordinates 𝒙 for different values 

of 𝝑 = {𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖, 𝟎. 𝟗} is shown in figure 3(a). In figure 3(b) temperature prediction is shown for increasing 

values of 𝝑 = {𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖, 𝟎. 𝟗, 𝟏. 𝟎}. Higher and sharper peaks temperature values are observed in both figure 

3(a and b) as 𝝑 decreases. 
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Fig. 3(a) Fig. 3(b) 

Example 2: I fixed  𝜶 = 𝟏. 𝟖, 𝝑 = 𝟎. 𝟗 and plot 𝑻(𝒙, 𝒕) variations along spatial coordinate points x at different 

𝜷 ∈ {𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖, 𝟎. 𝟗, 𝟏. 𝟎} at different time instant 𝒕 ∈ {𝟎. 𝟑, 𝟏. 𝟎, 𝟏. 𝟓, 𝟐. 𝟎, 𝟐. 𝟓} as shown in fig. 4(a). Fig.4(b) 

shows plots of 𝑻(𝒙, 𝒕) versus medium point values 𝒙 for 𝜶 ∈ {𝟎. 𝟗, 𝟏. 𝟐, 𝟏. 𝟒, 𝟏. 𝟔, 𝟏. 𝟖, 𝟐. 𝟎} for different time 

instants   𝒕 ∈ {𝟐. 𝟎, 𝟐. 𝟓, 𝟑. 𝟎, 𝟑. 𝟔, 𝟒. 𝟓, 𝟓. 𝟓}. In figure 4(a), the smaller the parameter 𝜷, the higher and narrower 

the peak temperature values at different time instants, t. Figure 4(b) also shows a similar for trend for the α 

parameter on temperature distribution along the medium at different time instants, t 

     

Fig. 4(a) Fig. 4(b) 

Example 3 For this example, I fixed 𝜶 = 𝟏. 𝟖, 𝝑 = 𝟎. 𝟒 and 𝜷 = 𝟏. 𝟎 for different spatial points  𝒙 ∈

{𝟏. 𝟎, 𝟏. 𝟐, 𝟏. 𝟒, 𝟏. 𝟔, 𝟏. 𝟖, 𝟐. 𝟎} and plot temperature function 𝑻(𝒙, 𝒕) against time, 𝒕 ∈ (𝟎, 𝟓) as shown in figure 5. 

Sharper, higher and narrower peaks of the Temperature distribution function 𝑻(𝒙, 𝒕) are observed for smaller 

spatial points inside the medium than bigger spatial points. The peak temperature values decrease with increase 

in the medium spatial points. The temperature of the medium after peaking reduces sharply or gradually depending 

on the location of the spatial point 𝒙 at which the heating started. 
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Fig. 5 

5. Conclusions 

I proposed a new generalization of the Classical Cattaneo constitutive equation by modifying the model used in 

([1]). I introduced the symmetrized fractional Cattaneo temperature gradient of order 𝝑 with respect to spatial 

point 𝒙. The parameters 𝜶  and 𝜷 are fractional orders of derivatives in respect of time. Our model contains three 

fractional parameters  𝜶, 𝜷  and 𝝑, where 𝟎 < 𝜷 ≤ 𝜶 ≤ 𝟐 and 𝟎 < 𝝑 < 𝟏. A unique solution to the model (5), (6) 

was established and its existence proven. Explicit solutions in integral form are provided. Effects of non-integer 

orders for derivatives of the model are examined using numerical examples provided. Smaller values of β 

produced sharper and stronger effect than bigger values of 𝜷. As 𝜶 values increase, the effect become stronger. 

For the parameter 𝝑, smaller values produce stronger effect on temperature distribution in the medium than larger 

values of 𝝑. 
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