Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

Statistical Learning Models for
Performance Optimization-Al Driven
Wireless Communication Networks

Sujithra J R! Sri Varsha S? Manjula D? Nandhinidevi R* Indumathi N3 Tulasidass P®

Rajarajeswari N’ Punithavathy C3

! Assistant Professor, Department of Mathematics, Govt. Arts College, Ooty
2Senior Resident, Department of Community Medicine, Sree Balaji Medical College and Hospital
37 Assistant Professor, Department of Community Medicine, Karpagam Faculty of Medical Sciences and
Research
“Associate Professor, Department of Mathematics, Dr MGR Educational and Research Institute
3 Assistant Professor, Department of Mathematics, Sri Ramakrishna Engineering College
®Data Scientist, Almada Group
8Final Year Postgraduate of MD, Department of Community Medicine, Karpagam Faculty of Medical Sciences
and Research

Abstract:- The rapid expansion of 5G and emerging 6G networks has increased data traffic, user demands, and
system complexity. Artificial Intelligence (AI) and statistical learning models are critical for optimizing latency,
throughput, spectrum efficiency, and energy consumption. This chapter examines integrating regression models,
Bayesian inference, SVMs, ensemble learning, and deep learning into Al-driven wireless systems. Performance
optimization strategies include resource allocation, traffic prediction, QoS enhancement, and dynamic spectrum
management, while addressing challenges such as scalability, interpretability, and real-time adaptability. Future
research directions focus on Al-statistical learning convergence for next-generation networks.
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1. Introduction

The evolution of wireless communication networks has been marked by unprecedented technological
transformations. From the early stages of 2G and 3G to the more advanced 4G LTE, and now the deployment of
5G, communication systems have continuously expanded in scope, speed, and capabilities. With the transition
towards the sixth generation (6G), networks are expected to support ultra-reliable, low-latency communication,
massive machine-type connectivity, and immersive applications such as augmented reality (AR), virtual reality
(VR), and holographic communication [1,2]. This paradigm shift, however, comes with an exponential surge in

data traffic, a massive diversity of connected devices, and significantly higher system complexity [3].

Artificial Intelligence (AI) has emerged as a transformative enabler in addressing these challenges. Unlike
traditional rule-based or optimization-driven approaches, Al techniquesparticularly those rooted in machine
learning and statistical learning offer powerful tools for data-driven decision-making. By analyzing large-scale,
high-dimensional, and dynamic wireless data, Al-driven solutions can adaptively optimize network performance

metrics such as latency, throughput, energy efficiency, and spectrum utilization [4,5].
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Statistical learning models, which combine the strengths of mathematical rigor and data-driven inference, are
particularly well-suited for wireless networks where uncertainty, variability, and dynamic changes are inherent.
These models enable predictive analysis, anomaly detection, and real-time decision-making, making them

essential in the design and operation of next-generation networks [6].

The central theme of this chapter is to explore how statistical learning methods—including regression models,
Bayesian inference, support vector machines (SVM), ensemble learning, and deep learning can be integrated into
Al-driven wireless communication networks for performance optimization. The chapter emphasizes four primary
strategies: resource allocation, traffic prediction, quality of service (QoS) enhancement, and dynamic spectrum
management. In addition, it highlights the challenges related to scalability, interpretability, and adaptability, and
outlines future research directions at the intersection of Al, statistical learning, and next-generation

communication technologies [7,8].

Fundamentals of Statistical Learning and Al in Wireless Systems

Statistical learning is a subfield of machine learning that emphasizes predictive modeling and inference through
probabilistic and statistical methods. Unlike purely heuristic Al approaches, statistical learning incorporates
formal mathematical frameworks, enabling it to handle uncertainty, model complex interactions, and provide

interpretable outcomes [9].

In wireless communication, Al techniques can be classified into supervised learning, unsupervised learning,
reinforcement learning, and deep learning. Supervised models such as regression, decision trees, and SVMs are
used for prediction tasks like traffic load forecasting. Unsupervised learning, including clustering and
dimensionality reduction, is used for anomaly detection and user classification. Reinforcement learning supports
adaptive decision-making in dynamic environments such as power allocation or routing [10]. Deep learning,
leveraging neural networks, enables the extraction of high-dimensional features from complex data such as

channel states and traffic patterns [11].

Key wireless metrics: latency (transmission time), throughput (data delivered), spectrum efficiency (rate per
bandwidth), energy efficiency (performance vs power), and QoS (jitter, reliability, loss) [12]. These metrics

directly influence end-user experiences and service delivery in next-generation wireless systems.

Statistical Learning Models for Wireless Network Optimization

Statistical learning models play a vital role in wireless network optimization by enabling prediction, classification,
and decision-making under uncertainty. Regression models are widely used, with linear regression supporting
traffic forecasting, non-linear regression capturing user mobility and fading effects, and regularized methods like

LASSO and Ridge addressing overfitting in high-dimensional data [13,14].

Bayesian inference is effective in uncertain environments, supporting spectrum sensing, adaptive modulation, and

cognitive radio decision-making for dynamic spectrum allocation [15,16]. Support Vector Machines (SVMs)
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provide robust solutions for QoS classification, intrusion detection, and mobility prediction, with kernel-based

extensions addressing non-linear channel estimation [17,18].

Ensemble learning methods such as Random Forests, Gradient Boosting, and Bagging improve predictive
accuracy in applications like spectrum sensing, fault detection, and anomaly prediction, especially with large-

scale heterogeneous datasets [19,20].

Deep learning approaches, including CNNs for CSI prediction, RNNs and LSTMs for traffic and mobility
forecasting, and Transformer-based architectures for real-time spectrum management, have further advanced

optimization by leveraging high-dimensional and sequential wireless data [11,4].

Performance Optimization Strategies

Performance optimization in wireless networks relies on intelligent use of statistical and machine learning models
across multiple dimensions. Resource allocation is enhanced by reinforcement learning, particularly Deep Q-
Networks (DQNs), which balance throughput and energy consumption, while regression models aid in demand

forecasting [15,16].

Traffic prediction, essential for congestion control, has evolved from traditional ARIMA models to deep learning
approaches such as LSTMs and attention networks, enabling predictive load balancing for reduced latency and

improved QoS [11].

QoS enhancement further benefits from classifiers like SVMs, which categorize applications into priority levels,

supporting differentiated service provisioning and multi-objective optimization [17].

Addressing spectrum scarcity, dynamic spectrum management employs Bayesian inference for probabilistic
modeling, ensemble methods for robust detection in noisy environments, and deep reinforcement learning for

real-time adaptive spectrum access, thereby ensuring efficient utilization in next-generation systems [15,19,20].

2.Results

Table 1: Comparison of Statistical Learning Models for Traffic Prediction in Wireless Networks

Model RMSE Latency Throughput Notes
(Traffic Reduction Improvement (%)
Load) (%)
Linear Regression 0.215 5.2 3.1 Simple but limited adaptability
ARIMA 0.172 8.6 4.7 Good for short-term forecasting
SVM (Regression) 0.143 124 8.9 Effective for non-linear trends
Random Forest 0.125 14.3 10.2 Robust and scalable
(Ensemble)
LSTM (Deep Learning) 0.087 21.8 15.6 Best for temporal dependencies

The Table 1, shows the evaluation shows that advanced models outperform traditional methods. LSTM achieved
the lowest RMSE (0.087), highest latency reduction (21.8%), and throughput improvement (15.6%),

demonstrating superior handling of temporal dependencies. Random Forest and SVM also improved performance,
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while Linear Regression and ARIMA were less effective for dynamic traffic prediction and optimization. Figure

1, shows the accuracy.

Figure 1: Accuracy of Traffic Prediction Across Models
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Table 2: Dynamic Spectrum Allocation Performance (Simulated Cognitive Radio Network, 100 Users)

Method Spectrum Utilization | Collision Probability Energy Efficiency
(%) (%) (Mbps/Watt)

Fixed Allocation 62.4 12.7 1.25
Bayesian Spectrum 75.2 9.3 1.61
Sensing

Random Forest Classifier 81.6 6.8 1.87

Deep Reinforcement 89.5 34 2.25
Learning

Table 2, shows the results indicate that advanced spectrum management techniques significantly enhance network
performance. Deep Reinforcement Learning achieved the highest spectrum utilization (89.5%) with the lowest
collision probability (3.4%) and best energy efficiency (2.25 Mbps/Watt). Random Forest and Bayesian methods
also improved outcomes compared to fixed allocation, demonstrating the benefits of intelligent, adaptive

approaches. Figure 2, shows the spectrum utilization

Figure 2: Spectrum Utilization vs. Number of Users
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Table 3: QoS Enhancement Using Machine Learning Models

Application Type Baseline Packet Loss | With SVM Classifier | With LSTM Classifier
(%)
Video Streaming 6.5 3.8 2.4
Voice Calls 4.3 2.7 1.8
IoT Data Transfer 2.9 1.9 1.3

Table 3, shows the analysis shows that ML-based classifiers effectively reduce packet loss across applications.
LSTM outperformed SVM, achieving the lowest losses: video streaming 2.4%, voice calls 1.8%, and IoT data

1.3%, indicating its superior ability to capture temporal patterns and enhance QoS in wireless networks. Figure 3,

shows the QOS Packet Loss Comparison.

Figure 3: QoS Packet Loss Comparison Across Applications
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3. Challenges and Open Issues

Key challenges in Al-driven wireless optimization include scalability for massive devices, interpretability of deep

learning models, real-time adaptability to dynamic environments, and ensuring data privacy and security
[15,16,18,20].
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4. Future Directions

The integration of Al and statistical learning in wireless networks promises advances through edge/fog computing
for low-latency adaptability, federated learning for privacy-preserving optimization, quantum-inspired methods
for ultra-fast 6G optimization, and self-optimizing networks that autonomously adapt, heal, and enhance

performance using hybrid Al-statistical models.

5. Discussion

Comparative analysis highlights consistent performance gains from machine learning in wireless network
optimization. For traffic prediction, traditional models offer limited adaptability. As shown in Table 1, LSTM
achieved the best accuracy (RMSE = 0.087) [11].

In spectrum allocation, fixed methods underperform. Bayesian sensing improves performance, but Deep
Reinforcement Learning (DRL) achieves optimal utilization (89.5%) with minimal collisions (3.4%) as indicated

in Table 2 [15,16].

QoS enhancement follows similar trends, with deep models—particularly LSTM—significantly reducing packet
loss (e.g., video streaming 2.4%, IoT transfers 1.3%) as shown in Table 3 [11,17]. These results underscore the

effectiveness of advanced ML techniques in dynamic, large-scale wireless networks.

6. Summary

LSTM excelled in traffic prediction by capturing temporal dependencies, while DRL achieved superior spectrum
utilization with minimal collisions. LSTM consistently improved QoS by reducing packet loss. Overall, advanced
ML techniques like LSTM, DRL, and Random Forest consistently outperformed traditional statistical methods
such as Linear Regression and ARIMA.

7. Conclusion

This Study examined statistical learning models for optimizing Al-driven wireless networks, demonstrating their
effectiveness in traffic prediction, spectrum management, and QoS enhancement. LSTM achieved the best
accuracy (RMSE = 0.087) for traffic forecasting, while DRL delivered optimal spectrum utilization (89.5%) with

minimal collisions (3.4%).

For QoS, machine learning consistently reduced packet loss, with LSTM outperforming other models across
video, voice, and IoT applications. These findings highlight the superiority of deep and reinforcement learning in
enhancing efficiency, reliability, and scalability. Despite challenges in scalability, interpretability, and
adaptability, emerging approaches such as edge computing, federated learning, and quantum-inspired statistical

learning promise to enable intelligent, autonomous wireless systems for 6G and beyond.
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8. Recommendations

Recommendations include prioritizing LSTM for traffic prediction and QoS, adopting DRL for dynamic spectrum

allocation, using hybrid approaches combining Random Forest with LSTM/DRL for scalability and accuracy,

validating models in live networks, and enhancing energy efficiency to support green networking in Al-driven

wireless communication systems.
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