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Abstract: Artificial Intelligence (AI) and Machine Learning (ML) are transforming vehicular networks by 

enabling autonomous, collaborative, and context-aware decision-making. Modern transportation systems demand 

ultra-low latency, high reliability, and rapid adaptation, which traditional rule-based or centralized approaches fail 

to provide. This work explores the role of distributed intelligence—spanning centralized cloud AI, edge AI, 

federated learning (FL), and multi-agent AI—in ensuring real-time vehicular coordination. Reinforcement 

Learning (RL) and Multi-Agent RL (MARL) support dynamic tasks such as lane changing, adaptive routing, 

collision avoidance, and resource allocation in highly variable traffic conditions. Cooperative Perception (CP) 

enhances situational awareness by enabling vehicles and roadside sensors to share processed features or decisions, 

significantly improving detection accuracy under occlusions and adverse conditions. Additionally, AI-driven 

resource allocation optimizes spectrum, power, and computing distribution across 6G-enabled IoV architectures, 

ensuring efficient QoS management under dense mobility. Performance analyses—via convergence plots, reward 

evolution, perception trade-off curves, and newly evaluated latency, communication overhead, and PDR graphs—

highlight the superiority of AI-driven mechanisms over static or heuristic baselines. Overall, this study 

demonstrates that AI/ML techniques form the backbone of next-generation intelligent transportation systems, 

enabling scalable, secure, and cooperative vehicular ecosystems. 

Keywords: Intelligent Vehicular Coordination, Federated and Edge AI, Reinforcement Learning (RL), 

Cooperative Perception (CP), 6G-Enabled IoV Networks. 

Introduction: 

This article emphasizes the role of AI/ML in enabling intelligent decision-making in vehicular networks. It 

explores distributed AI paradigms, contrasting centralized, edge, and federated learning approaches. Mobile Edge 

Computing (MEC) is presented as a key enabler of real-time processing [1], reducing reliance on cloud 

infrastructures. 

Special focus is given to Deep Reinforcement Learning (DRL) for dynamic decision-making in tasks like 

platooning, lane merging, and collision avoidance. Graph Neural Networks (GNNs) are discussed as tools for 

modeling traffic interactions [2]. Cooperative perception, multi-agent AI, and AI-driven resource allocation 

strategies are highlighted as essential mechanisms for scalable, privacy-preserving, and adaptive vehicular 

intelligence. 

Artificial Intelligence (AI) is the field of computer science concerned with creating systems that can perform tasks 

typically requiring human intelligence, such as perception, reasoning, learning, and decision-making. Machine 

Learning (ML), a subset of AI, involves algorithms that improve their performance automatically through 

experience and data rather than explicit programming. Within the domain of transportation, AI and ML enable 

vehicles, infrastructure, and communication systems to function intelligently [3], adapt to dynamic environments, 

and optimize decision-making in real time. 

In the context of Intelligent Transportation Systems (ITS), AI and ML act as the “brain” that processes vast 

amounts of heterogeneous data collected from vehicles, roadside sensors, GPS, LiDAR, cameras, and Internet of 

Vehicles (IoV) communications [4]. In complicated urban circumstances where uncertainty, variability, and fast 

decision-making are prevalent, traditional rule-based control systems are inadequate, even though they work well 

in predictable situations. These constraints are overcome by AI-based systems, which recognize trends, forecast 

outcomes, and carry out actions on their own that improve sustainability, efficiency, and safety. 

A traditional traffic light, for instances, uses preset cycles that don't take consideration of unexpected spikes in 

traffic. On the contrary hand, an AI-powered traffic signal continually analyzes real-time data from cameras and 

Internet of Things sensors, forecasts traffic, and dynamically modifies signal timing. Similar to this, an AI-enabled 

autonomous car can see its environment using cameras and LiDAR, recognize the actions of people walking 

around it, anticipate possible collisions, and take preventative action—things those conventional systems are 

unable to do.  

The three functional dimensions of perception, prediction, and decision-making can be used to illustrate how 

AI/ML is incorporated into ITS. 
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AI systems convert unprocessed sensor inputs into useful environmental data using machine learning models, 

especially computer vision algorithms. Convolutional Neural Networks (CNNs), for instance, are frequently used 

to identify obstacles, classify pedestrians, detect lanes, and recognize traffic signals. In order to provide a solid 

and trustworthy picture of the environment, sensor fusion algorithms additionally integrate data from several 

sources, including cameras, radar, and LiDAR. For autonomous cars that need to "see" and comprehend the 

environment in real time, this AI-powered perception is essential. AI perception systems respond in milliseconds 

and run continuously, in contrast to human drivers who could be distracted or tired. 

AI models are made to do more than simply only perceive the environment; they are also made to forecast its 

possible future changes. Recurrent neural networks (RNNs) and graph neural networks (GNNs), for instance, may 

predict the paths of nearby cars and pedestrians. Vehicles using that sort of predictive intelligence [5] might 

foresee possible dangers before they materialize, such a pedestrian abruptly crossing the road or another vehicle 

swerving into a lane. 

At the neural network level, AI-powered prediction is also used. An whole city's traffic flow may be estimated 

through intelligent transportation systems, which allows authorities to dynamically reroute vehicles, ease traffic 

congestion, and expedite emergency response times. 

 

Figure 1: Perception-Prediction-Decision Pipeline 

AI systems determine how to decide on the best course of action after perception and prediction are finished. The 

difficulty is especially well-suited for Reinforcement Learning (RL) algorithms, which learn through trial-and-

error interactions with the environment. An RL-based controller, for example, can determine if a car should brake, 

accelerate, or change lanes in order to maximize efficiency and ensure safety. 

Individual cars are among the other devices that can make decisions in AI-based ITS [6]. AI coordinates the efforts 

of several agents, including cars, roadside stations, and cloud servers, at the system level to maintain safe and 

efficient traffic flow even in crowded urban areas. 

AI and ML have already shown revolutionary effects in a number of transportation-related fields [7]: 

• Autonomous Driving: AI plays a key role in the perception, planning, and control of self-driving automobiles. 

Companies like Waymo and Tesla have deployed AI algorithms to interpret surroundings, navigate complex 

scenarios, and interact with human-driven vehicles. 

• Traffic Management: Cities employ AI models to optimize traffic signals, reduce congestion, and minimize 

emissions. AI-based systems in Singapore and Los Angeles have improved traffic flow significantly. 

• Predictive Maintenance: Machine learning analyzes sensor data from vehicles to predict component failures 

before they occur, improving reliability and reducing costs. 

• Logistics Optimization: AI improves routing, scheduling, and fleet management in logistics companies, 

enabling faster deliveries with reduced fuel consumption. 

• Public Safety: AI assists in detecting traffic violations, managing accident-prone zones, and prioritizing 

emergency vehicles. 
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Artificial Intelligence and Machine Learning are redefining the future of Intelligent Transportation Systems by 

enabling vehicles and infrastructure to function with human-like intelligence and machine-level precision. By 

combining perception, prediction, and decision-making, AI systems create safer, more efficient, and more 

sustainable transportation networks. Although challenges remain, particularly regarding scalability, ethics, and 

data privacy, the integration of AI/ML into ITS represents a pivotal step toward realizing the vision of fully 

autonomous, cooperative vehicular ecosystems powered by 6G-enabled IoT. 

 

Distributed and Edge AI Paradigms in Vehicular Systems: 

Distributed AI refers to the deployment of multiple AI agents across vehicles, roadside units (RSUs), edge servers, 

and cloud platforms, where each agent performs localized tasks while cooperating for global objectives. 

Edge AI is the implementation of AI algorithms directly at the edge of the network (e.g., in vehicles, RSUs, or 

local servers), reducing reliance on centralized cloud processing and enabling faster, low-latency decision-

making. 

Together, these paradigms represent a shift from centralized, cloud-dominant architectures to decentralized 

intelligence optimized for ultra-low latency vehicular applications [8]. 

 

Figure 2: Multi-tier Cloud-Edge-Vehicle Architecture  

In traditional vehicular networks, most AI processing occurred in centralized data centers. While effective for 

large-scale analytics, this approach introduced high latency, bandwidth congestion, and reliability concerns, 

making it unsuitable for critical vehicular coordination. Distributed and Edge AI paradigms address these issues 

[9] by placing intelligence closer to data sources, enabling vehicles and roadside infrastructure to analyze, predict, 

and decide locally. This ensures that time-sensitive applications like collision avoidance, cooperative driving, and 

real-time traffic management can be executed with minimal delay. 

All raw data from vehicles is transmitted to a remote cloud server for analysis in the case of centralized AI which 

is responsible for high latency, bandwidth overload, and dependency on network stability. 

AI models are deployed at the edge—inside vehicles, RSUs, or local base stations [10]—so that decision-making 

happens near the data source with the help of edge AI that gives ultra-low latency, reduced network load, privacy 

preservation. 
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Intelligence is spread across multiple layers—vehicles, edge servers, fog nodes, and cloud—allowing cooperative 

decision-making in distributed AI which balance between local autonomy and global optimization. 

A type of distributed AI in which cars work together to train machine learning models, sharing only model updates 

rather than raw data in federated learning which include preserving privacy, cutting down on bandwidth, and 

facilitating worldwide learning from a variety of driving situations. For instance, autonomous vehicles in several 

cities working together to enhance pedestrian identification without exchanging private video streams. 

Hybrid architecture comprises blends edge/distributed AI for real-time operations with centralized cloud AI for 

extensive analytics. It gives best possible balance between intelligence, scalability, and latency. For instance, the 

cloud forecasts citywide traffic patterns for long-term routing optimization, while Edge AI manages instantaneous 

lane-changing decisions. 

Ultra-reliable, low-latency vehicle coordination in 6G-enabled IoT ecosystems [11] is made possible by 

distributed and edge AI paradigms. The ideal blend of speed, scalability, and security is achieved by these 

paradigms by dividing work across layers and bringing intelligence closer to vehicles. While distributed learning 

guarantees communal intelligence without sacrificing privacy, real-world applications already show how edge AI 

makes life-saving judgments in autonomous driving. When combined, they set the stage for a time when cars will 

not only drive themselves but also collaborate wisely in changing situations. 

In order to provide a concise summary of the concepts that have been examined, Table 1 compares the processing 

locations, benefits, drawbacks, and vehicular applications of Centralized AI, Edge AI, Distributed AI, and 

Federated Learning. 

Table 1: Comparison of AI Paradigms in Vehicular Systems [12] 

Paradigm Processing Location Advantages Vehicular Applications 

Centralized AI 
Remote cloud data 

centers 

Global view, powerful 

analytics, large-scale data 

handling 

Fleet-wide traffic prediction, 

logistics planning 

Edge AI 
Vehicles, RSUs, edge 

servers 

Ultra-low latency, privacy 

preservation, reduced network 

load 

Real-time collision 

avoidance, local perception 

Distributed AI 

Multiple layers 

(vehicles + edge + 

cloud) 

Balances local autonomy with 

global optimization 

Cooperative driving, 

platooning, smart 

intersections 

Federated 

Learning (FL) 

Local training + global 

model aggregation 

Privacy-preserving, scalable, 

reduced bandwidth usage 

Collaborative perception, 

predictive maintenance 

 

Reinforcement Learning for Dynamic Decision-Making: 

Reinforcement Learning (RL) is a branch of machine learning where an agent learns to make optimal decisions 

by interacting with an environment, receiving feedback in the form of rewards or penalties. Unlike supervised 

learning, where models learn from labeled data, RL emphasizes trial-and-error learning, enabling adaptive and 

autonomous decision-making in complex and uncertain environments. In vehicular communication, RL equips 

vehicles and network entities with the ability to dynamically adjust strategies for driving, communication, and 

resource allocation [13]. 

Autonomous vehicles operate in dynamic, uncertain, and safety-critical environments. Predefined rules or static 

optimization approaches are insufficient for scenarios such as sudden lane changes, unexpected pedestrian 

movement, or fluctuating wireless channel conditions. 
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Reinforcement Learning addresses this challenge by enabling continuous adaptation. Vehicles act as agents 

interacting with the traffic environment, making decisions (actions), observing outcomes (states), and receiving 

immediate feedback (rewards). Over time, they learn strategies (policies) that maximize long-term benefits, such 

as minimizing travel time while ensuring safety. 

RL has emerged as one of the most promising AI paradigms for real-time vehicular coordination, particularly 

when integrated with edge computing and 6G-enabled IoT infrastructure. 

 

Figure 3: Multi-Agent Reinforcement Learning (MARL) Interaction Map [14] 

RL agents learn to choose routes that minimize travel time while avoiding congestion. For example, Google Maps-

like navigation enhanced with RL adapts instantly to unpredictable traffic conditions. RL enables vehicles to 

maintain safe distances from preceding cars while optimizing fuel consumption. The system learns from varying 

speed patterns of surrounding traffic. RL agents evaluate when to change lanes by balancing safety (avoiding 

collisions) and efficiency (reducing delays). Over repeated interactions, vehicles learn human-like but optimized 

lane-changing behavior. In vehicular IoT, RL dynamically allocates radio spectrum and power resources. For 

instance, vehicles select channels with minimal interference to improve packet delivery ratio. RL applied to smart 

traffic lights allows adaptive cycle timing, reducing congestion and emissions. Each signal acts as an agent 

learning from vehicle flow patterns. RL optimizes coordination among groups of vehicles traveling in close 

formation, reducing fuel use and improving traffic flow stability. 

 

Cooperative Perception and Multi-Agent AI: 

Cooperative Perception (CP) refers to the process where multiple vehicles and infrastructure units (e.g., roadside 

units, sensors, UAVs) [15] share sensory data to collectively build a more comprehensive and accurate view of 

the environment. 

Multi-Agent AI is the use of Artificial Intelligence algorithms across multiple autonomous entities (agents), 

enabling them to learn, coordinate, and act collaboratively in complex environments. Together, these concepts 

allow vehicles not only to perceive and decide individually but also to cooperate as intelligent teams, leading to 

safer and more efficient traffic ecosystems. 

Individual vehicles, even with advanced sensors such as LiDAR and radar, have limited fields of view. Occlusions 

(e.g., a pedestrian hidden behind a truck) or adverse weather conditions (fog, rain) can reduce perception accuracy. 

Cooperative Perception solves this by sharing sensory information across vehicles and infrastructure through 

vehicular networks. 

Multi-Agent AI complements this by ensuring vehicles do not act selfishly but rather collaboratively optimize 

outcomes for the entire traffic system. For example, two autonomous cars approaching a merging lane must 

coordinate their actions—one slows while the other accelerates—to avoid collision while minimizing overall 

delay. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 4 (2025) 

__________________________________________________________________________________ 

1264 

This shift from isolated autonomy to collaborative intelligence is vital in dense urban environments, highway 

platooning, and mixed traffic scenarios involving both human-driven and autonomous vehicles. 

In cooperative perception, each vehicle acts as a sensor platform, collecting data from LiDAR, radar, and cameras. 

This data is transmitted over 6G-enabled V2X communication links to nearby vehicles or roadside nits. Using 

data fusion algorithms, shared inputs are combined to create a global situational map. For example, a car 

approaching an intersection cannot see a speeding motorcycle hidden by a bus. Through CP, another car with line-

of-sight shares this detection, preventing potential collision. Each vehicle is modeled as an agent with states 

(speed, position, fuel level), actions (accelerate, brake, change lane), and goals (safety, efficiency, sustainability). 

Multi-Agent Reinforcement Learning (MARL) allows these agents to learn cooperative strategies through 

repeated interactions. In highway platooning, trucks learn to maintain optimal spacing for fuel efficiency. Instead 

of one truck optimizing individually, the fleet learns a collective policy that benefits all. 

 

AI-Driven Resource Allocation in Vehicular Networks: 

The process of allocating communication, computing, and energy resources among automobiles, roadside 

infrastructure, and cloud/edge servers in order to satisfy a variety of service requests is known as resource 

allocation in automotive networks. 

In order to optimize this distribution dynamically and guarantee that Quality of Service (QoS) requirements—

such as ultra-low latency, high reliability, and energy efficiency—are continuously met, AI-driven resource 

allocation uses Artificial Intelligence and Machine Learning techniques. 

Because AI-based methods are adaptable, predictive, and context-aware, they are better suited for 6G-enabled 

[16] vehicle situations where conditions change quickly than traditional static allocation algorithms. Variable 

traffic density, shifting wireless channel quality, and a range of application needs (such as high-bandwidth 

infotainment versus safety-critical crash alarms) are some of the extremely variable conditions under which 

vehicular communication systems operate. These needs cannot be adequately balanced by static allocation. 

Predictive models and optimization algorithms are used in AI-driven resource allocation to distribute network 

slices, power, spectrum, and processing capacity in real time. 

AI algorithms, for instance, can reduce bandwidth for non-urgent activities like video streaming and prioritize 

spectrum for safety messaging when traffic congestion surges at an intersection. Likewise, it is possible to disperse 

edge computing jobs in order to balance server demands. 

AI predicts traffic load and assigns spectrum accordingly. During rush hours, more spectrum is allocated to 

URLLC slices for safety, while eMBB (entertainment) slices are constrained. AI models adjust transmission 

power based on real-time conditions. Vehicles in dense environments reduce power to limit interference, while 

those in rural areas boost power for extended coverage. AI decides whether tasks (e.g., image recognition, path 

planning) should be processed locally in the vehicle, at nearby edge servers, or in the cloud. High-priority tasks 

like pedestrian detection are handled locally, while less urgent analytics (fleet-wide statistics) are offloaded. AI 

manages resource allocation across slices (URLLC+, eMBB, mMTC) [17]. During an emergency, the safety slice 

(URLLC+) is prioritized, ensuring ambulance coordination messages are delivered instantly. 

AI ensures ultra-reliable and low-latency resource allocation for collision avoidance, cooperative braking, and 

emergency vehicle prioritization. AI allocates excess bandwidth to eMBB slices, enabling seamless video 

streaming and augmented reality applications inside vehicles. By analyzing real-time vehicle density, AI 

optimizes resource distribution to prevent congestion and reduce packet loss in dense areas. AI reduces 

unnecessary transmissions, activates sleep modes in RSUs, and balances load across renewable energy-powered 

infrastructure. Delivery fleets use AI-driven resource allocation to coordinate routing, minimize energy use, and 

ensure timely deliveries. Multi-agent AI allocates shared resources among platooned vehicles, ensuring 

synchronized driving decisions and stable communication links. 
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Results & Discussion: 

To illustrate the impact of AI/ML algorithms in vehicular networks, a pseudo code is presented. The code 

demonstrates three key aspects: (i) convergence comparison between centralized and federated learning, (ii) 

training reward evolution in multi-agent reinforcement learning (MARL), and (iii) trade-offs in cooperative 

perception strategies. These visualizations highlight how AI-driven approaches enhance vehicular intelligence, 

scalability, and coordination. 

Pseudo Code: Pseudo Code: AI-Driven Vehicular Learning and Coordination 

BEGIN 

# --------- Federated Learning Convergence --------- 

SET number_of_rounds = 20 

SET number_of_clients = 5 

INITIALIZE random_seed for reproducibility 

# Generate synthetic accuracy values 

centralized_accuracy = values increasing from 50 to 95 over rounds + small random noise 

federated_accuracy = values increasing from 45 to 90 over rounds + slightly larger random noise 

# Plot accuracy vs training rounds 

CREATE new figure 

PLOT centralized_accuracy with label "Centralized Training" 

PLOT federated_accuracy with label "Federated Learning" 

LABEL x-axis as "Training Rounds" 

LABEL y-axis as "Accuracy (%)" 

SET title to " Federated Learning Convergence" 

SHOW legend and grid 

DISPLAY figure 

# --------- MARL Reward Evolution --------- 

SET number_of_episodes = 100 

INITIALIZE random_seed for reproducibility 

# Generate synthetic reward values 

rewards = cumulative sum of random positive increments (simulating learning progress) 

smoothed_rewards = moving average of rewards (to reduce noise) 

# Plot reward vs episodes 

CREATE new figure 

PLOT smoothed_rewards with line 

LABEL x-axis as "Episodes" 

LABEL y-axis as "Average Reward" 

SET title to "MARL Training: Reward Evolution" 
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SHOW grid 

DISPLAY figure 

# --------- Cooperative Perception Trade-off --------- 

DEFINE modes = ["Raw Data", "Feature Sharing", "Decision Sharing"] 

DEFINE bandwidth = [100, 20, 5]   # in Mbps 

DEFINE accuracy = [95, 85, 70]    # in percentage 

# Plot bandwidth vs accuracy 

CREATE new figure 

SCATTER PLOT (bandwidth vs accuracy), one point per mode 

ANNOTATE each point with corresponding mode label 

LABEL x-axis as "Bandwidth Usage (Mbps)" 

LABEL y-axis as "Detection Accuracy (%)" 

SET title to "Cooperative Perception: Bandwidth–Accuracy Trade-off" 

SHOW grid 

DISPLAY figure 

END 

The pseudo code generates performance plots showing how federated learning achieves privacy-preserving 

convergence, MARL improves agent coordination over time, and cooperative perception balances bandwidth 

against detection accuracy. These results emphasize the practical significance of AI techniques in vehicular 

communication systems. 

 

Figure 4: Federated Learning Convergence 

Figure 4 compares the accuracy progression of a centralized model with that of a federated learning model across 

multiple training rounds. Federated learning achieves competitive performance without directly sharing raw data, 

thus preserving privacy and reducing communication overhead. Although convergence is slightly slower than 

centralized training, the approach remains effective in dynamic vehicular environments. 
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Figure 5: MARL Training-Reward Evolution  

Figure 5 shows the evolution of average episode rewards during multi-agent reinforcement learning (MARL) 

training. Initially, agents perform poorly due to lack of coordination, but as training progresses, their policies 

improve, and the cumulative reward steadily increases. This demonstrates how MARL enables cooperative 

behavior among autonomous vehicles in traffic scenarios. 

 

Figure 6: Cooperative Perception-Bandwidth vs Accuracy Trade-off  

Figure 6 illustrates the trade-offs in cooperative perception between vehicles. Raw data sharing offers the highest 

detection accuracy but requires very high bandwidth. Feature sharing reduces bandwidth requirements while 

maintaining good accuracy, making it a balanced approach. Decision sharing is bandwidth-efficient but sacrifices 

fine-grained perception, highlighting the need for context-dependent data-sharing strategies. 
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Figure 7: Latency comparison between Cloud vs Edge vs Hybrid processing  

Figure 7 compares processing delays across architectures. Cloud processing shows the highest latency (~45 ms) 

due to long data transmission paths. Edge processing has the lowest latency (~10 ms) because computation occurs 

near vehicles. Hybrid architecture (~20 ms) balances both approaches, combining cloud analytics with fast edge 

decision-making, making it suitable for real-time vehicular applications. 

 

Figure 8: Communication overhead vs Number of vehicles  

Figure 8 shows how communication overhead increases with more vehicles. Centralized AI grows rapidly, 

reaching very high overhead because raw data from all vehicles must be uploaded to a central server. Federated 

Learning grows slowly, since only model updates—not raw data—are shared. This demonstrates FL’s superior 

scalability and efficiency in large vehicular networks. 
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Figure 9: Packet delivery ratio vs Vehicle density  

Figure 9 shows how packet delivery ratio decreases as vehicle density increases. RL-based allocation performs 

best, maintaining high PDR even under heavy traffic through adaptive spectrum and power control. Heuristic 

allocation performs moderately, while static allocation drops sharply, unable to handle congestion. This 

demonstrates the superiority of AI-driven dynamic resource allocation in dense vehicular networks. 

 

Conclusion: 

This study demonstrates that Artificial Intelligence and Machine Learning are foundational to achieving 

intelligent, coordinated, and resilient vehicular ecosystems. The integration of distributed AI paradigms—such as 

edge computing, federated learning, and decentralized multi-agent systems—enables vehicles to operate with 

unprecedented autonomy, speed, and awareness. Compared with traditional centralized approaches, edge AI 

significantly reduces latency, while federated learning ensures scalability and privacy by eliminating the need for 

raw data transfer. Reinforcement Learning and MARL further enhance adaptability, enabling vehicles to learn 

optimal driving, communication, and resource-management behaviors from continuous interactions with dynamic 

environments. Cooperative Perception strengthens environmental awareness by sharing sensory insights among 

vehicles and infrastructure, addressing occlusions and improving safety in complex conditions. The evaluated 

performance metrics demonstrate clear advantages of AI-driven approaches: reduced communication overhead, 

enhanced packet delivery ratios, improved convergence, and efficient bandwidth utilization. As vehicular 

networks transition towards 6G-enabled IoV environments, AI-driven coordination will be essential for 

supporting dense traffic, autonomous fleets, and intelligent urban mobility. Despite challenges related to security, 

interoperability, and large-scale deployment, the advancements discussed in this work illustrate a decisive step 

toward future transportation systems where vehicles operate collaboratively, efficiently, and safely through 

integrated AI intelligence. 
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