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Abstract: Artificial Intelligence (AI) and Machine Learning (ML) are transforming vehicular networks by
enabling autonomous, collaborative, and context-aware decision-making. Modern transportation systems demand
ultra-low latency, high reliability, and rapid adaptation, which traditional rule-based or centralized approaches fail
to provide. This work explores the role of distributed intelligence—spanning centralized cloud Al, edge Al,
federated learning (FL), and multi-agent Al—in ensuring real-time vehicular coordination. Reinforcement
Learning (RL) and Multi-Agent RL (MARL) support dynamic tasks such as lane changing, adaptive routing,
collision avoidance, and resource allocation in highly variable traffic conditions. Cooperative Perception (CP)
enhances situational awareness by enabling vehicles and roadside sensors to share processed features or decisions,
significantly improving detection accuracy under occlusions and adverse conditions. Additionally, Al-driven
resource allocation optimizes spectrum, power, and computing distribution across 6G-enabled IoV architectures,
ensuring efficient QoS management under dense mobility. Performance analyses—via convergence plots, reward
evolution, perception trade-off curves, and newly evaluated latency, communication overhead, and PDR graphs—
highlight the superiority of Al-driven mechanisms over static or heuristic baselines. Overall, this study
demonstrates that AI/ML techniques form the backbone of next-generation intelligent transportation systems,
enabling scalable, secure, and cooperative vehicular ecosystems.

Keywords: Intelligent Vehicular Coordination, Federated and Edge AIl, Reinforcement Learning (RL),
Cooperative Perception (CP), 6G-Enabled IoV Networks.

Introduction:

This article emphasizes the role of AI/ML in enabling intelligent decision-making in vehicular networks. It
explores distributed Al paradigms, contrasting centralized, edge, and federated learning approaches. Mobile Edge
Computing (MEC) is presented as a key enabler of real-time processing [1], reducing reliance on cloud
infrastructures.

Special focus is given to Deep Reinforcement Learning (DRL) for dynamic decision-making in tasks like
platooning, lane merging, and collision avoidance. Graph Neural Networks (GNNs) are discussed as tools for
modeling traffic interactions [2]. Cooperative perception, multi-agent Al, and Al-driven resource allocation
strategies are highlighted as essential mechanisms for scalable, privacy-preserving, and adaptive vehicular
intelligence.

Artificial Intelligence (Al) is the field of computer science concerned with creating systems that can perform tasks
typically requiring human intelligence, such as perception, reasoning, learning, and decision-making. Machine
Learning (ML), a subset of Al, involves algorithms that improve their performance automatically through
experience and data rather than explicit programming. Within the domain of transportation, AI and ML enable
vehicles, infrastructure, and communication systems to function intelligently [3], adapt to dynamic environments,
and optimize decision-making in real time.

In the context of Intelligent Transportation Systems (ITS), Al and ML act as the “brain” that processes vast
amounts of heterogeneous data collected from vehicles, roadside sensors, GPS, LiDAR, cameras, and Internet of
Vehicles (IoV) communications [4]. In complicated urban circumstances where uncertainty, variability, and fast
decision-making are prevalent, traditional rule-based control systems are inadequate, even though they work well
in predictable situations. These constraints are overcome by Al-based systems, which recognize trends, forecast
outcomes, and carry out actions on their own that improve sustainability, efficiency, and safety.

A traditional traffic light, for instances, uses preset cycles that don't take consideration of unexpected spikes in
traffic. On the contrary hand, an Al-powered traffic signal continually analyzes real-time data from cameras and
Internet of Things sensors, forecasts traffic, and dynamically modifies signal timing. Similar to this, an Al-enabled
autonomous car can see its environment using cameras and LiDAR, recognize the actions of people walking
around it, anticipate possible collisions, and take preventative action—things those conventional systems are
unable to do.

The three functional dimensions of perception, prediction, and decision-making can be used to illustrate how
AI/ML is incorporated into ITS.
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Al systems convert unprocessed sensor inputs into useful environmental data using machine learning models,
especially computer vision algorithms. Convolutional Neural Networks (CNNs), for instance, are frequently used
to identify obstacles, classify pedestrians, detect lanes, and recognize traffic signals. In order to provide a solid
and trustworthy picture of the environment, sensor fusion algorithms additionally integrate data from several
sources, including cameras, radar, and LiDAR. For autonomous cars that need to "see" and comprehend the
environment in real time, this Al-powered perception is essential. Al perception systems respond in milliseconds
and run continuously, in contrast to human drivers who could be distracted or tired.

Al models are made to do more than simply only perceive the environment; they are also made to forecast its
possible future changes. Recurrent neural networks (RNNs) and graph neural networks (GNNs), for instance, may
predict the paths of nearby cars and pedestrians. Vehicles using that sort of predictive intelligence [5] might
foresee possible dangers before they materialize, such a pedestrian abruptly crossing the road or another vehicle
swerving into a lane.

At the neural network level, Al-powered prediction is also used. An whole city's traffic flow may be estimated
through intelligent transportation systems, which allows authorities to dynamically reroute vehicles, ease traffic
congestion, and expedite emergency response times.

Edge Assistance

T

Control &
Actuation

Sensor I+ Sensor Fusion [+ Perception L4 Prediction —+ Decision

Safety Monitor

Figure 1: Perception-Prediction-Decision Pipeline

Al systems determine how to decide on the best course of action after perception and prediction are finished. The
difficulty is especially well-suited for Reinforcement Learning (RL) algorithms, which learn through trial-and-
error interactions with the environment. An RL-based controller, for example, can determine if a car should brake,
accelerate, or change lanes in order to maximize efficiency and ensure safety.

Individual cars are among the other devices that can make decisions in Al-based ITS [6]. Al coordinates the efforts
of several agents, including cars, roadside stations, and cloud servers, at the system level to maintain safe and
efficient traffic flow even in crowded urban areas.

Al and ML have already shown revolutionary effects in a number of transportation-related fields [7]:

e Autonomous Driving: Al plays a key role in the perception, planning, and control of self-driving automobiles.
Companies like Waymo and Tesla have deployed Al algorithms to interpret surroundings, navigate complex
scenarios, and interact with human-driven vehicles.

e Traffic Management: Cities employ Al models to optimize traffic signals, reduce congestion, and minimize
emissions. Al-based systems in Singapore and Los Angeles have improved traffic flow significantly.

e Predictive Maintenance: Machine learning analyzes sensor data from vehicles to predict component failures
before they occur, improving reliability and reducing costs.

e Logistics Optimization: Al improves routing, scheduling, and fleet management in logistics companies,
enabling faster deliveries with reduced fuel consumption.

e Public Safety: Al assists in detecting traffic violations, managing accident-prone zones, and prioritizing
emergency vehicles.
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Artificial Intelligence and Machine Learning are redefining the future of Intelligent Transportation Systems by
enabling vehicles and infrastructure to function with human-like intelligence and machine-level precision. By
combining perception, prediction, and decision-making, Al systems create safer, more efficient, and more
sustainable transportation networks. Although challenges remain, particularly regarding scalability, ethics, and
data privacy, the integration of AI/ML into ITS represents a pivotal step toward realizing the vision of fully
autonomous, cooperative vehicular ecosystems powered by 6G-enabled IoT.

Distributed and Edge AI Paradigms in Vehicular Systems:

Distributed Al refers to the deployment of multiple Al agents across vehicles, roadside units (RSUs), edge servers,
and cloud platforms, where each agent performs localized tasks while cooperating for global objectives.

Edge Al is the implementation of Al algorithms directly at the edge of the network (e.g., in vehicles, RSUs, or
local servers), reducing reliance on centralized cloud processing and enabling faster, low-latency decision-
making.

Together, these paradigms represent a shift from centralized, cloud-dominant architectures to decentralized
intelligence optimized for ultra-low latency vehicular applications [8].

Cloud

/

Edge / MEC Server

i ™~

RSU / Fog Node 1 RSU / Fog Node 2
Vehicle A
(Seenlzoer + Al) Vehicle B Vehicle C
(Sensor + Al (Sensor + Al)

Figure 2: Multi-tier Cloud-Edge-Vehicle Architecture

In traditional vehicular networks, most Al processing occurred in centralized data centers. While effective for
large-scale analytics, this approach introduced high latency, bandwidth congestion, and reliability concerns,
making it unsuitable for critical vehicular coordination. Distributed and Edge Al paradigms address these issues
[9] by placing intelligence closer to data sources, enabling vehicles and roadside infrastructure to analyze, predict,
and decide locally. This ensures that time-sensitive applications like collision avoidance, cooperative driving, and
real-time traffic management can be executed with minimal delay.

All raw data from vehicles is transmitted to a remote cloud server for analysis in the case of centralized Al which
is responsible for high latency, bandwidth overload, and dependency on network stability.

Al models are deployed at the edge—inside vehicles, RSUs, or local base stations [10]—so that decision-making
happens near the data source with the help of edge Al that gives ultra-low latency, reduced network load, privacy
preservation.
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Intelligence is spread across multiple layers—vehicles, edge servers, fog nodes, and cloud—allowing cooperative
decision-making in distributed AI which balance between local autonomy and global optimization.

A type of distributed Al in which cars work together to train machine learning models, sharing only model updates
rather than raw data in federated learning which include preserving privacy, cutting down on bandwidth, and
facilitating worldwide learning from a variety of driving situations. For instance, autonomous vehicles in several
cities working together to enhance pedestrian identification without exchanging private video streams.

Hybrid architecture comprises blends edge/distributed Al for real-time operations with centralized cloud Al for
extensive analytics. It gives best possible balance between intelligence, scalability, and latency. For instance, the
cloud forecasts citywide traffic patterns for long-term routing optimization, while Edge Al manages instantaneous
lane-changing decisions.

Ultra-reliable, low-latency vehicle coordination in 6G-enabled IoT ecosystems [11] is made possible by
distributed and edge AI paradigms. The ideal blend of speed, scalability, and security is achieved by these
paradigms by dividing work across layers and bringing intelligence closer to vehicles. While distributed learning
guarantees communal intelligence without sacrificing privacy, real-world applications already show how edge Al
makes life-saving judgments in autonomous driving. When combined, they set the stage for a time when cars will
not only drive themselves but also collaborate wisely in changing situations.

In order to provide a concise summary of the concepts that have been examined, Table 1 compares the processing
locations, benefits, drawbacks, and vehicular applications of Centralized Al, Edge Al, Distributed Al, and
Federated Learning.

Table 1: Comparison of AI Paradigms in Vehicular Systems [12]

Paradigm Processing Location Advantages Vehicular Applications

Remote cloud data Global view, powerful

Fleet-wide traffi dicti
Centralized Al analytics, large-scale data et ‘e 'ra ©p r'e reton,
centers . logistics planning
handling

Ultra-low latency, privacy

Vehicles, RSUs, edge Real-time collision

Edge Al preservation, reduced network ) .
servers avoidance, local perception
load
Multiple 1 . C tive driving,
o u 1P JayELs Balances local autonomy with oopera ?Ve rving
Distributed Al (vehicles + edge + S platooning, smart
global optimization ) .
cloud) intersections
Federated Local training + global Privacy-preserving, scalable, Collaborative perception,
Learning (FL) model aggregation reduced bandwidth usage predictive maintenance

Reinforcement Learning for Dynamic Decision-Making:

Reinforcement Learning (RL) is a branch of machine learning where an agent learns to make optimal decisions
by interacting with an environment, receiving feedback in the form of rewards or penalties. Unlike supervised
learning, where models learn from labeled data, RL emphasizes trial-and-error learning, enabling adaptive and
autonomous decision-making in complex and uncertain environments. In vehicular communication, RL equips
vehicles and network entities with the ability to dynamically adjust strategies for driving, communication, and
resource allocation [13].

Autonomous vehicles operate in dynamic, uncertain, and safety-critical environments. Predefined rules or static
optimization approaches are insufficient for scenarios such as sudden lane changes, unexpected pedestrian
movement, or fluctuating wireless channel conditions.
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Reinforcement Learning addresses this challenge by enabling continuous adaptation. Vehicles act as agents
interacting with the traffic environment, making decisions (actions), observing outcomes (states), and receiving
immediate feedback (rewards). Over time, they learn strategies (policies) that maximize long-term benefits, such
as minimizing travel time while ensuring safety.

RL has emerged as one of the most promising Al paradigms for real-time vehicular coordination, particularly
when integrated with edge computing and 6G-enabled [oT infrastructure.

Vehicle agent 1 \
b
Shared Environment
/ \ RSU agent

Vehicle agent 2 )

Central Critic

Figure 3: Multi-Agent Reinforcement Learning (MARL) Interaction Map [14]

RL agents learn to choose routes that minimize travel time while avoiding congestion. For example, Google Maps-
like navigation enhanced with RL adapts instantly to unpredictable traffic conditions. RL enables vehicles to
maintain safe distances from preceding cars while optimizing fuel consumption. The system learns from varying
speed patterns of surrounding traffic. RL agents evaluate when to change lanes by balancing safety (avoiding
collisions) and efficiency (reducing delays). Over repeated interactions, vehicles learn human-like but optimized
lane-changing behavior. In vehicular IoT, RL dynamically allocates radio spectrum and power resources. For
instance, vehicles select channels with minimal interference to improve packet delivery ratio. RL applied to smart
traffic lights allows adaptive cycle timing, reducing congestion and emissions. Each signal acts as an agent
learning from vehicle flow patterns. RL optimizes coordination among groups of vehicles traveling in close
formation, reducing fuel use and improving traffic flow stability.

Cooperative Perception and Multi-Agent Al:

Cooperative Perception (CP) refers to the process where multiple vehicles and infrastructure units (e.g., roadside
units, sensors, UAVs) [15] share sensory data to collectively build a more comprehensive and accurate view of
the environment.

Multi-Agent Al is the use of Artificial Intelligence algorithms across multiple autonomous entities (agents),
enabling them to learn, coordinate, and act collaboratively in complex environments. Together, these concepts
allow vehicles not only to perceive and decide individually but also to cooperate as intelligent teams, leading to
safer and more efficient traffic ecosystems.

Individual vehicles, even with advanced sensors such as LiDAR and radar, have limited fields of view. Occlusions
(e.g., apedestrian hidden behind a truck) or adverse weather conditions (fog, rain) can reduce perception accuracy.
Cooperative Perception solves this by sharing sensory information across vehicles and infrastructure through
vehicular networks.

Multi-Agent Al complements this by ensuring vehicles do not act selfishly but rather collaboratively optimize
outcomes for the entire traffic system. For example, two autonomous cars approaching a merging lane must
coordinate their actions—one slows while the other accelerates—to avoid collision while minimizing overall
delay.
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This shift from isolated autonomy to collaborative intelligence is vital in dense urban environments, highway
platooning, and mixed traffic scenarios involving both human-driven and autonomous vehicles.

In cooperative perception, each vehicle acts as a sensor platform, collecting data from LiDAR, radar, and cameras.
This data is transmitted over 6G-enabled V2X communication links to nearby vehicles or roadside nits. Using
data fusion algorithms, shared inputs are combined to create a global situational map. For example, a car
approaching an intersection cannot see a speeding motorcycle hidden by a bus. Through CP, another car with line-
of-sight shares this detection, preventing potential collision. Each vehicle is modeled as an agent with states
(speed, position, fuel level), actions (accelerate, brake, change lane), and goals (safety, efficiency, sustainability).
Multi-Agent Reinforcement Learning (MARL) allows these agents to learn cooperative strategies through
repeated interactions. In highway platooning, trucks learn to maintain optimal spacing for fuel efficiency. Instead
of one truck optimizing individually, the fleet learns a collective policy that benefits all.

Al-Driven Resource Allocation in Vehicular Networks:

The process of allocating communication, computing, and energy resources among automobiles, roadside
infrastructure, and cloud/edge servers in order to satisfy a variety of service requests is known as resource
allocation in automotive networks.

In order to optimize this distribution dynamically and guarantee that Quality of Service (QoS) requirements—
such as ultra-low latency, high reliability, and energy efficiency—are continuously met, Al-driven resource
allocation uses Artificial Intelligence and Machine Learning techniques.

Because Al-based methods are adaptable, predictive, and context-aware, they are better suited for 6G-enabled
[16] vehicle situations where conditions change quickly than traditional static allocation algorithms. Variable
traffic density, shifting wireless channel quality, and a range of application needs (such as high-bandwidth
infotainment versus safety-critical crash alarms) are some of the extremely variable conditions under which
vehicular communication systems operate. These needs cannot be adequately balanced by static allocation.

Predictive models and optimization algorithms are used in Al-driven resource allocation to distribute network
slices, power, spectrum, and processing capacity in real time.

Al algorithms, for instance, can reduce bandwidth for non-urgent activities like video streaming and prioritize
spectrum for safety messaging when traffic congestion surges at an intersection. Likewise, it is possible to disperse
edge computing jobs in order to balance server demands.

Al predicts traffic load and assigns spectrum accordingly. During rush hours, more spectrum is allocated to
URLLC slices for safety, while eMBB (entertainment) slices are constrained. Al models adjust transmission
power based on real-time conditions. Vehicles in dense environments reduce power to limit interference, while
those in rural areas boost power for extended coverage. Al decides whether tasks (e.g., image recognition, path
planning) should be processed locally in the vehicle, at nearby edge servers, or in the cloud. High-priority tasks
like pedestrian detection are handled locally, while less urgent analytics (fleet-wide statistics) are offloaded. Al
manages resource allocation across slices (URLLC+, eMBB, mMTC) [17]. During an emergency, the safety slice
(URLLCH) is prioritized, ensuring ambulance coordination messages are delivered instantly.

Al ensures ultra-reliable and low-latency resource allocation for collision avoidance, cooperative braking, and
emergency vehicle prioritization. Al allocates excess bandwidth to eMBB slices, enabling seamless video
streaming and augmented reality applications inside vehicles. By analyzing real-time vehicle density, Al
optimizes resource distribution to prevent congestion and reduce packet loss in dense areas. Al reduces
unnecessary transmissions, activates sleep modes in RSUs, and balances load across renewable energy-powered
infrastructure. Delivery fleets use Al-driven resource allocation to coordinate routing, minimize energy use, and
ensure timely deliveries. Multi-agent Al allocates shared resources among platooned vehicles, ensuring
synchronized driving decisions and stable communication links.
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Results & Discussion:

To illustrate the impact of AI/ML algorithms in vehicular networks, a pseudo code is presented. The code
demonstrates three key aspects: (i) convergence comparison between centralized and federated learning, (ii)
training reward evolution in multi-agent reinforcement learning (MARL), and (iii) trade-offs in cooperative
perception strategies. These visualizations highlight how Al-driven approaches enhance vehicular intelligence,

scalability, and coordination.

Pseudo Code: Pseudo Code: AI-Driven Vehicular Learning and Coordination

BEGIN

SET number of rounds =20

SET number of clients =5

INITIALIZE random_seed for reproducibility

# Generate synthetic accuracy values

centralized accuracy = values increasing from 50 to 95 over rounds + small random noise
federated_accuracy = values increasing from 45 to 90 over rounds + slightly larger random noise
# Plot accuracy vs training rounds

CREATE new figure

PLOT centralized _accuracy with label "Centralized Training"

PLOT federated _accuracy with label "Federated Learning"

LABEL x-axis as "Training Rounds"

LABEL y-axis as "Accuracy (%)"

SET title to " Federated Learning Convergence"

SHOW legend and grid

DISPLAY figure

SET number of episodes = 100

INITIALIZE random_seed for reproducibility

# Generate synthetic reward values

rewards = cumulative sum of random positive increments (simulating learning progress)
smoothed rewards = moving average of rewards (to reduce noise)
# Plot reward vs episodes

CREATE new figure

PLOT smoothed rewards with line

LABEL x-axis as "Episodes"

LABEL y-axis as "Average Reward"

SET title to "MARL Training: Reward Evolution"

1265



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 4 (2025)

SHOW grid
DISPLAY figure

DEFINE modes = ["Raw Data", "Feature Sharing", "Decision Sharing"]
DEFINE bandwidth = [100, 20, 5] # in Mbps

DEFINE accuracy = [95, 85, 70] # in percentage

# Plot bandwidth vs accuracy

CREATE new figure

SCATTER PLOT (bandwidth vs accuracy), one point per mode
ANNOTATE each point with corresponding mode label

LABEL x-axis as "Bandwidth Usage (Mbps)"

LABEL y-axis as "Detection Accuracy (%)"

SET title to "Cooperative Perception: Bandwidth—Accuracy Trade-off"
SHOW grid

DISPLAY figure

END

The pseudo code generates performance plots showing how federated learning achieves privacy-preserving
convergence, MARL improves agent coordination over time, and cooperative perception balances bandwidth
against detection accuracy. These results emphasize the practical significance of Al techniques in vehicular
communication systems.

—8— Centralized Training
90 - Federated Learning

80

70 1

Accuracy (%)

601

50

T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training Rounds

Figure 4: Federated Learning Convergence

Figure 4 compares the accuracy progression of a centralized model with that of a federated learning model across
multiple training rounds. Federated learning achieves competitive performance without directly sharing raw data,
thus preserving privacy and reducing communication overhead. Although convergence is slightly slower than
centralized training, the approach remains effective in dynamic vehicular environments.
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Figure 5: MARL Training-Reward Evolution

Figure 5 shows the evolution of average episode rewards during multi-agent reinforcement learning (MARL)
training. Initially, agents perform poorly due to lack of coordination, but as training progresses, their policies
improve, and the cumulative reward steadily increases. This demonstrates how MARL enables cooperative
behavior among autonomous vehicles in traffic scenarios.
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Figure 6: Cooperative Perception-Bandwidth vs Accuracy Trade-off

Figure 6 illustrates the trade-offs in cooperative perception between vehicles. Raw data sharing offers the highest
detection accuracy but requires very high bandwidth. Feature sharing reduces bandwidth requirements while
maintaining good accuracy, making it a balanced approach. Decision sharing is bandwidth-efficient but sacrifices
fine-grained perception, highlighting the need for context-dependent data-sharing strategies.
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Figure 7: Latency comparison between Cloud vs Edge vs Hybrid processing

Figure 7 compares processing delays across architectures. Cloud processing shows the highest latency (~45 ms)
due to long data transmission paths. Edge processing has the lowest latency (~10 ms) because computation occurs
near vehicles. Hybrid architecture (~20 ms) balances both approaches, combining cloud analytics with fast edge
decision-making, making it suitable for real-time vehicular applications.
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—#— Federated Learning
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600
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Number of Vehicles

Figure 8: Communication overhead vs Number of vehicles

Figure 8 shows how communication overhead increases with more vehicles. Centralized Al grows rapidly,
reaching very high overhead because raw data from all vehicles must be uploaded to a central server. Federated
Learning grows slowly, since only model updates—not raw data—are shared. This demonstrates FL’s superior
scalability and efficiency in large vehicular networks.
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Figure 9: Packet delivery ratio vs Vehicle density

Figure 9 shows how packet delivery ratio decreases as vehicle density increases. RL-based allocation performs
best, maintaining high PDR even under heavy traffic through adaptive spectrum and power control. Heuristic
allocation performs moderately, while static allocation drops sharply, unable to handle congestion. This
demonstrates the superiority of Al-driven dynamic resource allocation in dense vehicular networks.

Conclusion:

This study demonstrates that Artificial Intelligence and Machine Learning are foundational to achieving
intelligent, coordinated, and resilient vehicular ecosystems. The integration of distributed Al paradigms—such as
edge computing, federated learning, and decentralized multi-agent systems—enables vehicles to operate with
unprecedented autonomy, speed, and awareness. Compared with traditional centralized approaches, edge Al
significantly reduces latency, while federated learning ensures scalability and privacy by eliminating the need for
raw data transfer. Reinforcement Learning and MARL further enhance adaptability, enabling vehicles to learn
optimal driving, communication, and resource-management behaviors from continuous interactions with dynamic
environments. Cooperative Perception strengthens environmental awareness by sharing sensory insights among
vehicles and infrastructure, addressing occlusions and improving safety in complex conditions. The evaluated
performance metrics demonstrate clear advantages of Al-driven approaches: reduced communication overhead,
enhanced packet delivery ratios, improved convergence, and efficient bandwidth utilization. As vehicular
networks transition towards 6G-enabled IoV environments, Al-driven coordination will be essential for
supporting dense traffic, autonomous fleets, and intelligent urban mobility. Despite challenges related to security,
interoperability, and large-scale deployment, the advancements discussed in this work illustrate a decisive step
toward future transportation systems where vehicles operate collaboratively, efficiently, and safely through
integrated Al intelligence.
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