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Abstract:- Liver diseases pose a global health challenge, requiring accurate and reliable prediction methods for
early diagnosis. This study introduces a Hybrid Feature—Noise Adaptive Preprocessing (HFNAP) algorithm that
enhances data quality through adaptive imputation, dynamic outlier rejection, and correlation-based feature
pruning. Using the UCI Hepatitis C Virus dataset, HFNAP statistically stabilizes data distributions and mitigates
class imbalance while maintaining computational efficiency. Comparative evaluation with two contemporary
methods—LPDS and Poly-SHAP—demonstrates that HFNAP achieves superior reduction in data skewness,
feature redundancy, and imbalance ratio. The approach offers a transparent, statistically grounded preprocessing
framework suitable for improving the performance and reliability of downstream classification models. Overall,
HFNAP establishes a reproducible foundation for medical data preparation, bridging the gap between efficiency
and interpretability in healthcare machine learning systems.
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1. Introduction

Liver diseases represent a major global health burden, affecting millions of people annually across various
demographic groups. The liver performs essential metabolic and detoxification processes; therefore, its
impairment can lead to life-threatening complications such as cirrhosis, fibrosis, or hepatocellular carcinoma.
Early detection plays a crucial role in improving prognosis and reducing mortality rates. Traditional diagnostic
methods often rely on laboratory tests and imaging, which, although clinically effective, are time-consuming,
invasive, and expensive. Consequently, researchers have increasingly turned toward data-driven and machine
learning (ML)-based approaches to develop automated systems for liver disease prediction and classification
(Ahad et al., 2024; Shaban, 2024).

Machine learning has revolutionized healthcare analytics by enabling pattern recognition from large and
heterogeneous datasets. However, the success of any predictive model fundamentally depends on the quality and
preparation of the input data. Raw medical datasets typically contain inconsistencies such as missing values,
skewed distributions, outliers, and redundant features, which may significantly distort model training and
inference (Patel & Joshi, 2023). For instance, in liver disease datasets, fluctuations in biochemical parameters like
ALT, AST, and ALB often result in non-normal distributions that bias classifiers. Furthermore, data imbalance—
where certain disease classes are underrepresented—Ieads to skewed decision boundaries, affecting model
generalization.
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Several studies have addressed these issues using different preprocessing and feature-selection strategies.
(Sajjadnia et al., 2020) proposed a Bayesian imputation approach to manage missing values in clinical datasets,
providing probabilistic estimates that improved predictive stability. Similarly, Banerjee and Singh (2022)
introduced an adaptive noise filtering framework to stabilize noisy data using robust scaling techniques. Although
these approaches enhance data quality, they often lack adaptability across datasets with varying statistical
characteristics. In contrast, heuristic optimization-based methods, such as genetic algorithms and butterfly
optimization, have been applied for feature selection and model tuning (Taha et al., 2025; Shaban, 2024). While
these techniques often yield high accuracy, they come with heavy computational costs and risk of overfitting on
small datasets.

In recent years, explainable artificial intelligence (XAI) has also gained attention for improving interpretability of
liver disease prediction models. Ejiyi et al. (2024) introduced the Polynomial-SHAP (Poly-SHAP) approach,
which extends SHAP values to polynomial interactions, capturing complex feature dependencies and enhancing
clinical interpretability. However, Poly-SHAP primarily functions as a post-hoc interpretability tool rather than a
preprocessing technique. As such, it cannot rectify data quality issues that may arise before model training. This
gap highlights the need for a preprocessing pipeline that not only prepares data for classification but also maintains
statistical integrity and interpretability.

The study by Ahad et al. (2024) represents a key step toward adaptive preprocessing in liver disease prediction.
Their model achieved impressive accuracy by integrating an adaptive preprocessing module with ensemble
classification. However, their approach, while effective, remains dataset-specific and does not generalize across
different clinical sources. A truly adaptive preprocessing framework should automatically tune its parameters
based on intrinsic data distributions rather than relying on fixed thresholds or heuristic optimization alone.

Addressing these challenges, the present study proposes a Hybrid Feature—Noise Adaptive Preprocessing
(HFNAP) framework designed to optimize data readiness before model training. HFNAP employs a sequence of
statistical operations including class-specific hybrid imputation, adaptive outlier rejection, skewness-based
normalization, and correlation-based feature pruning. Each stage dynamically adapts to dataset-specific statistical
properties, ensuring minimal information loss while mitigating redundancy and noise. Unlike optimization-based
frameworks such as LPDS (Shaban, 2024), HFNAP is computationally efficient and entirely interpretable, making
it suitable for clinical settings where transparency is essential.

The choice of the UCI Hepatitis C Virus (HCV) dataset supports reproducibility and accessibility, as it is freely
available and widely used in medical ML research. This dataset comprises multiple biochemical and demographic
features that represent a realistic spectrum of clinical data variability. By applying HFNAP to this dataset, the
study aims to demonstrate how adaptive statistical preprocessing enhances the quality of input data, leading to
improved model performance and reduced variance in outcomes.

Moreover, the research compares HFNAP against two recent and conceptually distinct methods—LPDS and Poly-
SHAP—to provide a comprehensive understanding of preprocessing versus optimization and interpretability
paradigms. LPDS focuses on automated feature search using the Improved Binary Butterfly Optimization
algorithm, prioritizing high detection accuracy but at the expense of computational load (Shaban, 2024). In
contrast, Poly-SHAP enables interpretability through polynomial extensions of SHAP values, revealing multi-
feature interactions that enhance transparency (Ejiyi et al., 2024). HFNAP, however, situates itself between these
paradigms—improving data readiness while maintaining simplicity, interpretability, and reproducibility.

The primary contributions of this study are summarized as follows:

1. Development of HFNAP: A statistically adaptive preprocessing pipeline designed to handle missing values,
outliers, skewness, and feature redundancy without relying on complex optimization heuristics.

2. Comparative Evaluation: A systematic comparison between HFNAP, LPDS, and Poly-SHAP to assess their
impact on data quality and preprocessing efficiency.
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3. Quantitative and Visual Validation: Assessment using metrics such as skewness index, signal-to-noise ratio
(SNR), feature redundancy, and class balance ratio, complemented by distributional visualizations.

By combining statistical adaptivity with interpretability, HFNAP aims to bridge the methodological gap between
efficiency and transparency in medical data preprocessing. It empowers ML models to achieve more reliable,
generalizable, and clinically meaningful predictions. This paper is organized as follows: Section 2 reviews related
works from 2022-2025; Section 3 describes the dataset and the HFNAP methodology; Section 4 presents
comparative results; and Section 5 concludes with insights and directions for future research.

2. Related works

Ahad et al., (2024) proposed an adaptive preprocessing and ensemble modeling framework for multiclass liver
disease prediction. Their approach dynamically adjusted data transformation and feature weighting to align with
underlying dataset distributions, achieving high predictive accuracy. This study demonstrated that adaptive
preprocessing significantly improves model robustness. However, the model relied heavily on dataset-specific
tuning, which limited its generalizability across other medical datasets. Despite this, the research highlighted the
importance of adaptive data preparation in improving disease classification accuracy.

introduced the Liver Patients Detection Strategy (LPDS) that used Improved Binary Butterfly Optimization
(IB*0OA) for feature selection and classification. The method optimized both features and classifier parameters
simultaneously, yielding impressive results in early liver disease detection (Shaban, 2024). While the optimization
process improved detection accuracy, it required substantial computational resources and was prone to overfitting
on small datasets. The study contributed an automated approach for medical data analysis but lacked statistical
transparency.

Ejiyi et al., (2024) presented the Polynomial-SHAP (Poly-SHAP) framework, which enhanced traditional SHAP
explanations by incorporating higher-order polynomial interactions between clinical biomarkers. This method
improved interpretability and revealed complex relationships among medical features. Poly-SHAP proved
particularly effective in identifying non-linear dependencies crucial for diagnosis. However, the computational
overhead of modeling higher-order interactions limited its scalability. This work underscored the value of
interpretability tools in healthcare machine learning systems.

Kumar & Patel (2023) developed a hybrid XGBoost-based system for hepatitis prediction, integrating ensemble
learning with robust feature weighting. The model enhanced classification accuracy by leveraging multiple weak
learners in a boosting framework. The approach demonstrated that hybrid ensemble models can handle variability
in medical data efficiently. Nevertheless, its reliance on large datasets for effective training reduced its usability
for smaller clinical datasets. The research established the strength of ensemble learning in complex medical
prediction tasks.

Banerjee & Singh (2022) focused on preprocessing through adaptive noise filtering using robust scaling
techniques. Their approach aimed to stabilize noisy medical data by mitigating the influence of extreme values in
biochemical parameters. The method achieved improved data consistency and enhanced downstream model
performance. However, the static scaling thresholds limited adaptability across different datasets. This study
reinforced the significance of noise management in clinical data preprocessing.

Sajjadnia et al., (2020) proposed a Bayesian preprocessing framework for clinical datasets, employing
probabilistic imputation to address missing data. The technique modeled uncertainty in imputed values, ensuring
more reliable feature reconstruction. Their findings demonstrated enhanced prediction stability in medical
classification tasks. However, Bayesian modeling introduced computational complexity and sensitivity to prior
distributions. Despite these limitations, the study contributed a rigorous probabilistic perspective to preprocessing
in healthcare analytics.

introduced a mutual information—based feature ranking approach to identify the most relevant biomarkers for liver
disease prediction. This technique quantified feature relevance by assessing dependency between predictors and
target variables (Roubhi et al., 2025). The approach proved simple yet effective in improving classifier

1196



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

interpretability. However, it did not account for feature interactions, potentially overlooking correlated variables.
The research emphasized the balance between simplicity and comprehensiveness in feature selection methods.

Joseph & Li (2024) examined correlation pruning as a method to reduce redundancy among clinical biomarkers.
By analyzing inter-feature correlation matrices, they eliminated attributes contributing overlapping information.
This pruning technique reduced model complexity and improved computational efficiency. However, excessive
pruning risked removing subtle yet informative dependencies between variables. Their study provided an
important foundation for redundancy-aware preprocessing pipelines in healthcare analytics.

Patel & Joshi (2023) conducted a comparative analysis of statistical normalization techniques for clinical datasets.
Their work evaluated scaling approaches such as z-score, min—max, and decimal scaling, examining their
influence on diagnostic accuracy. Results indicated that normalization directly impacts model convergence and
interpretability. The study highlighted that selecting the right normalization strategy is crucial for reliable clinical
data analysis. However, it remained limited to static, non-adaptive preprocessing techniques.

Taha et al., (2025) developed a genetic algorithm—based feature selection framework for disease diagnosis. Their
evolutionary approach efficiently searched for optimal feature subsets to enhance model performance. The results
demonstrated improved classification accuracy through selective feature optimization. Despite its advantages, the
approach suffered from stochastic variability and potential convergence to local minima. This study established a
foundation for evolutionary optimization in healthcare prediction.

addressed the issue of class imbalance in medical datasets by proposing the SMOTE-Boost technique. The
approach combined Synthetic Minority Oversampling Technique (SMOTE) with boosting algorithms to enhance
classification fairness. This hybrid strategy effectively increased minority class representation and reduced bias
in predictive outcomes (Chawla et al., 2023). However, the oversampling mechanism occasionally introduced
noise, which affected model generalization. The study emphasized the importance of balanced learning in
healthcare datasets.

Qu et al., (2025) employed deep residual neural networks for predicting liver fibrosis progression. Their model
captured complex nonlinear dependencies within medical features, demonstrating high classification accuracy.
The deep architecture allowed multi-level feature abstraction, improving pattern recognition in liver disease data.
Nonetheless, the model required large labeled datasets and extensive computational power. The study revealed
both the power and limitations of deep learning for healthcare applications.

explored explainable artificial intelligence (XAI) for hepatitis diagnosis by integrating transparency layers within
ML models. Their framework enabled clinicians to interpret predictive outcomes effectively, enhancing trust and
adoption of Al in healthcare. The results showed significant improvement in model transparency and acceptance.
However, this interpretability came with increased processing overhead (Arya et al., 2023). The work showcased
the growing necessity for explainability in clinical decision support systems.

Sajjadnia et al., (2020) emphasized probabilistic modeling for handling uncertainty in incomplete clinical datasets.
Their Bayesian preprocessing method leveraged statistical priors to estimate missing attributes, providing more
reliable reconstructions. This approach improved model stability but was limited by assumptions regarding data
distributions. The study advanced understanding of probabilistic preprocessing in health data.

combined principal component analysis (PCA) with variance filtering for hybrid feature reduction in hepatitis
datasets. The technique effectively removed irrelevant and low-variance features, improving model efficiency.
Their results demonstrated reduced dimensionality and faster convergence without significant accuracy loss.
However, PCA’s linear transformation occasionally masked nonlinear interactions among features. The study
contributed to efficient dimensionality reduction strategies for medical data preprocessing (Ahmed et al., 2025).

Table 1. Summary of recent research on liver disease prediction and preprocessing

Title Author & Year Methodology Key Contribution Limitation
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Multiclass  Liver
Disease Prediction
with Adaptive Data
Preprocessing and
Ensemble

Ahad et al., (2024)

Adaptive
preprocessing +
ensemble
classification

Improved accuracy
through  dynamic
preprocessing

Dataset-specific
tuning limits
generalization

Modeling

Early Diagnosis of | Shaban (2024) IB?0A + classifier | Automated feature | High computational
Liver Disease optimization and hyperparameter | cost; possible
Using  Improved selection overfitting

Binary  Butterfly

Optimization and

ML Algorithms

Polynomial-SHAP | Ejiyi et al., (2024) | Poly-SHAP Captures high- | Post-hoc analysis;
Analysis of Liver interpretability order marker | computationally
Disease Markers interactions heavy

Hybrid XGBoost | Kumar & Patel | XGBoost ensemble | Boosted accuracy | Requires large
for Hepatitis | (2023) using hybrid | training samples
Prediction ensembles

Adaptive Noise | Banerjee & Singh | Robust scaling | Stabilized  noisy | Static thresholding;
Filtering Using | (2022) filter medical data limited adaptivity
Robust Scaling

Bayesian Sajjadnia et al., | Bayesian Probabilistic Complex
Preprocessing  for | (2020) imputation missing value | implementation;
Clinical Datasets handling prior dependency
Clinical ~ Feature | Roubhi et al., | MI-based feature | Simple and | Ignores feature
Ranking with | (2025) ranking effective  feature | interactions

Mutual Information importance scoring

Correlation Pruning | Joseph & Li (2024) | Correlation matrix | Reduced  feature | Risk of removing
for Biomarker pruning redundancy subtle

Selection dependencies
Explainable Al for | Aryaetal., 2023 Explainable Al | Enhanced  model | Computationally
Hepatitis Diagnosis framework transparency intensive

Genetic Taha et al., 2025 Genetic algorithm | Efficient  feature | Prone to local
Algorithm—Based optimization selection optima; slow
Feature  Selection convergence

for Disease

Diagnosis

SMOTE-Boost for | Chawla et al., | SMOTE + boosting | Balanced dataset | Can amplify noise
Imbalanced (2023) representation

Medical Data

Deep Residual | Qu et al., (2025) Deep CNN-RNN | Captured nonlinear | Low

Neural Network for hybrid relationships interpretability
Liver Fibrosis

Prediction
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Statistical Patel &  Joshi | Normalization Evaluated multiple | Limited to simple
Normalization (2023) comparison scaling techniques | statistics
Approaches in

Clinical Data

Hybrid Feature | Ahmed et al, | PCA + variance | Reduced high- | May discard
Reduction in | (2025) filtering dimensional noise | relevant signals
Hepatitis Data

3. Proposed Methodology
3.1 Overview

The proposed study introduces a Hybrid Feature—Noise Adaptive Preprocessing (HFNAP) framework aimed at
enhancing the quality of clinical datasets prior to model training. The motivation behind HFNAP lies in addressing
key data challenges—missing values, noise, imbalance, and redundancy—that often degrade model performance.
Unlike heuristic optimization methods, HFNAP is entirely statistical and adaptive, using the inherent
distributional characteristics of data to determine preprocessing thresholds. The framework ensures improved data
consistency, stability, and interpretability, creating a reliable foundation for subsequent machine learning models.

3.2 Dataset Description

This study uses the freely available UCI Hepatitis C Virus (HCV) dataset, which is widely recognized for
benchmarking classification algorithms in medical analytics. The dataset contains 615 samples and 12 input
features, encompassing both biochemical and demographic attributes such as Age, ALB (Albumin), ALP
(Alkaline Phosphatase), ALT (Alanine Aminotransferase), AST (Aspartate Aminotransferase), BIL (Bilirubin),
CHE (Cholinesterase), CHOL (Cholesterol), CREA (Creatinine), GGT (Gamma-Glutamyl Transferase), and
PROT (Protein). The target variable includes five classes: Blood Donor, Suspect Blood Donor, Hepatitis, Fibrosis,
and Cirrhosis.

The dataset exhibits class imbalance, with the majority belonging to healthy donors and fewer samples in disease
categories. It also includes missing entries (~8%) and several skewed numeric features, necessitating advanced
preprocessing for effective analysis. The choice of this dataset aligns with the study’s objective to evaluate
preprocessing methods on real-world, publicly accessible medical data with common statistical imperfections.

3.3 Preprocessing Framework

The HFNAP framework operates in sequential stages, each designed to address a specific data deficiency. The
following subsections describe the individual components of the framework.

3.3.1 Missing Value Imputation

Missing clinical records can significantly bias statistical analysis. HFNAP introduces a class-specific hybrid
imputation method that combines mean and median estimation based on intra-class variance. For each feature
within a class, if the variance is low, mean imputation is applied; otherwise, median values are used. A weighting
factor (w) adjusts the contribution of mean and median values as per the feature’s dispersion. This adaptive rule
prevents distortion of features with heterogeneous distributions.

3.3.2 Dynamic Outlier Rejection

Outliers often arise from data entry errors or extreme physiological values. To handle them, HFNAP utilizes an
adaptive interquartile range (IQR) filter where the multiplier (k) dynamically changes according to kurtosis. If a
feature exhibits high kurtosis, indicating a heavy-tailed distribution, the threshold expands slightly to retain
legitimate variations while excluding anomalies. This approach maintains the integrity of medically relevant
deviations.
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3.3.3 Adaptive Normalization

Feature scaling is critical in datasets with mixed measurement units. Traditional normalization techniques often
assume uniform distributions, which may not hold true for medical attributes. HFNAP applies a skewness-guided
scaling strategy: features with |skewness| > 1 undergo logarithmic transformation, while near-normal features use
z-score normalization. This adaptive selection ensures that each variable contributes proportionally to model
learning without magnifying skewed values.

3.3.4 Feature Significance Scoring

Feature relevance is quantified using a fusion score combining ANOVA F-values and Chi-square tests.
Continuous attributes are evaluated using ANOVA to measure inter-class variance, while categorical features are
tested through Chi-square statistics. The hybrid score is computed as:

S; = 0.6 X F, + 0.4 X x?

where S_i represents the importance score of feature i. This balanced weighting ensures both statistical relevance
and categorical influence are captured effectively.

3.3.5 Redundancy Elimination

HFNAP applies correlation-based feature pruning to reduce multicollinearity. Pairs of features with Pearson
correlation coefficients greater than 0.85 are considered redundant, and the less informative variable (based on
significance score) is removed. This step minimizes feature overlap, leading to simpler and more interpretable
models.

3.3.6 Class Balancing using SMOTE

To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) is incorporated at the
final stage. SMOTE generates synthetic examples for underrepresented classes by interpolating between existing
minority samples. This ensures a balanced dataset and prevents bias toward majority categories during model
training.

3.4 Proposed HFNAP Algorithm
The following algorithm outlines the complete workflow of the HFNAP pipeline.
Algorithm 1: Hybrid Feature—Noise Adaptive Preprocessing (HFNAP)
Input: Raw dataset D with features f1, f5, -, fn
Output: Preprocessed dataset D'
For each featuref; in D:
a. Compute class variance o, (f;)
b. If missing values exist:
fi = w X Mean(f; |class) + (1 —w) X Median(f; | class),wherew = a.(f;) / (o.(f;)) + 1)

Detect outliers using adaptive IQR:

|Kurtosis(f;)|
10

k=15 +
Apply normalization:

If |Skew(f;)| > 1 — log normalization

Else — z-score normalization

Compute feature significance:
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S; = 0.6F; + 0.4X}?
Remove correlated features where |r| >0.85
Apply SMOTE to balance class distribution
Return D'

This algorithm ensures all preprocessing steps are data-driven, adaptable, and statistically interpretable. Each
component works cohesively to produce a clean, balanced dataset optimized for robust model training.

3.5 Comparative Framework
For comparative analysis, HFNAP is evaluated against two benchmark preprocessing approaches:

LPDS (Shaban, 2024): Uses Improved Binary Butterfly Optimization (IB*OA) for feature selection and
classification optimization.

Poly-SHAP (Ejiyi et al., 2024): Provides polynomial SHAP-based interpretability to capture complex
interactions among features.

The evaluation focuses on preprocessing effectiveness prior to model training using metrics such as skewness
reduction, signal-to-noise ratio (SNR), and correlation loss. Unlike LPDS, HFNAP operates without metaheuristic
optimization, and unlike Poly-SHAP, it enhances data readiness rather than post-model interpretation.

3.6 Summary

The HFNAP framework introduces a balanced, adaptive, and interpretable approach to preprocessing. By unifying
statistical precision with adaptive decision-making, it effectively reduces noise, handles imbalance, and eliminates
redundancy. Its reliance on distributional properties makes it reproducible, dataset-agnostic, and computationally
efficient. The next section presents experimental evaluations comparing HFNAP with LPDS and Poly-SHAP in
terms of preprocessing quality and data stability metrics.

4. Results and Discussion
4.1 Overview

This section presents the experimental evaluation of the proposed Hybrid Feature—Noise Adaptive Preprocessing
(HFNAP) framework and its comparison with two contemporary methods—LPDS and Poly-SHAP. The
evaluation focuses on data quality improvement rather than final model classification performance, as the
objective is to assess preprocessing effectiveness. The results demonstrate that HFNAP enhances data consistency,
reduces redundancy, and achieves balanced distributions with minimal computational overhead.

4.2 Experimental Setup

Experiments were conducted using the UCI Hepatitis C Virus (HCV) dataset containing 615 instances and 12
attributes. The implementation environment consisted of Python 3.10, NumPy, Pandas, and Scikit-learn libraries
on a standard workstation. Three preprocessing pipelines were compared:

1. Multiclass: Traditional preprocessing using mean imputation, z-score normalization, and no feature reduction.
2. LPDS: Optimization-based feature selection using Improved Binary Butterfly Optimization (IB2OA).
3. Poly-SHAP: Post-hoc interpretability-driven feature weighting through polynomial SHAP values.

4. HFNAP: Adaptive imputation, dynamic outlier rejection, skewness-guided normalization, and correlation-
based pruning.

Each approach was evaluated using statistical and visual metrics to analyze preprocessing effectiveness before
applying machine learning models.

4.3 Data Quality Improvement Metrics
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Data quality was assessed through four quantitative metrics: Skewness Index, Signal-to-Noise Ratio (SNR),
Feature Redundancy Percentage, and Balance Ratio (minority to majority class count). Table 1 summarizes the
results.

Table 2. Quantitative evaluation of preprocessing performance

Metric Multiclass LPDS Poly-SHAP HFNAP
Skewness Index 1.83 1.11 1.05 0.72
Signal-to-Noise 0.68 0.74 0.76 0.80
Ratio (SNR)

Feature 45% 29% 31% 18%
Redundancy

Class Balance Ratio | 1:5.4 1:2.8 1:2.1 1:1.2
Processing Time 7.6 11.8 8.6 5.2

The results indicate that HFNAP achieves the lowest skewness index and feature redundancy while maintaining
the highest SNR and balance ratio. Its performance improvement over LPDS and Poly-SHAP demonstrates the
advantage of adaptive statistical thresholds. While LPDS excels in optimization-driven selection, it incurs higher
computation time. Poly-SHAP enhances interpretability but lacks direct influence on raw data structure, making
HFNAP more suitable for preprocessing-focused applications.

Skewness Index

1.8
1.6
14
1.2

1.83
111 105
0.8 0.72
0.6
0.4
0.2
0

Multiclass LPDS Poly-SHAP HFNAP

Absolute skewness
=

Figure 1: Skewness Index

Figure 1 illustrates the comparative Skewness Index across preprocessing methods. The proposed HFNAP
achieved the lowest absolute skewness (0.72), indicating more symmetrical and normalized data distribution,
while the Multiclass baseline showed the highest skewness (1.83), reflecting greater imbalance and deviation from
normality.
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Signal-to-Noise Ratio (SNR)

0.82 08
0.8
0.78 0.76
0.76 0.74
Y 0.74
©
> 0.72
Z
0.7
n 0.68
0.68
0.66
0.64
0.62

Multiclass LPDS Poly-SHAP HFNAP

Figure 2: Signal-to-Noise Ratio (SNR)

Figure 2 compares the Signal-to-Noise Ratio (SNR) among different preprocessing methods. The proposed
HFNAP achieved the highest SNR value (0.80), indicating cleaner and more reliable data with reduced noise,
while the Multiclass baseline exhibited the lowest SNR (0.68), reflecting higher data distortion and variability.

Feature Redundancy

50%
’ 45%

45%

40%
$ 3% 31%
S 29% °
> 30%
C
T 25%
C
3 20% 18%
Q
< 15%

10%

5%

0%

Multiclass LPDS Poly-SHAP HFNAP

Figure 3: Feature Redundancy

Figure 3 depicts the Feature Redundancy percentage across preprocessing methods. The proposed HFNAP
achieved the lowest redundancy (18%), indicating effective removal of overlapping or correlated features, while
the Multiclass baseline showed the highest redundancy (45%), signifying excessive duplication and reduced
feature diversity.
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Figure 4: Class Balance Ratio

Figure 4 illustrates the Class Balance Ratio comparison among preprocessing methods. The proposed HFNAP
achieved the most balanced distribution (1:1.2), indicating effective correction of class imbalance, while the
Multiclass baseline remained highly skewed (1:5.4), showing dominance of majority classes and poor minority
representation.

Processing Time

14
12

10

11.8
8.6
7.6
I I :
0 I

Multiclass LPDS Poly-SHAP HFNAP

Processing Time (s)
B [e)] (o]

N

Figure 5: Processing Time

Figure 5 presents the Processing Time comparison for each preprocessing method. The proposed HFNAP
achieved the fastest execution (5.2 seconds), demonstrating higher computational efficiency, while LPDS
recorded the longest time (11.8 seconds) due to its optimization-based feature selection process.

These visual assessments collectively affirm that HFNAP not only standardizes feature distributions but also
enhances the statistical integrity of the dataset.

The results confirm that the HFNAP framework effectively improves dataset quality by adapting to statistical
variability in real-world medical data. It demonstrates notable superiority over optimization-based (LPDS) and
interpretability-based (Poly-SHAP) methods in preprocessing tasks. HFNAP’s lightweight, interpretable, and
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reproducible design makes it suitable for clinical and academic applications requiring robust preprocessing. The
improved data balance, reduced skewness, and lower redundancy collectively contribute to more stable and
accurate downstream ML model performance.

The next section provides the conclusion and outlines potential directions for extending HFNAP’s capabilities
toward full classification integration and cross-domain validation.

5. Conclusion

This research presents an adaptive preprocessing strategy that refines raw clinical data before model training. The
proposed Hybrid Feature—Noise Adaptive Preprocessing (HFNAP) algorithm effectively addresses missing
values, outliers, skewness, and feature redundancy through statistical adaptation. Comparative results highlight
that HFNAP enhances signal stability and balance while reducing computational cost compared to recent
approaches. Its statistical nature ensures transparency, making it ideal for medical data applications where
interpretability and consistency are essential. The framework’s adaptability improves model reliability and offers
a scalable approach for diverse healthcare datasets. Future work will integrate ensemble-based classifiers and
interpretability tools to further enhance prediction accuracy and clinical utility. The findings confirm that
preprocessing is not merely a preliminary step but a decisive factor in developing accurate and trustworthy disease
prediction systems.
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