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Abstract: Accurate load forecasting in hybrid wind-diesel energy systems is crucial to ensuring energy 

reliability, cost efficiency, and environmental sustainability. In this paper, a strong prediction model is 

suggested based on the PSO-optimized DeAI-LSTM framework that incorporated complex preprocessing and 

deep learning. The paper starts with preprocessing of the data which involves the imputation of missing values, 

removal of outliers, normalization, and dimensionality reduction through the Principal Component Analysis 

(PCA). A deep autoencoder (DeAI) provides feature transformation in a time-cognisant and denoised fashion. 

The data transformed is fed to a Long Short-Term Memory (LSTM) model where the hyperparameters are 

optimized using Particle Swarm Optimization (PSO). Benchmark testing against multivariate time-series data 

indicates better performance in prediction of the proposed model compared to the traditional models including 

vanilla LSTM, GRU and ARIMA. DeAI-LSTM model has the best RMSE and MAE since it was stable and 

efficient when it comes to dealing with intermittent renewable inputs and predicting a diesel generation. The 

paper discusses the applicability of the model in microgrid and hybrid power operational planning and suggests 

extensions of the model which can be based on real-time deployment, edge computing, and fusion of ensemble 

models in the future. 

Keywords: Hybrid energy systems; Load forecasting; Wind-diesel integration; Deep learning; Autoencoder; 
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1. INTRODUCTION 

Electrical energy is an essential contributor of social and economic advancement in contemporary 

establishments, and is the foundation of industrialization as well as the quality of the ordinary life (Pinto et al., 

2023). Nevertheless, the use of fossils-based power plants is becoming more and more unsustainable, as the 

impacts this process takes on the environment are becoming comparable to greenhouse gas emissions, climate 

change, and energy cost surges (Effatpanah et al., 2022; Uddin et al., 2022). These problems are spurring 

governments and organizations across the global front to redirect their efforts to renewable energy sources 

(RES) into a wider climate/sustainability agenda (Qashou et al., 2022; Zhang &Maleki, 2022). 

The recent national and global policy agenda indicated the necessity to minimize carbon footprints by gradually 

removing subsidies on fossil fuels, by limiting the addition of new coal-based power plants, and by investing 

heavily into the renewable energy infrastructure, mainly regarding wind and solar industries (Qashou et al., 

2022). Such developments are particularly important to emerging economies and developing countries 

throughout the process of modernizing their energy systems, minimizing their environmental damages, and 

meeting long-term decarbonization targets (Zhou &Xu, 2023). Renewable energy will not only meet the aspect 
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of sustainability, but it will also be an added advantage because it will save on energy importation, and the cost 

of electricity will be low. 

Although renewable energy promises to be real, actual implementation has remained a big challenge. The 

intermittency and unpredictability of renewable resources that may include wind and solar pose a challenge to 

secure power generation and grid stability (Zhang &Maleki, 2022). Hybrid renewable energy systems (HRES), 

in particular wind-diesel hybrid systems, have offered a possible solution to mitigate these problems since they 

have proven to integrate the renewability of renewable energy infrastructures and the reliability of traditional 

diesel-based generation (Zhou &Xu, 2023). The systems are particularly useful in remote and off-grid areas, 

where extension of the grid is impracticable or too costly. 

One of the essence technical barriers of the hybrid systems is a stable and balanced supply-load relationship 

owing to the varying characteristic of the renewable generation and load demand. Adoption of innovative 

energy storage supports in insulating these variations, whereas system optimization and size optimization of the 

components are essential to guarantee maximum efficiency and minimal price (Yu et al., 2021; Jarso et al., 

2025). When it comes to better estimation of the load, it is even more significant, because it influences directly 

the reliability of the system, its cost of operation, and fuel savings. 

In order to overcome these problems, scientists have considered superior data-driven methods, including 

machine learning, deep learning models, and optimization algorithms, to enhance the accuracy of forecasting 

and system planning (Rim et al., 2024; Gautam et al., 2024). Specifically, recent research has noticed the 

success of hybrid methods that jointly use feature selection, advanced preprocessing, and metaheuristic 

optimization, to incorporate the nonlinearity and multidimensionality ideal of the hybrid energy system (Hamza 

et al., 2025; Pavan et al., 2025). These strategies will allow stronger modeling of the stochastic behaviors of 

both the renewables and the demand, make improved operational decisions and improve the performance of its 

systems. 

With this background, the paper suggests a complete and smart framework of load forecasting of hybrid wind-

diesel systems, based on advanced data preprocessing, integration of features, and DeAI-LSTM deep learning 

model optimized using PSO. Concentrating on the recent literature, the research touches upon modern trends 

and challenging issues of the field and intends to offer a trustful and scalable solution that could be successfully 

implemented in practical realities of performing in the contemporary microgrids and off-grid systems. 

2. LITERATURE REVIEW 

The Hybrid Renewable Energy Systems (HRES) have become a feasible option that can provide energy to 

various regions all over the world and be sustainable and reliable. Different combinations and optimization 

plans have been highly discussed by researchers, where power generation using renewable energy sources like 

wind turbines (WT), photovoltaic (PV) panels, battery storage (BS) and diesel generators (DG) were used to 

produce and supply power in economical and efficient way. Peak areas of these latest interests have been 

optimal system sizing, sophisticated forecasting techniques, smart control approaches and extensive technical-

economic and environmental evaluation. As Table 1 below shows in a detailed summary, studies availed on 

these dimensions have had to deal with them in detail. 

Table 1: Summary of Relevant Studies on Hybrid Renewable Energy Systems 

Authors Configuration Methodologies / 

Techniques 

Key Findings and 

Contributions 

Cao et al. (2022) PV-Wind Comparative 

performance analysis 

Wind turbines and PV 

complement each other 

effectively for reliable year-

round generation. 

Zeljković et al. (2022) Standalone HRES Monte Carlo Simulation, 

DIRECT optimization 

Reduced overall system costs; 

stable convergence achieved. 
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Mahmoudi et al. (2022) PV-Wind-

Battery/DG 

Fuzzy logic, Gravity 

Search Algorithm 

DG-enhanced HRES found most 

cost-effective. 

Ma et al. (2022) PV-Wind-Battery Load Following & Cycle 

Charging methods 

LF mode presented better cost 

profiles than CC mode. 

Xu et al. (2022) PV-Battery Taboo search algorithm Optimal size reduced costs 

significantly. 

Yi & Yang (2022) PV-Battery Battery storage impact 

analysis 

Battery type significantly 

influences optimal sizing. 

Aziz et al. (2022) PV-Wind-Diesel-

Battery 

HOMERPro, MATLAB 

optimization 

Minor distribution strategy 

changes greatly impact 

efficiency. 

Dufo-López et al. (2019) PV-Wind-Battery-

DG-Thermoelectric 

Genetic algorithm Economically viable system 

achieved through innovative 

design. 

Fares et al. (2022) Standalone HRES Comparative 

metaheuristic methods 

Firefly algorithm fastest; 

Simulated annealing most robust 

and accurate. 

Musa et al. (2021) PV-Wind-Battery SVR combined with 

Harris hawks & PSO 

SVR-HHO provided superior 

multi-state load forecasting 

accuracy. 

Murugaperumal et al. 

(2020) 

PV-Wind-Bio 

generators 

HOMER simulations; 

load forecasting 

Efficient rural electrification; 

economically competitive 

against grid extension. 

Elistratov et al. (2021) Wind-Diesel Intelligent control 

strategies 

Achieved significant fuel 

reduction and reduced icing 

effects. 

Movludiazar et al. 

(2021) 

Wind-Diesel-

Energy Storage 

Deep learning 

forecasting 

(DBGRUNN) 

Enhanced profitability via 

accurate market forecasting. 

Sosnina et al. (2022) Wind-Diesel Comprehensive 

efficiency improvement 

review 

Identified design optimization 

and improved control methods 

significantly cut fuel use. 

Ahmad & Singh (2020) Wind-Diesel-ESS NAR, NARX models Effective optimal sizing for 

storage systems. 

Nsafon et al. (2020) PV-Wind-Diesel Techno-economic and 

sustainability analysis 

Substantial cost savings and 

significant reduction in CO₂ 

emissions. 

Nguyen (2020) Wind-Diesel-Solar-

Battery 

Dynamic planning 

optimization 

Optimal system performance 

with high renewable penetration 

achieved. 

Ranjan et al. (2020) Solar-Wind-Diesel-

Battery 

HOMER-based 

simulation 

Economically optimal rural 

electrification with low 

environmental impact. 

Rim et al. (2024) Wind-PV-Battery-

Diesel 

Deep learning 

forecasting (LSTM, 

Bayesian) 

Robust wind prediction; 

improved hybrid system 

management. 

Sukanya&Vijayakumar 

(2023) 

Wind-based hybrid ANN, SVM, fuzzy logic 

control 

Effective frequency control and 

load forecasting achieved; 
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reduced error rates. 

Pavan et al. (2025) Solar-Wind-

Battery-Diesel 

PSO-based PI/PID/PIDF 

control 

Enhanced microgrid stability 

and improved load frequency 

control. 

Hamza et al. (2025) PV-Wind-

Hydrogen-Battery-

FC 

Chimp Optimization 

Algorithm (ChOA), rule-

based EMS 

Economically optimal microgrid 

configuration; improved energy 

trading capabilities. 

Gautam et al. (2024) PV-Wind-Diesel-

Battery 

MILP & intelligent 

computational 

optimization 

Enhanced accuracy, reduced 

computational effort in grid 

integration studies. 

Jarso et al. (2025) PV-Wind-Diesel-

Battery 

Hybrid genetic algorithm Cost-efficient optimal sizing 

with high reliability. 

Patel et al. (2025) Wind-Diesel-

Battery 

Scenario analysis 

(HOMER) 

Significant reduction in CO₂ 

emissions and operational cost. 

Shaahid et al. (2025) Wind-Diesel HOMER simulations High wind fraction reduced 

carbon emissions and lowered 

energy costs. 

The summarized studies above have revealed that there is further improvement and further optimization of 

HRES through the use of superior computational and metaheuristic optimization algorithms, advanced load 

forecasting models, intelligent control schemes, comprehensive techno-economic evaluation. All these research 

pursuits achieve high feasibility, sustainability, reliability, as well as economic viability of the hybrid renewable 

energy systems. Still, there remain distinct gaps, especially in the combination of adaptive control policies and 

real-time prediction techniques in the conditions of various operation and climate conditions. Tackling these 

topics using the integrated, collective approaches is the logical continuation in the development of expanded 

application of hybrid renewable energy settings. 

3.  PROBLEM STATEMENT 

Hybrid wind-diesel energy systems are a good alternative to the grid system or partially connected to it since 

they combine renewable generation with traditional reliability.  But as wind energy is naturally intermittent and 

the load dynamics are not linear so it is very hard to accurately predict power loads.  Conventional forecasting 

models like ARIMA, RNN, and even conventional LSTM methods sometimes encounter difficulties 

implementations.  Moreover, the absence of intelligent preprocessing, feature integration, and optimization 

techniques encounter issueswith the predictive accuracy.  This makes it very hard to construct a forecasting 

framework that can accurately describe the spatiotemporal complexity of hybrid energy systems.  So, we really 

need an effective, scalable, and smart forecasting model. 

The minimization of operational cost and emission of the hybrid wind -diesel system is the problem to which 

specific research goal is established by assuring energy reliability, to make the aim to be taken concretely. The 

main objective function of the hybrid energy system can be written as the following one: 

Minimize: ∑[Cdiesel(t) + Cfuel(t) + λ1ECO2
(t) + λ2(Lunmet(t))2]

T

t=1

 

 

Here, Cdiesel is the cost of diesel generator operation, Cfuelis the fuel cost, ECO2
 is the carbon emissions, and 

Lunmettpenalizes unmet demand, with weighting factors λ1and λ2. Constraints include supply-demand balance 

at each time step, generator/battery limits, and emissions regulations. This function guides the optimization 

process within the forecasting and dispatch framework 

4: DATASET DESCRIPTION 
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The current dataset acquired in the study is based on the ENTSO-E transparency site and is on the basis of 

which the development of an effective forecasting model of hybrid wind-diesel power systems can take place. 

An expanded view of the snapshot of the data pipeline is below that shows the structure and important variables 

in the data pipeline. 

Table 1: Dataset Sample 

cet_cest

_timesta

mp 

utc_ti

mesta

mp 

AT_load_actual

_entsoe_transpa

rency 

AT_load_forecast

_entsoe_transpar

ency 

AT_price

_day_ahe

ad 

AT_solar_ge

neration_act

ual 

AT_wind_onsho

re_generation_a

ctual 

2015-01-

01 

00:00:00

+01:00 

2014-

12-31 

23:00:

00+00:

00 

NaN NaN NaN NaN NaN 

2015-01-

01 

01:00:00

+01:00 

2015-

01-01 

00:00:

00+00:

00 

5946.0 6701.0 35.0 NaN NaN 

2015-01-

01 

02:00:00

+01:00 

2015-

01-01 

01:00:

00+00:

00 

5726.0 6593.0 45.0 NaN NaN 

2015-01-

01 

03:00:00

+01:00 

2015-

01-01 

02:00:

00+00:

00 

5347.0 6482.0 41.0 NaN NaN 

2015-01-

01 

04:00:00

+01:00 

2015-

01-01 

03:00:

00+00:

00 

5249.0 6454.0 38.0 NaN NaN 

The table is a sample of five hourly data in ENTSO-E dataset employed in the analysis. It contains local 

(cet_cest_timestamp) and universal (utc_timestamp) time formats, actual and forecasted power loads 

(AT_load_actual_entsoe_transparency, AT_load_forecast_entsoe_transparency) and day-ahead electricity prices 

and renewable generation data (solar and onshore wind). 

It is worth noting that some of the fields, specifically, renewable generation have absent figures. This implies 

the importance of implementing meaningful data preprocessing including imputation and scaling. These include 

the availability of actual and predicted values of loads so that training and evaluation of model performance 

becomes possible. The multivariate nature of the dataset, temporal resolution, and missing data properties are 

valid factors to utilize deep learning models with high-order preprocessing as the objective of the forecasting of 

the hybrid wind-diesel system. 
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Figure 1: Data Attribute Overview 

This image shows the column indices and name of attributes that identify the complete list of the data and the 

multi-country coverage (e.g., AT, DE, NL, SE). The 299 attributes consist of combination of both actual and 

forecasted loads, wind and solar generation, and market prices. Every characteristic is classified by nation, 

which gives region-wise data detail required in localized demand prediction. 

The number confirms the multivariateness of input space that is essential in hybrid energy forecasting. The 

existence of the country-level detail enables the model to reflect the spatial dependencies and the grid 

interconnections. This variety helps explain why high-dimensional modeling methods are needed and why 

dimensionality reduction (PCA) and dimensionality integration (DeAI) happen prior to the implementation of 

the LSTM network. 

5. METHODOLOGY 

The methodological approach taken in this research analyses is elaborate and sequential in order to end up with 

accurate load forecasting in hybrid wind-diesel energy systems. The block diagram that shows how the 

workflow will occur is shown in Figure 2. It starts with entering past data of the load, wind, solar generation, 

and prices in the market. This raw-data is intensively preprocessed, including imputation of the missing values, 

outlier recognition and elimination, normalization, and reduction of dimensionality with the help of both a 

Principal Component Analysis (PCA) and a deep autoencoder-based integration (DeAI). This is followed by 

feature selection and integration, where relevant and informative variables only would be kept in order to 

develop a model. The backbone model of forecasting is an LSTM neural network that is optimized using 

Particle Swarm Optimization (PSO) and is augmented using DeAI as it goes under extensive training. The 

resulting predictions, especially as regards diesel load, feed into operating and dispatch decisions made in the 

system in a way that balances renewable and conventional sources. The performance of the model is lastly 

assessed on the basis of cost, emissions rate and predictive accuracy giving a good foundation both to plan 

operations as well as for the further research. 
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Figure 2: Block Diagram of Proposed study 

Pseudocode: 

for t in time_horizon: 

forecast_load, wind_gen, solar_gen = model.predict(inputs) 

diesel_needed = forecast_load - (wind_gen + solar_gen + net_imports) 

ifdiesel_needed> 0: 

operate_diesel(diesel_needed) 

update_costs_and_emissions() 

else: 

curtail_or_store_excess() 

log_results() 

evaluate_performance() 

5.1 Data Preprocessing 

Missing Value Imputation 

The dataset had quite a lot of missing values especially on variables for renewable energies like solar 

generations and wind generation of various countries. These gaps, when left unwatched, have a severe potential 

of misrepresenting sequence learning on time-series models. In order to guarantee time-sensitivity and temporal 

continuity in training data a solid strategy to impute data was applied, with missing values being interpolated or 

replaced using time-sensitive logic and statistical congruency. 
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Figure 3: Missing Values Imputed per Column (First 100) 

Figure 3gives a bar graph which represents the frequency of imputed missing values in the first 100 columns of 

the data set. Columns that had high numbers of imputations--more than 30,000 missing values--formed mainly 

predictions in renewable generation. The horizontal determines feature indices, and the vertical measures the 

number of the missing values handled. This can be visually highlighted with the help of the fact that the 

preprocessing process is crucial to not allow the incomplete or sparse data to negatively influence the model 

performance. This would enable the long short-term memory (LSTM) model to learn meaningful temporal 

dependencies in the absence of which data irregularities would make the model difficult to learn. 

Outlier Detection (IQR Method) 

In addition to missing values, the data had anomalies, especially in renewable power generation and price, 

arising out of fluctuation in weather or as a result of fluctuating market conditions. Such outliers were identified 

and singled out by the interquartile range (IQR) method. Values out of the range of 1.5x IQR were marked to be 

adjusted or discarded during training otherwise it might overfit or create a biased learning. 
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Figure 4: Box Plot of Selected Columns 

Figure 4shows how outliers can be detected by subset of key feature: actual and forecasted load, day-ahead 

prices, and renewable generation (solar and wind). Every box graph shows a pattern of the values where the 

whiskers show how data should normally appear and the dots show where there are points that are statistically 

aberrant. Interestingly, wind generation was characterized by prominent outliers, which was the behavior of 

wind due to the intermittent nature of this type of generation, whereas the load variables could be considered 

very stable. This establishes the importance of a selective outlier treatment, to stabilize training input with a 

preservation of meaningfully-varied renewable behavior. 

Data Structuring 

In order to turn the dataset to be compatible with the sequence-based model architecture, such as LSTM, three 

key time-series arrays, total load, wind generation, and solar generation, were taken and rounded into three-

dimensional tensors. Each array was centered in time to allow time-dependencies. Formatting has been 

necessary to provide the feed of input windows consistent during training of the models. 

Net Imports and Diesel Generation Computation 

The important part of the data preprocessing chain was to estimate diesel generation since it is a target variable 

of a forecasting model. Diesel generation was implied as the rest of the energy demand that could not be 

fulfilled by renewables or imports. This residual load was further scaled so as to take into consideration fields 

efficiency and auxiliary loss components of the diesel generators. Precisely, generation efficiency was pegged at 

90 percent and auxiliary system losses were pegged at 5 percent. This resulted in an ultimate equation of 

estimating diesel generation as: 
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𝐷𝑖𝑒𝑠𝑒𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 =
𝐷𝑖𝑒𝑠𝑒𝑙 𝐿𝑜𝑎𝑑

0.90 × (1 − 0.05)
=

𝐷𝑖𝑒𝑠𝑒𝑙 𝐿𝑜𝑎𝑑

0.855 
 

 

 

 

Figure 5: Net Imports vs. Exchange Columns 

Figure 5presents a line graph of the calculated net imports and the initial column data of exchanges in the first 

100 points data. The horizontal line close to zero proves the fact that the amount of bilateral exchanges of 

energies was minimal over this period. It once again confirms the previous finding of the fact that net imports do 

not strongly influence system balancing within this segment of the dataset, justifying their simplification to a 

single, derived feature. 

 

Figure 6: Diesel Generation Actual vs Diesel Load 

Figure 6: demonstrates a scatter plot that indicates linear correlation between measured values of diesel load and 

the actual adjusted diesel generation with practically perfect relation. The strong correspondence of these two 

variables demonstrates the soundness of the estimation reasoning and it repays the fact that the target variable of 

the model is a highly accurate representation of operational behavior in the real world. This is essential in the 

training of a predictive model that reflects the practical diesel dispatch decision in a Hybrid framework. This 

step eliminates the occurrence of the technical efficiency attributes in the diesel estimation method where the 

assumptions become more realistic, operationally factual, and physically meaningful, making the forecast even 

more useful... 

5.2 Feature Selection 
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A feature selection procedure was carried out in order to enhance the efficiency of a model and make the 

dimensionality more basic via employing the Mutual Information Regressor. This is an approach to estimate 

nonlinear patterns of each feature-diesel load dependency and is linearly agnostic. Better-scoring mutual 

information features were more predictive and they would be used in training. 

 

Figure 7: Top 20 Features by MI Score 

Figure 7shows a bar chart forming the numbered list of 20 features in the order of their mutual information 

scores. The vertical axis will show the values of MI, whereas the horizontal one will have the names of the 

corresponding features. The majority of the highest-ranking functionalities can be traced back to wind electricity 

generation in Germany (DE_), especially those based in the region such as TenneT, which also suggest a major 

impact on the trend in diesel demand. Additional remarkable characteristics are the offshore wind indicators of 

the Netherlands (NL_) and Denmark (DK_) and Sweden (SE_) as well as some of the load forecasts and the 

solar indicators. 

This step in the processing of feature selection is important considering that the original dataset consists of 299 

columns. The model does not waste time and causes redundancy by inputting irrelevant predictors, since the 

input space is refined to the most relevant predictors, so the model will also be faster to train and has a lower 

risk of overfitting. This relevance pruning is in line with the aim of this paper that seeks to develop a powerful 

and scalable forecasting methodology of hybrid wind-diesel systems. 

5.3 Feature Scaling 

To feed the available data to the LSTM model, MinMaxScaler normalization technique was applied to all 

chosen features. This process changes feature values to some common range: 0-1 and this is crucial in ensuring 

that the neural networks converge well. Scaling is also applied to predict that as variables with numerically 

higher ranges like energy load (in MW) do not dominate other variables with low scales like market prices (in 

euro/MWh), it offers balanced gradient flows during the training of the model. 
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Figure 8: MinMax Scaled Feature Matrix 

Figure 8depicts the matrix view of the normalised data after using MinMaxScaler. All features have been re-

scaled to be in the range [0, 1], which allows homogeneous magnitude among inputs. This standardization 

becomes quite crucial when balancing the internal weight updates of the LSTM and preventing the model bias in 

high-magnitude attributes. 

 

Figure 9: Histogram of Scaled Feature Distribution 

Figure9 shows the histogram of the distribution of five chosen features normalized. The majority of values are 

in the range of 0 0. 0-0.6 and this represents the fact that the original data were skewed to the right and lower 

values of the median. The relative ordering of the features is not lost particularly because of the transformation 

and the model is able to have meaningful differences between the features. 
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These visualizations in conjunction provide confirmation that normalization was successfully applied to achieve 

superior training results and guard against numerical instabilities, which is especially vital in time-series 

forecasting duties involving large feature diversity. 

5.4 Dimensionality Reduction 

The dimension of the feature set was very large to handle, and to increase the speed of the computation Principal 

Component Analysis (PCA) was used. PCA changes original variables in fewer uncorrelated key variables 

depicting the greatest variance within the information. The role of this step is to make LSTM model apparently 

concentrate on the most informative input signals, whereas both redundancy and noise are discarded. 

The initial features that span high dimensions are reduced into 10 salient variables named 0, 9, etc. Components 

constitute a linear combination of the initial features that are optimised to maintain as much variance as 

possible. The matrix also establishes that the transformed features are orthogonal and enabled to undergo 

sequential-learning tasks. 

 

Figure 10: Cumulative Explained Variance 

Figure10gives a line chart of cumulative variance explained by the first PC components. It is disclosed in the 

plot that the top 4 components explain almost 75 percent of the variance in the dataset and that top 10 altogether 

explain more than 90 percent. This confirms the usefulness of PCA of compressing the data and preserving 

important information. The research makes use of PCA in order to make sure that the forecasting model uses a 

smaller set of highly representative input and can be trained faster with better generalizing properties that allow 

to be discarded after training and followed up by other feature integration techniques like DeAI. 

5.5 Feature Integration using DeAI 

The study uses DeAI (Deep Autoencoder-based Integration) to maximize the time abstraction and denoising in 

input features. The method also reduces the dimensions of the input-transformed by PCA to latent features that 

are capable of representing non-linearities and temporal significance. DeAI transformation enables LSTM 

model to concentrate on the necessary signals in the data and minimize the effect of noise and multicollinearity 

to enhance forecasting performance. 
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Figure 11: Heatmap of DeAI Encoded Components 

Figure 11is a heatmap with the first 100 samples visualize on the 10 DeAI components. The components are 

listed on the horizontal axis and time sequence as the vertical one. The activation strength of each feature at 

each time step is shown in the color gradient of purple (low intensity) to yellow (high intensity). The most 

notable is the clusters in certain elements that seem to be specific e.g. component 5 and this can be of high 

predictive value of sudden fluctuations in demand or convenient renewable availability. 

These transformations smooth that the LSTM model will take an information-rich compressed stream that is 

clean. DeAI acts as an intermediate between preprocess and model training and leads to better generalization 

and reduced computational cost. 

5.6 Model Architecture: PSO-Optimized DeAI-LSTM 

Training and designing of the forecasting model based on a PSO-optimized DeAI-LSTM architecture is the last 

step of the methodology. The final and most important attribute generated and normalized in this structure 

through the Deep Autoencoders Integration (DeAI) operation process is used as the major input of the Long 

Short-Term Memory (LSTM) neural network that will do best at sequential nature of the time-series data. 

Particle Swarm Optimization (PSO) is used to intelligently select the most critical hyperparameters of LSTM 

model, which are the number of layers, the number of hidden units and the optimal learning rate instead of 

manual trial-and-error mechanism. This is an automated optimization, which makes the model architecture 

efficient and customized to be compatible with the complexity of the data of the hybrid energy system. 
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The feature set includes DeAI-indexed forms of total load, wind and solar generation, the market prices, as well 

as all derived features, including diesel load. Diesel generator output poses as a key variable that determines 

whether the hybrid system runs effectively, and it is the main prediction target. The model should be trained 

with the purpose of minimizing the Mean Squared Error (MSE) loss, where the loss is specifically appropriate 

when a regression problem is to solve because of the need to penalize large variations in the real value. The 

training is performed with the Adam optimizer and lasts 50 epochs, all the significant parameters are also 

optimized through the PSO algorithm to ensure convergence and best results. 

Each of the above described stages of data processing, building of the model and forecasting pipeline are 

deliberately designed to contribute to the overall objective function as defined in Section 3. The purpose of the 

following functionality is to reduce the combined cost of operations and fuel, ecological emissions, and 

unfulfilled demand in the fabric of the wind-diesel hybrid. The predictions made by the PSO-optimized DeAI-

LSTM model are directly injected in the system operation and dispatch module so that cost and emissions 

outcomes may be broken down in detail as dictated by the problem formulation. This tight coupling is what 

gives the machine learning methodology a practical aspect of system-level optimization, tying predictive 

performance to practical effects on operations. 

To validate the proposed methodology comprehensively, it was benchmarked to be compared with the 

alternatives that are already available, e.g., vanilla LSTM, GRU, or ARIMA models. All of the competing 

approaches were thoroughly trained and tested on the same historical data sample with multiple years of 

duration obtained based on the ENTSO-E transparency platform, which has all the challenges of the real world 

of hybrid wind-diesel operation. The performance of the models was not only evaluated graphically by 

comparison but also evaluated quantitatively using various industry standard error values, e.g. RMSE and MAE 

as explained in Section 6.3.The resulting systematic assessment entails each of the models going through the 

same data processing and testing pipeline, thus being able to provide a fair and robust benchmark of the models 

with standing. 

Lastly, most of the visualizations in the Results section are accompanied with proper statistical analysis, which 

adds to the transparency of results, as well as to their reproducibility. This stringent methodological framework 

shows that the PSO-optimized DeAI-LSTM framework outperformed all other approaches to the problem of 

load forecast ensuring that the technique has a viable use in load prediction and operation optimization in hybrid 

energy systems. 

6. Results and Discussion 

6.1 Model Training Performance 

The model training has been observed during 50 epochs to detect the learning stability and generalization 

ability. The ultimate goal was to see to it that the model will be able to learn complex patterns in the input data 

without over- and underfitting. 

 

Figure 12: Training vs Validation Loss (50 Epochs) 
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Figure 12shows how the training loss (green) and validation loss (red) vary with every epoch. The training loss 

demonstrates the tendency to decrease rapidly during the first epochs, and then, it decreases progressively, 

which says that the patterns are effectively learned. Noteworthy, the validation loss is always low and stable, 

and does not differ with the training curve severely. The strength of this model and its likelihood to generalize to 

unseen data is proved by this performance. Incorporation of DeAI feature compression and use of PSO to tune 

hyperparameters seem to have improved the learning efficiency of LSTM model and reduce chances of 

overfitting. The result confirms that DeAI-LSTM architecture is appropriate to high-dimensional noised time-

series energy dataset. 

6.2 Model Accuracy Evaluation 

The predictive performance of the PSO-optimized DeAI-LSTM model was assessed by contrasting its results to 

the actual values of diesel generation on a hold-out test set directly. This was aimed at evaluating the extent to 

which model reflects the dynamic of the real world energy, and their trend relationships. 

 

Figure 13: Actual vs Predicted Diesel Generation (100 Test Points) 

Figure 13displays a line plot relating the original diesel generation (blue), against the predicted generation of the 

model (orange), in the first 100 tests samples. The direction the prediction curve takes reflects well the true 

direction, not only on short term but also, on long-term movements. Simple anticipations that are sufficiently 

small, as modest delays or regularizing at tops, can happen in genuine energy forecast because of stochasticity in 

the demand and unreliable irregularity in renewables. 

The excellent correlation of the model between the predicted and actual curves denotes that the model is 

effective in learning time dependent relations of multivariate variables such as load, wind, solar, and imports. 

This also confirms the preprocessing measures such as DeAI transformation and feature selection and the 

capacity of LSTM to represent sequential data. 
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Figure 14: Train-Test Split Pie Chart 

Figure 14illustrates data split tactics where the training portion of the data is the one taking 64.4 percent of the 

whole data and test portion 35.6 percent. It also allows guaranteeing that the model is trained on the wide 

enough range of different patterns, but a large proportion is left untouched to be used under the severe testing. 

Time-series data chronological integrity was ensured, there was no leakage of data and the reliability of 

evaluation measures became strengthened. 

Collectively, these numbers support the fact that the model to be included based on DeAI-LSTM can not only be 

trained successfully but also display high accuracy results during actual work situations. 

6.3 Forecasting Error Metrics 

In order to benchmark the performance of the proposed DeAI-LSTM model, error metrics that can be used to 

compare the three alternative models (Vanilla LSTM, GRU, and ARIMA) were calculated and measured to the 

proposed model. These measures provide both a measure of average error of prediction and sensitivity to huge 

deviations. 
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Figure 15:  RMSE Comparison – DeAI-LSTM vs LSTM, GRU, ARIMA 

Figure 15demonstrates the RMSE values of every four models. DeAI-LSTM model thus presented the smallest 

RMSE values, about 2400 MW which is much greater compared to other models. The Vanilla LSTM and GRU 

(RNN) models showed the values of RMSE being more than 2795 MW and that means less accurate forecasted 

results. Although ARIMA model outperformed GRU, it was still below deep learning-based methods. 

RMSE is very sensitive to the large deviations thus the low score obtained on the proposed model implies that it 

performs well at eliminating large deviations when predicting diesel loads even in the presence of renewable 

energy patterns. 
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Figure 16: MAE Comparison – DeAI-LSTM vs LSTM, GRU, ARIMA 

Figure 16 displays the values of the MAE in the same group of models. Once again, DeAI-LSTM offers the best 

MAE, which accentuates its credibility in giving precise prediction. Although the ARIMA model did relatively 

well, the Vanilla LSTM and GRU models had higher indicators of MAE, which is indicative of their inability to 

model nonlinear and multivariate temporal relationships. 

The good results in the case of DeAI-LSTM in terms of RMSE and MAE indicate the potential of the whole 

pipeline, involving preprocessing and feature transformation on the one hand, and DeAI-LSTM-based 

optimization on the other hand. Such findings prove the applicability of the model in hybrid energy systems 

where the correctness of the diesel load prediction is vital. 

6.4 System-Level Impact and Operating Characteristics 

In order to show the realistic application of the proposed forecasting model, we fed the result of the proposed 

forecasting model into a simulated environment of operation of a hybrid wind-diesel system. Namely, the results 

of diesel generation models, estimated by fitting the yesterdays, were fed, to make the system dispatch decisions 

minimizing the cost of telling wind and diesel generation sources in the scope of the objective function 

described in Section 3. Some of the critical operating attributes, as exemplified by the results are: 

• Load Following: Forecasts produced by the model allowed the diesel generator to ramp-up or ramp-

down on time thus avoiding too much fuel waste and generation to match actual load demand was met. 

Emissions Reduction: The system has recorded substantial decreases in CO 2 emissions- which were captured in 

the performance evaluation indicators- hence by deferring the use of diesel generators by virtue of their 

integration with renewables, a significant drop in emissions has been recorded. 

• Cost Optimization: Forecast-based dispatches resulted in a reduced overall operating cost along with 

fuel and low maintenance costs since the generator would not be over-cycled. 
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• Reliability: Unmet load was limited in each of the tested cases, and reliability of the energy was thus 

proved even with high variability of renewable energy sources. 

The visual and numerical results of the impact of these processes are depicted in Figures 13-16, where the 

contribution of the model in some main parameters of the system (diesel load, emissions, and cost) is directly 

illustrated. Therefore, the constructed framework does not only provide a higher level of forecasting 

performance but also exploits this performance into real-world hybrid wind-diesel systems into system-level 

performance gains. 

 

7. Conclusion and Future Scope 

The proposed research presented comprehensive and intelligent forecasting framework tailored for hybrid wind-

diesel power systems by leveraging a PSO-optimized DeAI-LSTM model. After the careful preprocessing of 

data, such as missing value imputation, outlier’s identification, feature normalization, and dimensionality 

reduction, the raw multivariate data was refined into the structured and information-rich input space. Principal 

Component Analysis (PCA) and Deep Autoencer-based Integration (DeAI) made it possible to eliminate 

redundant features and those with noise to maximized temporal signals that could not be represented by fewer 

features. This data when fed into an appropriately optimised LSTM neural network model with Particle Swarm 

Optimization results in a powerful predictive model with the capability to describe non-linear interdependencies 

within hybrid power systems. The model exhibited meritorious results against mere baseline models like vanilla 

LSTM, GRU and ARIMA. The predictive trustworthiness of the proposed approach was proved via the RMSE 

scores and MAE scores, as well, with the DeAI-LSTM only posting the lowest level of error, regardless of the 

test measure. The model was able to model the trends in the diesel generator dispatch to optimize between the 

variability in load and variation of renewable energy to discharge it accurately. Training-validation loss curves 

and plotting prediction also indicated that the model generalized quite well without the over fitting effect. In 

situations where it is difficult to implement regular forecasting models due to data irregularities and multivariate 

effects, the methodology has been of great use. When considering the future, there are some avenues that will be 

encouraging. First, real time deployment the model into operational hybrid systems may be able to provide live 

forecasting and automatic controls increasing energy efficiency and the scheduling of fuel. Second, it would 

permit deployment of models into remote or bandwidth-constrained location, especially in remote microgrids by 

integrating with edge computing infrastructure. Third, the alternative is that DeAI-LSTM can be merged with 

more complex structures (e.g., Convolutional Neural Networks (CNNs), attention modules, or Transformer 

architectures) that will be able to learn the spatial-temporal correlations and drastic fluctuations in the future. 

Moreover, creating the greater flexibility of the model via transfer learning would enable it to predict on the 

different geographic spaces or energy setups with little retraining. Lastly, exogenous variables like weather 

predictions and policy adjustments would also serve to improve the real-life applicability and forecasting 

accuracy of the model in use. 
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