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Abstract 

Quantifying subsurface salt structures plays a critical role in petroleum exploration and seismic interpretation, as 

salt bodies influence hydrocarbon migration, trap formation, and seismic wave propagation. While most existing 

research has focused on semantic segmentation of salt regions using deep learning architectures such as U-Net, 

Attention U-Net, and PINN-U-Net, limited work has addressed the quantitative measurement of salt coverage and 

distribution across large seismic datasets. In this work, we present a detailed quantitative salt coverage analysis 

using Connected Component Labeling (CCL) applied to ground-truth masks from the TGS Salt Identification 

Challenge dataset. The algorithm systematically identifies distinct salt regions and measures their individual and 

cumulative areas. From seismic masks, an average salt coverage of 24.79% was observed, with a standard 

deviation of 31.83%, reflecting high variability in salt distribution. This approach not only quantifies salt extent 

but also establishes a framework for linking salt morphology with depth, paving the way for data-driven 

geophysical interpretation. 

Keywords: Seismic Image Analysis, Connected Component Labeling, Quantification, Morphological Analysis, 

TGS Salt Dataset, Salt Coverage Estimation. 

I.INTRODUCTION 

Seismic interpretation plays a pivotal role in hydrocarbon exploration and reservoir characterization, as it provides 

critical insights into subsurface geological structures. Among these, the identification and delineation of salt 

bodies are of paramount importance, since salt acts as both a hydrocarbon seal and a trap-forming mechanism 

within sedimentary basins. Accurate mapping of salt deposits is essential for understanding the structural 

configuration of potential reservoirs and minimizing drilling risks in exploration activities. 

Traditionally, salt interpretation in seismic images has relied on manual delineation by geoscientists, which is 

time-consuming, subjective, and prone to human error. In recent years, deep learning-based segmentation models, 

such as U-Net, Attention U-Net, and DeepLabV3+, have demonstrated remarkable success in automatically 

identifying salt regions from seismic sections. These models use pairs of seismic images and their corresponding 

ground truth masks, where each mask provides the actual salt distribution verified by domain experts. However, 
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while extensive research has focused on improving the segmentation accuracy, less attention has been given to 

quantifying the extent of salt coverage across seismic datasets using ground truth information. 

Quantification of salt coverage is crucial for geological modeling, as it offers a numerical understanding of salt 

proportions within a seismic survey. Such quantitative information can support decisions in reservoir delineation, 

migration path analysis, and exploration planning. Therefore, it is essential to compute how much of each seismic 

image is occupied by salt, even in the absence of model predictions. The TGS Salt Identification Challenge dataset 

provides a suitable foundation for this analysis, as it contains 4000 seismic images with their corresponding expert-

annotated masks, representing various degrees of salt presence. 

A ground truth-based quantitative analysis of salt coverage is performed using the TGS dataset. Instead of 

employing a predictive deep learning model, the proposed approach directly utilizes the ground truth masks to 

compute the percentage of salt coverage in each seismic image. This enables an objective statistical evaluation of 

salt occurrence throughout the dataset, offering insights into the variability, distribution, and dominant salt patterns 

across the seismic sections. The analysis employs a pixel-level computation algorithm to derive coverage 

percentages, accuracy, and Intersection over Union (IoU), ensuring quantitative reliability. 

The main contributions of this work are as follows: A detailed quantitative framework for evaluating salt coverage 

directly from ground truth masks. Computation of statistical parameters such as mean, standard deviation, 

minimum, and maximum coverage percentages across the TGS dataset. Assessment of the accuracy and IoU 

metrics to validate the consistency of the quantification algorithm. A data-driven understanding of salt distribution 

trends, which can serve as a baseline for future segmentation and geological modeling research. 

This study provides a novel quantitative perspective to the salt identification problem by shifting the focus from 

prediction to measurement and statistical interpretation. The results from this analysis can enhance the 

interpretability of salt segmentation models and contribute toward more reliable subsurface characterization in 

geophysical studies. 

II. DATASET DESCRIPTION 

The analysis is performed using the TGS Salt Identification Challenge dataset provided by Kaggle. It comprises 

4000 seismic images, each of size 101×101 pixels, Corresponding binary masks indicating salt and non-salt 

regions, an auxiliary depth file providing normalized depth values for each image. 

Each mask represents the presence of salt structures (pixel value = 1) or background sediment (pixel value = 0). 

For this particular study, only the ground-truth masks are used to calculate the actual salt coverage per image, 

ensuring results independent of any segmentation model. 

 

Figure 1: Sample Seismic Images and Ground Truth Masks 

In geological interpretation, the binary mask effectively represents an “ideal segmentation” of the subsurface. 

Therefore, computing salt coverage from these masks provides a quantitative understanding of the spatial 

distribution of salt deposits. This measurement serves as a baseline for evaluating segmentation models in 

subsequent works and for correlating salt coverage with depth or other seismic attributes. 
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III. METHODOLOGY 

A. PREPROCESSING 

Preprocessing is a crucial step in preparing seismic data for accurate salt identification and quantification. In this 

study, the preprocessing stage was designed to enhance the quality, consistency, and interpretability of the seismic 

images before quantitative analysis. Each seismic image from the TGS Salt Identification dataset was first 

converted to grayscale to ensure uniform intensity representation, eliminating unnecessary color information that 

could introduce computational noise. The images were then resized to a standard dimension of 128×128 pixels, 

maintaining a balance between computational efficiency and spatial resolution. This resizing ensures consistent 

input dimensions for subsequent analysis and prevents scale-related bias when comparing salt coverage across 

multiple images. Normalization was applied to rescale pixel intensity values to a range between 0 and 1, thereby 

reducing contrast variations caused by acquisition inconsistencies and improving the stability of downstream 

algorithms. 

To further enhance the edge visibility and structural contrast of salt regions, noise suppression and contrast 

enhancement techniques such as Gaussian smoothing and histogram equalization can be applied, though the TGS 

dataset generally provides high-quality masks. In this work, the preprocessing pipeline ensured that all masks and 

images were spatially aligned and free from distortions, allowing for precise pixel-level quantification. The 

corresponding ground truth masks were also subjected to the same preprocessing operations to maintain 

consistency between the image and its label. This standardization is vital for ensuring that every pixel comparison 

between ground truth and derived salt regions reflects actual geological variation rather than processing artifacts. 

During data handling, corrupted or incomplete images were automatically filtered out to prevent statistical skew 

in the quantification stage. This preprocessing not only improved the numerical stability of connected component 

analysis but also ensured a robust estimation of salt coverage across the entire dataset. By systematically preparing 

the data in this way, the study achieved a reliable foundation for quantifying salt coverage percentages, validating 

the precision of the connected component labeling algorithm, and facilitating meaningful interpretation of salt 

distribution patterns in seismic imagery. 

B. CONNECTED COMPONENT LABELING (CCL) 

Connected Component Labeling (CCL) is a fundamental technique in image analysis used to identify and label 

distinct regions or objects within a binary or segmented image. In the context of salt identification on seismic 

images, CCL plays a crucial role in quantifying and analyzing the spatial distribution of salt bodies once the 

segmentation mask has been generated. The process begins by examining the binary mask, where each pixel is 

assigned, a value indicating whether it belongs to a salt region (foreground) or non-salt area (background). Using 

either 4-connectivity or 8-connectivity criteria, the algorithm scans the image pixel by pixel to group connected 

foreground pixels into unique components. Each connected group is then assigned a distinct label, effectively 

distinguishing individual salt deposits or patches. 

This labeled representation allows for detailed morphological and quantitative analysis of salt structures, such as 

measuring their area, perimeter, compactness, and spatial distribution. By identifying the number of connected 

salt regions, researchers can infer geological characteristics like salt continuity, fragmentation, and possible 

boundary interactions. Furthermore, CCL helps eliminate small noisy regions that do not represent meaningful 

geological features, improving the reliability of quantitative assessments. When combined with statistical and 

volumetric measurements, the results from CCL provide a deeper understanding of salt body morphology and 

enable accurate estimation of the total salt coverage in seismic datasets. Overall, Connected Component Labeling 

serves as a bridge between qualitative segmentation outputs and quantitative geological interpretation, making it 

an indispensable step in the workflow of salt quantification and analysis. 

For each labeled salt region, the following parameters are extracted using the regionprops() function from the 

skimage.measure library: 

Area (A_px): Number of pixels constituting the salt region. 
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Equivalent Salt Area (A_m²): Converted using predefined pixel-to-meter scaling factors. 

Number of Salt Regions (N): Count of distinct salt bodies within the image. 

Salt Coverage Percentage (C%): Ratio of salt pixels to total image pixels, computed as: 

C (%) = Salt Pixels/Total Pixels×100  

These metrics are calculated for all 4000 masks, and the results are aggregated into a comprehensive statistical 

summary. 

C. POST-PROCESSING AND VISUALIZATION 

Histograms of salt coverage and salt region counts are generated to visualize distribution trends across the dataset. 

Images with very high coverage (>90%) typically correspond to near-pure salt structures, whereas low-coverage 

images represent thin salt intrusions or non-salt layers. 

IV. RESULTS AND ANALYSIS 

A. STATISTICAL SUMMARY 

The proposed Connected Component Labeling (CCL)–based quantification method was applied to the TGS Salt 

Identification Challenge dataset, which consists of 4000 seismic images and their corresponding ground-truth 

masks. Each mask was analyzed to determine the percentage of salt coverage, and the results were summarized 

to evaluate the overall distribution of salt regions across the dataset. The statistical analysis revealed that the mean 

salt coverage across all samples was approximately 24.8%, indicating that, on average, one-fourth of each seismic 

section was occupied by salt structures. The standard deviation of 31.83% demonstrates a wide variation in salt 

presence across the dataset, reflecting the geological diversity of the seismic regions captured. The minimum 

coverage value (0%) corresponds to purely non-salt images, while the maximum (nearly 100%) indicates images 

dominated entirely by salt bodies. This variation highlights the heterogeneity of subsurface salt formations and 

justifies the need for automated quantification methods rather than manual interpretation. 

A deeper inspection of the distribution statistics shows that 25% of the samples contain no visible salt structures, 

whereas half of the dataset exhibits less than 6% salt coverage. This finding implies that the dataset is significantly 

imbalanced, with many regions being salt-free or containing only thin salt layers. Such imbalance often challenges 

segmentation models, as they tend to bias toward the dominant background class. However, CCL-based analysis 

overcomes this issue by treating each connected region independently and computing per-image coverage, 

allowing for fair quantification regardless of mask density. The upper quartile value of 46.9% suggests that a 

substantial portion of the dataset contains moderately sized salt deposits, which are essential for validating 

segmentation algorithms and geological models. 

Statistic Salt Coverage (%) 

Count 4000 

Mean 24.79 

Standard 

Deviation 
31.83 

Minimum 0.00 

25th Percentile 0.00 

Median (50%) 5.55 

75th Percentile 46.93 
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Statistic Salt Coverage (%) 

Maximum 99.99 

Table 1: Salt Distribution 

Visual inspection of the labeled outputs revealed that CCL successfully differentiated multiple salt patches within 

a single seismic image, assigning distinct labels to each salt body. This enabled the computation of additional 

morphological parameters such as the number of salt regions per image and their respective sizes. In most samples, 

a few large connected salt bodies dominated the mask, while smaller disconnected fragments appeared sparsely 

along the edges. These patterns correspond well with natural salt diapir geometries, where major salt domes are 

surrounded by thin salt tongues or residual deposits. Such information is particularly valuable in geological 

interpretation, as it provides insights into the continuity and deformation of salt structures. 

The quantification results also facilitate a better understanding of salt-related subsurface characteristics, including 

potential hydrocarbon traps and stratigraphic distortions. Regions with high salt coverage typically indicate thick 

evaporite layers, which are known to alter seismic velocity and create structural traps. Conversely, areas with 

minimal salt coverage may correspond to more stable sedimentary formations. The ability to measure salt 

coverage numerically allows geoscientists to establish correlations between salt concentration and geological 

features, improving exploration accuracy. Furthermore, the automated CCL approach reduces human subjectivity 

and provides consistent, reproducible results across thousands of samples. 

From a computational perspective, the proposed approach achieved a processing speed of approximately 40 

images per second, making it highly efficient for large-scale datasets. Despite its simplicity, CCL demonstrated 

strong robustness against noise and minor segmentation irregularities, accurately identifying connected salt 

regions even in low-contrast masks. Compared with traditional clustering-based methods such as K-Means or 

Fuzzy C-Means, CCL exhibited better interpretability and region-wise granularity, as it provides discrete object-

level information rather than pixel-level averages. This advantage makes it particularly suitable for downstream 

volumetric estimation and statistical reporting. 

In summary, the Connected Component Labeling method effectively quantified salt coverage and provided 

interpretable, region-based measurements aligned with geological reality. The obtained results confirm that CCL 

is not only a reliable quantification tool but also an essential step in post-segmentation analysis, supporting the 

evaluation of model performance and geological structure characterization. The next stage of this research will 

involve extending the framework to compute three-dimensional salt volume estimates and integrate deep-learning-

based segmentation outputs to achieve a complete, automated salt analysis pipeline. 

B. DISTRIBUTION ANALYSIS 

Figure 2 illustrates the distribution of salt coverage percentages obtained from the ground truth masks of the TGS 

Salt Identification dataset. The histogram clearly shows a highly skewed distribution, with a majority of seismic 

images containing minimal or no visible salt regions, as indicated by the tall bar near 0 % coverage. This reflects 

the inherent geological reality of the dataset, where non-salt formations are more prevalent than salt bodies. 

However, the tail extending toward higher salt coverage percentages suggests that a smaller subset of images 

contains significant salt deposits, reaching up to nearly 100 % coverage in some cases. Such variability 

underscores the heterogeneity of subsurface salt structures and highlights the challenge of developing models 

capable of accurately detecting salt regions across diverse geological contexts. 

 

Figure 2: Distribution of Salt Coverage 
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The dominance of low-coverage samples emphasizes the class imbalance problem often faced in segmentation 

and quantification tasks, where salt pixels constitute only a small fraction of the total dataset. This imbalance can 

lead to biased model training if not properly accounted for. Therefore, understanding the statistical distribution of 

salt coverage is essential for designing balanced sampling strategies, model weighting mechanisms, and robust 

evaluation metrics. Moreover, this distribution analysis confirms that any salt quantification or segmentation 

algorithm must generalize well across both sparse and dense salt regions to ensure accurate volumetric estimation 

and geological interpretation. 

The presented quantitative analysis framework provides a significant step forward from mere segmentation-based 

salt identification. While deep learning models can accurately classify salt pixels, this CCL-based approach 

transforms those classifications into actionable geological measurements. 

Metric Mean Value Standard 

Deviation 

Accuracy 0.96 0.04 

IOU(Intersection 

Over Union) 

0.86 0.08 

Table 2: Algorithm Performance Evaluation 

The method assumes binary accuracy of the ground-truth masks. Any labeling errors or ambiguous salt boundaries 

in the dataset may slightly affect the coverage computation. However, these effects are statistically minor across 

a large sample size (N = 4000). 

V COMPARISON WITH SEGMENTATION APPROACHES 

Traditional segmentation models, such as U-Net, Attention U-Net, and U-Net++, have been widely adopted for 

salt identification on seismic images due to their exceptional pixel-wise prediction capability. These models learn 

hierarchical spatial features from seismic reflections and produce binary masks that separate salt and non-salt 

regions. However, segmentation models primarily focus on generating accurate boundary maps and do not 

inherently provide quantitative information about the extent or volume of salt deposits. In contrast, the Connected 

Component Labeling (CCL) approach bridges this gap by directly quantifying salt presence from the existing 

masks, transforming qualitative segmentation outputs into quantitative geological insights. 

When compared to segmentation-based workflows, the CCL method demonstrates several distinct advantages. 

First, it offers region-based interpretability rather than pixel-level accuracy. While deep learning models output 

dense probability maps, they often misclassify thin salt edges or faint structures due to boundary ambiguity. CCL 

operates on already segmented masks and aggregates contiguous salt pixels into labeled components, eliminating 

noise-induced fragmentation. This makes it particularly effective for estimating true salt coverage and identifying 

continuous salt bodies. As a result, even when segmentation outputs contain small artifacts, the CCL quantification 

process remains stable and consistent across varying image conditions. 

Another notable distinction lies in computational efficiency and independence from training data. Deep learning 

segmentation models require extensive labeled datasets, hyperparameter tuning, and long training times to achieve 

high accuracy. Conversely, the CCL algorithm is non-parametric, unsupervised, and purely mathematical — 

requiring only binary input masks to compute the connected regions. In this study, CCL processed 4000 seismic 

masks in less than two minutes on a standard CPU system, achieving near-real-time quantification. This efficiency 

makes it highly suitable for post-processing large volumes of data in exploration workflows, where rapid 

interpretation is crucial. 

In terms of accuracy and reliability, segmentation models typically report evaluation metrics such as Intersection-

over-Union (IoU) or Dice coefficient to assess pixel-wise correspondence with ground truth. While these metrics 

measure the similarity of predicted and true salt boundaries, they do not provide direct insight into the amount of 

salt present. The proposed CCL approach complements segmentation results by enabling coverage-based 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

___________________________________________________________________________ 

959 

evaluation, where each image’s salt proportion is quantified as a percentage of total area. This provides a deeper 

understanding of how well a segmentation model captures geological structures of varying sizes. For instance, 

even a model with high IoU may underestimate total salt area due to partial detection of large salt domes — a 

discrepancy that CCL-based quantification can reveal. 

Furthermore, the integration of CCL with segmentation outputs enhances post-interpretation quality control. By 

measuring salt coverage before and after segmentation, it becomes possible to validate whether a model has 

introduced systematic bias (such as over-segmentation or under-segmentation). The quantification results obtained 

from CCL can serve as an independent benchmark for comparing different architectures or training strategies. For 

example, in prior experiments using Attention U-Net, the average salt coverage from predicted masks deviated by 

6–8% compared with the CCL-based ground truth quantification, indicating the model’s tendency to slightly 

overestimate thin salt layers. Such comparative analysis offers valuable insights for optimizing model design and 

threshold calibration. 

From a geological perspective, the combination of segmentation and CCL analysis allows for a multi-level 

interpretation of salt structures. Segmentation provides spatial localization of salt, while CCL delivers statistical 

descriptors — including number of salt bodies, mean area, and coverage percentage — that are essential for 

volumetric interpretation. This dual-layer framework bridges computer vision and geoscience, enabling automated 

workflows that are not only visually accurate but also quantitatively meaningful. Consequently, the CCL-based 

quantification can be viewed as a natural extension of segmentation-based salt identification, forming a critical 

step toward complete digital characterization of subsurface salt formations. 

VI. CONCLUSION 

This study presented a systematic quantitative analysis of salt coverage in seismic images using the TGS Salt 

Identification Challenge dataset. Unlike traditional segmentation-focused research, which emphasizes model 

accuracy and boundary delineation, this work concentrated on measuring and understanding the volumetric 

distribution of salt bodies across a large dataset of seismic sections. Through careful preprocessing, mask 

standardization, and connected component labeling–based quantification, the study successfully computed the 

percentage of salt coverage per image, providing valuable insights into the variability and prevalence of salt 

structures in subsurface formations. The results revealed that the dataset is heavily imbalanced, with a significant 

proportion of seismic images exhibiting low or negligible salt content, while a smaller subset displayed dense salt 

accumulations approaching full coverage. 

This quantitative analysis contributes an essential layer of interpretability to seismic data analysis by translating 

pixel-level segmentation into measurable geological metrics. The computed salt coverage percentages can serve 

as an empirical foundation for future depth-based correlation studies, volumetric estimations, and reservoir 

modeling. Furthermore, the findings highlight the potential need for data balancing and adaptive model training 

strategies in future salt segmentation models to handle the observed skewed salt distribution effectively. 

Overall, this work establishes a robust framework for salt quantification that complements existing segmentation 

algorithms, bridging the gap between deep learning–based identification and geological interpretation. The 

methodology not only enhances understanding of salt body distribution patterns but also sets the stage for 

subsequent studies involving depth–coverage correlation, geological layering analysis, and automated volume 

prediction. Future advancements can integrate this quantification process with predictive models or 3D seismic 

reconstruction techniques to further improve the accuracy and geophysical relevance of salt identification 

research. 

VII. FUTURE WORK 

Future research can build upon this study by expanding the Connected Component Labeling (CCL)–based 

quantification framework to incorporate additional geophysical parameters and three-dimensional interpretations. 

One promising direction is the integration of depth information from the TGS dataset to establish a correlation 

between salt coverage and subsurface depth, which would enable a volumetric understanding of salt deposition 

patterns. Further enhancement can be achieved by combining CCL with advanced morphological operations, 
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Laplacian-based boundary refinement, or region-growing algorithms to improve salt boundary precision and 

minimize noise. Incorporating machine learning or clustering-based adaptive thresholding could also help 

automatically distinguish complex salt textures from non-salt regions. Moreover, the proposed quantification 

approach can be extended to analyze predicted masks from deep learning models, providing an independent 

evaluation of model consistency and bias in estimating salt areas. Future studies may also explore the development 

of a 3D salt coverage visualization tool that can integrate multiple seismic slices to reconstruct the full geometry 

of salt domes. Such advancements would transform this framework into a comprehensive, automated system for 

real-time salt interpretation, contributing significantly to both academic research and industrial exploration 

workflows. 
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