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Abstract: Molecular Docking is a computerized tool used in discovering a drug. Molecular Docking (MD) which
helps to predict the small molecule ligand is able to bind to disease target protein. In MD a configuration molecular
structure is generated by the conformational search algorithm and then the position is evaluated based on fitness
function. Here fitness value is least binding energy during the interaction of protein and Ligand. The more the least
binding energy, the more the ligand is stable in the complex. In this research a differential evolution-based particle
swarm optimization algorithm is proposed as a search algorithm for conformational space in protein ligand docking.
Using a dataset of 1089 bimolecular complexes from PDBbind the lowest binding energy and time efficiency were
tested. The proposed algorithm demonstrates superior when tested with six other existing algorithms.

Keywords: Molecular Docking, Search algorithm, Evolutionary algorithms, Particle Swarm Optimization, Binding

Affinity.

1. Introduction

Molecular Docking is the computational molecular modeling drug design techniques which plays an indispensable role
in the process of drug design (NS Pagadala et al, 2017). Pharmaceutical companies utilize the computational
techniques (L Pinzi et al, 2019) at various stages in the drug design process for successful and profitable factor.
Docking is also a computational method using to determine the binding affinity and the orientation of the complex in
the active site of the target protein. There are various computational tools available for protein ligand docking. There
are two elements used in Docking which are search algorithms and scoring function. Process and Example of Molecular
Docking are shown in Fig 1 and Fig 2 respectively
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Figure 1 Process of Molecular Docking
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Figure 2 Example for Molecular Docking

In Molecular Docking there are several processes that consist of (i) ligand is selected to bind to target protein, (ii) to
find the binding sites that are available in receptor protein using search algorithm and scoring function (iii)obtain best
binding site and binding with optimal position technically. This technical process is called Docking

“NE7 N

Protein Ligand Complex

Figure 3 Molecular Docking workflows

The Search algorithm generates the molecular conformation (position of the ligand docked in the active site) and then
the fitness value is evaluated for such conformation. The best fitness value is evaluated using scoring functions.
AutoDock4 is a docking open-source tool developed at The Scripps Research Institute. The search algorithms used in
AutoDock4 include genetic algorithm (C. M. Oschiro et al, 1995), simulated annealing, and hybrid local search GA
(GM Morris et al , 1998). In this research a hybrid differential evolutionary (DE) based particle swarm optimization
(PSO) algorithm is proposed. The environment and scoring function are evaluated using AutoDock4.2. The
performance is compared with the algorithm Particle Swarm Optimization PSO, Lamarckian Genetic Algorithm LGA,
Ant Colony Optimization ACO, Differential Evolution DE (R Thomson et al, 2003) , Monte Carlo Simulated
Annealing SA (W Forli et al 2012), Artificial Bee Colony ABC( Uehara, S et al , 2015)and proposed Differential
Evolution based Particle Swarm Optimization PSODE algorithm. And the results clearly show that the proposed
PSODE works prior to all those algorithms tested in terms of accuracy. The remaining sections of this paper are
organized as follows. Section 2 defines the materials and method of the projected system. Section 3 illustrates the
experimental results and discussion on various datasets and finally Section 4 concludes the paper with future
enhancements.

2. Materials And Methods Artificial Bee Colony (ABC)

The ABC algorithm is a swarm-based, metaheuristic algorithm depends on s the searching performance of honey bee
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groups or colony (Dervis Karaboga et al 2008). The classical technique is built using three major elements:
a) Employed

b) Unemployed foragers

c) Food sources.

In ABC algorithm the first part consists of employed bee whereas the second art onlooker bee. Each employed bee
searches a food source, hence employed bee is equivalent to numeral count of food source. Employed bee finds the
possible food source and share food source information to onlookers by dancing (Pratyusha et al,2013). The onlookers
detect the employed bees dance inside the hive, and to choose the food source, however scouts search arbitrarily for
new food sources (Uehara, S et al, 2015).

The search sequence of ABC involves rules such as:

(1) Employed bees search for food sources and shares details about food source to onlooker bees;

(ii) Onlooker bees computing the nectar quality and selecting the food sources after gaining information about
employing bees

(iii) Defining the scout which bee transferring employee bee to feasible food sources.

In ABC, a group of artificial bee examines optimal food sources (quality solutions based on fitness value). In molecular
docking ABC finds the location of a protein ligand binding place (food source) characterizes a solution vector of the
optimizing problem, and feature of the binding area (nectar amount) is signified by a fitness value calculated. The
three kinds of bee survey for a global best solution in D-dimensional real grid area (parameter space), where D matches
to the number of optimization structures (translation, orientation and conformation of ligands for protein-ligand
docking)

Algorithm 1 Pseudocode of ABC algorithm for Docking
. Initialize the population x i (i=1, 2,. . ., SN)
. Calculate the fitness energy F(v) of binding position using eq. Ebind = Einter + Eintra
. Repeat
. For each employed bee Phase

S S R N

Select random dimension of ligand as solution v;
Calculate its fitness value F (vi) using eq. Evind = Einter T Eintra
Calculate the binding area values Pi for the solution (Vv )
5. For each onlooker bee Phase
Select a positionx: depending on P;
6. Scout Phase
If limitreached reinitialize the position
Evaluate evolutionary rate
7. Update x( best position

8. Return x¢

589



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) (Kennedy et al, 1995) introduced an optimized search method which is an
evolutionary algorithm based on population at every iteration, all particles move in the problem space (search area) to
find the optimal global solution. Every particle has a current position vector and velocity vector for further movement.
In each iteration method, each solution is nominated by the fitness function being optimized. Every particle saves its
position, moves in the search area randomly and calculate its fitness along with its velocity (Kai Chen et al, 2006).

Additionally, it concerns the best fitness value, that have been expert during the operation of the algorithm the solution
that attained this fitness, is mentioned as the individual best position. Liu et al, 2013 described it as randomized,
population-based optimization method which was moved by the flocking performance of birds and human.

PSO have been efficiently used in numerous real-world problems. The main area of such application is frequent
purpose optimization, PSO is in standard well appropriate method to the docking calculation were a real- valued
illustration of the ligand have to be reduced with respect to the fitness function. In PSO particles is used as population
of solutions. Such particle moves over the search space to predict the best position (Hung-Ming Chen et al, 2007).
The motion of a particle is inclined by the particle’s local search history and by the best positions that have been
found by other neighbored particles in the swarm. For gbest PSO method, the velocity of particle i is calculated by

vil=vt+er '[P —-x+cr '[G - x )

vy is the velocity vector of particle i in dimension j at time t ;

x;i' is the position vector of particle i in dimension at time t ;

Pyei 18 the personal best position of particle 1 in dimension j found
from initialization through time t;

G 18 the global best position of particle 1 in dimension j found from
initialization through time t;

¢, and ¢, are positive acceleration constants which are used to level the
contribution of the cognitive and social components respectively;

r; and 1> are random numbers from uniform distribution at time t.

For each particle has its current i position on searching space and assume its optimal position as pi, (Nama sivayam,
2007). The particle movement is evaluated by the velocity vector vi. For every iteration particle moves hence current
position I and personal best position pi is calculated based on the velocity vi if it is better than the
Pbest position f(xi) < f(pi), then xjupdated as new best position, i.e., pi = xi. Then it randomly chose another particle n
within the search and vi velocity is calculated in every dimension d. The process is repeated until reaches terminal

condition. often chosen as the particle that has the best personal best position within the search area (Marcus
et al, 2015).
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Algorithm 2 Pseudocode of PSO algorithm
Initialize protein ligand binding position X;
Initialize confidence of position ci, ¢z, velocity vijis the speed of changing position particle and
and r are vector (0,1).
Evaluate fitness value F(x) is the binding energy using eq. Evind = Einter + Eintra
Calculate Pbest value using equation (3.2)

while
number of iteration condition fail do
calculate velocity and orientation of ligand i
Evaluate fitness value for new position F(x)
IfF(X)< (Xpvest, i) /* Presiis the best local new position of ligand */
then XPbest, i~ Xi
end if
IfF(X;) < F (Xgbest, i) /* Guesiis the global best position of ligand */
then Xgpest, i= Xi
endif
End while

Differential Evaluation (DE)

The Differential Evolution is a optimizing algorithm based on population search method to evaluate the global optimal
solution for optimization problems in an efficient way. Population size P is initialized with the parameter value, for
every population dimensional vector parameter is assumed as an individual population in DE procedure (Rene
Thomsan,2003).t is the generation evaluate at every iteration, a maximum number of generations (tmax) is to obtain
a global best solution. xi, tis the t™ generation of i™ population is write as {x1,i,t , X2,i,t, . .., xD,i,t}(Vitaliy , 2006).

Mutation

Next to initialization process of population, Differential Evolution chooses a donor vector which is called mutant
vector, Vi, t equivalent to every individual vector xi, t in the current position through mutation. The i the donor
vector of the current generation, t is denoted as: Vit = {v1,it , V2,i,t, . . ., VD,i,t}. Zhenyu et al , 2007 listed the
regularly used mutation strategies.

Crossover

In Crossover, Phase trial vector ui, tis generated for every pair of mutant and target vector by performing the crossover
operation uj, t = {ul,i,t,u2,it, ..., uD,it}. In DE algorithm crossover operator plays an vital one to detect the search
space. Generally, there are two types of crossover methods used exponential and binomial (Daniela Zaharie, 2009).
Exponential crossover, choose an initial point integer n € [1, D] randomly, in the vector where the interchange of
components starts with primary vector. Then the trial vector is calculated in exponential crossover. In binomial
crossover, crossover performed based on the ratio (CR) at every dimension (D). While the random number ran (0, 1)

€ [0, 1], and crossover ratio € [0, 1] is merely taken from the equivalent target vector xi, t. Then the trial vector is
calculated in binomial crossover.
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Selection

In this phase selection process is performed to reinitializing parameter with random and uniform with selection
operator predefined range operator (Wenyin Gong et al, 2011). The selection operator decides the target vector Xi, t
or the trial vector uj, i, t may continue on further generation by considering its fitness values. The better individual
can be selected as: xi, t+1 =uj, t if f (ui, t) < f(xi, t) Xi, these steps are repeatedly iterated into subsequent DE
generations till reach the limit or terminal condition (Yang,2007).

Algorithm 3 Pseudocode of DE algorithm.
Initialize the current position
For t=1 to N do
/ * mutation*/
For each position x; pick three randomlydifferent orientation xi, X2, X3
Compute the new position using eq. v =x O+ F(x _ 0_x, o
Evaluate objective function F(xm) using eq. Epind = Einter + Eintra
/ * Crossover*/
Crossing the mutant dimension i, j individual randomly
Evaluate objective function F(x.) using eq. Evind = Einter + Eintra
/ End of Crossover /
/ * Selection*/
IfF(xm) < F(xc)
F(xi)=F(Xm)
Else
F(xi) =F(xc)
/ End of Selection /
Return F(x;)

ALGORITHM 4 Pseudocode of DE algorithm for Docking

INITIALIZE the imfial bindinz population P (x);

EVAITUATE the binding energy at each positon in P (x):

"Whil e{ termination condition meets not true ) do

Eegin

x=x+1:

* Mhhatation */

Nutati on perform s at every binding position in M (1) and moves to the resultinz posiion
corresponds to the probabality P

* Crossover */

Select two postions and perform crossover with probability P unal it reach the limit L ().
*L amarckian Evolution */

Perform displacement on eachposiionin L{f) and promote the popul ation C (t);
EVAILTUATE: The energy at every position inC (€):

End
Lamarckian genetic algorithm
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LGA is the local search hybrid Genetic algorithm. At LGA, every state variable corresponds to gene. Ligand
coordinates are considered as genotype and atomic coordinate in docking space are described as phenotype. Then the
nergy is calculated from the genotype form its phenotype. In LGA the genotype variables are not inverted back .[12]

Differential Evolution based PSO (PSODE)

In the PSODE algorithm, PSO is executed at the beginning of each generation. In Molecular Docking PSO algorithm
works as searching algorithm to find the different position of the binding site. PSO uses particle and swarm variables
to execute. Here swarm represent the population or possible space in the binding area and particle represent the
candidate in the binding area. The Fitness function is the lowest energy produced when binding which is calculated at
each position by using chemical calculation formula. The global best solution is calculated to produce a optimal
solution. After execution of PSO, process switches to DE. Results of PSO and DE will be compared and the best one
will be updated. The process executes based on the probability of generation.

fr)=fx(t+])=f*(t+2)=mmn=Ffx(t+N) )
Algorithm 5 Pseudo code of PSODE algorithm for Docking.

Initialize protein ligand binding position xij confidence of position c1, ¢2, velocity vijis the speed of changing position
particle and r1 and r2 are vector (0,1).

Evaluate fitness value F(x)isthe binding energy using eq. Ebind = Einter + Eintra Calculate Pbest value using equation
while

number of iteration condition fail do calculate velocityand orientation of ligand i Evaluate fitness value for new position
F(xi)

IfF(xi)< F (xPbest, i) /* Pbestis the best local new position of ligand */ then xPbest, i= Xi
end if

IfF(xi) < F(xgbest, i) /* Gbestis the global best position of ligand */ then xgbest, i= Xi

end if

Update i particle position and velocity xi and vi Update fitness F(x)

For t=1to N do

/ * mutation*/

For each position xj pick three randomlydifferent orientation x1, x2, x3 Compute the new position using eq.vi(t+1)
=xr'(t) + F(xr’(t) — xr’(t)) Evaluate objective function F(mx) using eq. Ebind = Einter + Eintra

/ * Crossover™*/
Crossing the mutant dimension i, j individual randomly
Evaluate objective function F(cx) using eq. Ebind = Einter + Eintra

/ End of Crossover /
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/ * Selection*/ If F(mx) < F(cx)
F(xi) =F(mx) Else
F(xi) = F(cx)

/ End of Selection / If F(xi) < F(x) Update F(xi) = F(x) End while
C Initialization)

Generate P randomly

V-
Calculate the energy E,, ., = E,.... + Ei.c.a Update the parents by offsprings
Update P, and P,
Count iteration t=t+l| Calculate the energy Function F,,,
Selection
Yes T
Crossover
No T
Update velocity and position Mutation
F N
v No

Yes

/ Output Results /

Figure.4 The workflow of proposed hybrid PSO and DE algorithm.

Figure 4 represents the framework between the PSO and DE, named PSODE is finding the optimal solution for the
docking bind problem. In PSODE the velocity of particles represents the position of ligand particle. In DE the particle

velocity is updated through the selective processes using following Equation
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vttt D =v(® + @u® -x 1) 3

i i i i

r and(0, 1), where vi (t) is the velocity of I th particle, ui (t) represents the velocity of trial vector , and xi (t) is the
velocity of the target vector at generation t. The proposed algorithm experiments on 100 complex structures. The
performances are calculated based on the accuracy, sensitivity, sensitivity, and Root Mean Square Deviation. The
experimental results confirmed that the PSODE algorithm performs every protein ligand complex and improves the
performance in a efficient way. In this chapter, the system architecture of the proposed algorithm is discussed. The

existing and proposed algorithms are discussed in this algorithm. Finally, the proposed algorithm flowchart and
advantages are described in this chapter.

The Dataset used for experimental study

In this research, protein-ligand complexes randomly selected from a SB2012 complex database that is used for the
computational experiments.

Data preparation

Protein and ligand structures are pre-processed using AutoDock4.2.6. Pre-processing steps include removing water
molecules, adding hydrogen bond for predicting better results, then the file converted to pdbqt required format,
allocating the grid parameter file .gpf (searching space) for docking. Using Auto Grid binding energy is calculated
with default grid size 22.5 *A.

Parameterization

The initial population used for PSO, DE, ABC and PSODE algorithms was 60; the energy function evaluations was set
to maximum number of 22,000 generations. The possibility of executing a local search on an individual was

0.05. The other parameters provided by the default setting were the same as in Auto Dock.
Software

Auto Dock is an open-source molecular docking software for protein-ligand docking, which predicts how ligands
bind to the target or the grid area on the protein. A grid parameter file .gpf consist the information of searching space
area of the docking. Autodock4.2.6 environment is used for docking calculation. Python 2.7 programming language
was used for developing the code for searching algorithm.

3. Results And Discussion
Performance measures used in this study

The comparison is made in terms of the performance metrics referred to as the accuracy, specificity, sensitivity,
and F1-score that are defined in the following subsections.

Sensitivity

Sensitivity or recall is the percentage of positive circumstances that were correctly recognized, as calculated using
the equation,

Sensitivity = True Positive (4)
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True Positivet+False Negative

In Figure 5 comparison results of the proposed approach with the existing method in terms of Sensitivity. Datasets are
represented in X-axis and sensitivity values are denoted in Y-axis. From the bar chart, it is increased for the proposed
approach compared to the existing approach.

Sensitivitv

58888388
|
|

DE ABC PSO ACO LGA  PSODE

Figure 5 Performance Comparison of existing and proposed approaches for Sensitivity.
Specificity

True Negative rate (TN rate), or specificity, is the proportion of actual negatives which are predicted to be negative and
is calculated as follows,

True Negative

Specificity = %)

True Negative+False Positive

Specificitv

90
80

70

60 -

50 —
40 |
30

20

DE ABC PSO ACO LGA PSODE

Figure 6 Performance Comparison of existing and proposed approaches for Specificity
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In Figure 6 Comparison results of the proposed approach with the existing method in terms of Specificity. Datasets
are represented in X-axis and specificity values are denoted in Y-axis. From the bar chart, the proposed approach
provides high specificity.

Accuracy

Accuracy is defined as the overall accuracy rate or classification accuracyand is calculated as follows,

True Positive+True Negative - 6)

Accuracy =

True Positive+True Negative+False Positive+False Negative

Accuracy

DE ABC PSO ACO LGA  PSODE

Figure 7 Performance Comparison of existing and proposed approaches for Accuracy

Figure 7 shows that the comparison of the proposed approach and existing method in terms of Accuracy. Datasets are
represented in X-axis and accuracy values are denoted in Y-axis. The accuracy value is increased for the proposed
approach compared to the existing approach.

Comparison of Performance of existing and proposed methods for protein-ligand complex data sets

Table 1displays the comparison of the lowest docking energy of DE, PSO, ABC and PSODE 12 out of 100 complex
ABC shows the best least energy whereas hybrid PSODE presents 88 out of 100 complexes. This shows the effect
hybrid algorithm. In contrast the RMSD analysis of PSODE shows better results than ABC, DE, and PSO.
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Figure 8 Protein ligand complex dataset with comparison of algorithms from 121P to 1A52
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Figure 9 Protein ligand complex dataset with comparison of algorithms from 1AS5S to 11EP
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Figure 10 Protein ligand complex dataset with comparison of algorithms from 1ACM to 1B80
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Figure 11 Protein ligand complex dataset with comparison of algorithms from 189S to 1BL7
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Figure 12 Protein ligand complex dataset with comparison of algorithms from 1BN1 to 1IBYG

Figure 13 Protein ligand complex dataset with comparison of algorithms from 1C1C to 1 INF
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Figure 14 Protein ligand complex dataset with comparison of algorithms from 1CPS to 11F8
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Figure 15 Protein ligand complex dataset with comparison of algorithms from 1EHL to 1IDA
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Figure 16 Protein ligand complex dataset with comparison of algorithms from 1FD7 to IHXW
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Figure 8 Comparison of DE, PSO, ABC and PSODE algorithm with docking energy.

Docking accuracy is evaluated depends on RMSD (root mean square deviation) of reference structure and obtained
complex on docking .2 “A is set as a cut off value. Predicted binding mode is considered as perfect only when the

RMSD value is below 1 “A.
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Comparison of the least docking energy of DE, ABC, PSO, and PSODE

Protein Id DE IABC PSO PSODE
121P -17.180 -21.647 -21.131 -21.550
182L -15.252 -12.750 -15.624 -15.794
183L -16.200 -27.136 -19.926 -20.412
185L -7.110 -8.745 -8.959 -0.784
186L -6.700 -8.241 -8.442 -9.805
187L -9.970 -12.263 -11.798 -12.562
1A28 -13.280 -16.733 -16.334 -16.557
1A4G -5.200 -6.396 -6.552 -7.950
1A4Q -6.950 -8.549 -8.757 -9.763
1A52 -11.350 -13.961 -14.301 -15.370
1ASS -17.180 -21.131 -21.550 -21.647
1A8I -13.280 -16.733 -16.334 -16.557
1AM -12.180 -14.981 -14.893 -15.347
laaq -20.418 -15.550 -20.916 -24.486
labe -10.025 -7.990 -10.269 -10.706
1ABE -29.380 -36.137 -35.404 -37.019
1ABF -15.240 -18.745 -19.202 -19.292
1AC] -7.480 -9.425 -9.063 -9.200
lacm -11.414 -9.950 -11.693 -12.307
1ACM -29.380 -36.137 -35.404 -37.019
1AFK -10.000 -12.300 -11.141 -12.600
Comparison of the lowest docking energy of DE, ABC, PSO, and PSODE

Protein Id DE IABC PSO PSODE
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1AGW -16.200 27.136 [19.926 [19.926
laha -18.745 -13.950 -19.292 18.745
1AI5 19.280 11.414 -11.693 [12.307
1AID -12.300 -9.950 -12.600 112.300
1AV [17.392 -14.250 -19.928 [17.392
1AZM -14.140 -17.392 -17.816 119.928
1B8O -6.700 [8.241 8.442 9.805

1B9S 21.131 -16.070 21.647 21.131
1BOT -10.150 -12.485 [12.789 113.907
1BAS -15.500 -19.065 -19.345 119.530
1BAP 6.790 -10.579 8.555 20412
1bbp 128.757 124480 129.459 128.757
1BDQ -15.930 -19.594 -19.197 120.072
1BDR -16.080 -19.778 20.261 123.786
1BII -16.080 123.786 -19.778 120.261
1BL7 6.950 8.549 8.757 9.763

1BN1 19.970 112,263 [11.798 [12.562
1BN3 7.480 -9.200 £9.063 9.425

1BN4 -11.970 -14.723 -15.082 [16.059
1BNN -6.700 -9.805 8.241 .442

IBNT 6.950 -9.763 -8.549 8.757

1BNU -15.500 -19.065 -19.345 119.530
1BNV 6.700 8241 8.442 9.805

1BPO 8.900 110.947 -9.879 [11.214
IBYG -9.800 [12.054 [12.348 [13.536
ICIC -10.000 -12.300 11141 [12.600
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Comparison of the lowest docking energy of DE, ABC, PSO, and PSODE

Protein Id DE IABC PSO PSODE
1Cc4v -8.900 -10.947 -9.879 -11.214
1C5S -7.720 -9.496 -0.487 -9.727
1COM -6.280 -7.724 -7.913 -10.059
1CPS -13.899 -10.850 -14.238 -15.423
1D6S -16.600 -20.418 -20.916 -24.486
1DII -8.530 -10.492 -10.420 -10.748
1dbb -11.290 -13.887 -13.123 -14.225
1DUV -20.120 -24.748 -24.136 -25.351
leap -12.180 -14.981 -14.893 -15.347
1EBG -20.120 -24.748 -24.136 -25.351
1EEF -23.380 -28.757 -28.514 -29.459
1EFY -7.480 -9.200 -9.063 -9.425
1EHL -15.930 -19.594 -19.197 -20.072
1EIX -8.160 -10.037 -10.282 -10.992
1EP4 -16.200 -19.926 -20.412 -27.136
1ERE -15.110 -18.585 -17.723 -19.039
1EUS -22.930 -28.204 -28.355 -28.892
1FOS -9.970 -12.263 -11.798 -12.562
1FOT -8.240 -10.135 -11.024 -11.024
1F4E -23.380 -28.757 -28.514 -29.459
1F4F -9.800 -12.054 -12.348 -13.536
1FD7 -8.240 -10.135 -11.024 -11.024
1FEJ -10.000 -12.300 -11.141 -12.600
1FJS -15.360 -18.893 -18.561 -19.354
1FKI -8.240 -10.135 -11.024 -11.024
1G48 -9.280 -11.414 -11.693 -12.307
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1G52 -22.930 -28.204 -28.355 -28.892
1GAH -6.950 -8.549 -8.757 -9.763
1GHZ -29.380 -36.137 -35.404 -37.019
IComparison of the lowest docking energy of DE, ABC, PSO, and PSODE

Protein Id IDE IABC PSO PSODE
1GPK -13.280 -16.334 -16.557 -16.733
1IGWR -11.300 -13.899 -14.238 -15.423
1HAK -6.700 -8.241 -8.442 -9.805
IHDQ -9.980 -12.275 -12.575 -12.752
lhdy -8.240 -10.135 -11.024 -11.024
IHN4 -15.110 -18.585 -17.723 -19.039
IHPV -10.000 -12.300 -11.141 -12.600
1HQ2 -20.120 -24.748 -24.136 -25.351
IHSH -11.300 -13.899 -14.238 -15.423
IHSL -16.080 -19.778 -20.261 -23.786
1HW9 -14.140 -17.392 -17.816 -19.928
THXW -11.290 -13.887 -13.123 -14.225
1IDA -11.290 -13.887 -13.123 -14.225
11E9 -20.850 -25.646 -23.002 -26.271
1IEP -15.110 -18.585 -17.723 -19.039
1TF8 -17.180 -21.131 -21.550 -21.647
1INF -10.000 -12.300 -11.141 -12.600
1C86 -12.180 -14.981 -14.893 -15.347
1C87 -8.100 -9.963 -10.206 -10.971
1C88 -15.110 -18.585 -17.723 -19.039
1CBX -8.900 -10.947 -9.879 -11.214
ledg -9.496 -7.130 -9.272 -9.727
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Table 1. Comparison Of The Least Docking Energy of DE, PSO, ABC And Psode Algorithm.

Figure 8 shows the rate RMSD( root mean square deviation ) values for all docking programs is compared to 100
cases. This confirms PSODE algorithm is the efficient algorithm for docking search spaces. PSO and LGA predict the
ligand position which is located long from the actual ligand binding site. Contrariwise, PSO and ABC algorithms have
high RMSD value of 2.04 “A and 2.31 “A, which means that it calculates least energy for most of the cases but the
deviation of predicted and pre tested binding pose is highly differentiate .For the 100 complexes, PSODE predict the
binding position with low rate of RMSD. This reveals that proposed PSODE algorithm is appropriate for high
dimensional docking applications.

RMSD

o pE
¥ pso
M psoDE

ABC
ACO

LGA

Figure 9 Comparison of RMSD of DE, PSO, ABC and PSODE algorithm.

In drug designing and discovery studies, Protein-ligand docking is a core one. Multidimensional docking is a
significant problem in protein-ligand docking because of inflated conformational search space. In this research,
evolution-based particle swarm algorithm is proposed to solve the protein-ligand docking problem. Compared with
PSO, ABC, DE, and PSODE, hybrid PSODE show docking accuracy with optimal results. ABC predicts a better
energy value but rmsd accuracy is not effectual. To summarize, PSODE appears well matched for exact evaluation for
molecular docking.

4. Conclusion

This paper represents the protein ligand docking methods, framework for proposed hybrid algorithm and classifies the
docking results obtained from the previous algorithm used. A Framework is presented for future development work
of this research. Based on these results, it is determined that the differential evolution-based particle swarm
optimization (PSODE) algorithm provides better results than the existing protein ligand docking algorithm. Hence this
research provides a substitute method for a molecular docking. The future enhancement of this research may
concentrate on increasing the computing speed, and evaluating energy based on multi-objective function.
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