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Abstract: Molecular Docking is a computerized tool used in discovering a drug. Molecular Docking (MD) which 

helps to predict the small molecule ligand is able to bind to disease target protein. In MD a configuration molecular 

structure is generated by the conformational search algorithm and then the position is evaluated based on fitness 

function. Here fitness value is least binding energy during the interaction of protein and Ligand. The more the least 

binding energy, the more the ligand is stable in the complex. In this research a differential evolution-based particle 

swarm optimization algorithm is proposed as a search algorithm for conformational space in protein ligand docking. 

Using a dataset of 1089 bimolecular complexes from PDBbind the lowest binding energy and time efficiency were 

tested. The proposed algorithm demonstrates superior when tested with six other existing algorithms. 

Keywords: Molecular Docking, Search algorithm, Evolutionary algorithms, Particle Swarm Optimization, Binding 

Affinity. 

 

1. Introduction 

Molecular Docking is the computational molecular modeling drug design techniques which plays an indispensable role 

in the process of drug design (NS Pagadala et al, 2017). Pharmaceutical companies utilize the computational 

techniques              (L Pinzi et al, 2019) at various stages in the drug design process for successful and profitable factor. 

Docking is also a computational method using to determine the binding affinity and the orientation of the complex in 

the active site of the target protein. There are various computational tools available for protein ligand docking. There 

are two elements used in Docking which are search algorithms and scoring function. Process and Example of Molecular 

Docking are shown in Fig 1 and Fig 2 respectively 

Figure 1 Process of Molecular Docking 
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Figure 2 Example for Molecular Docking 

In Molecular Docking there are several processes that consist of (i) ligand is selected to bind to target protein, (ii) to 

find the binding sites that are available in receptor protein using search algorithm and scoring function (iii)obtain best 

binding site and binding with optimal position technically. This technical process is called Docking 

Figure 3 Molecular Docking workflows 

The Search algorithm generates the molecular conformation (position of the ligand docked in the active site) and then 

the fitness value is evaluated for such conformation. The best fitness value is evaluated using scoring functions. 

AutoDock4 is a docking open-source tool developed at The Scripps Research Institute. The search algorithms used in 

AutoDock4 include genetic algorithm (C. M. Oschiro et al, 1995), simulated annealing, and hybrid local search GA 

(GM Morris et al , 1998). In this research a hybrid differential evolutionary (DE) based particle swarm optimization 

(PSO) algorithm is proposed. The environment and scoring function are evaluated using AutoDock4.2. The 

performance is compared with the algorithm Particle Swarm Optimization PSO, Lamarckian Genetic Algorithm LGA, 

Ant Colony Optimization ACO, Differential Evolution DE (R Thomson et al, 2003) , Monte Carlo Simulated 

Annealing SA (W Forli et al 2012), Artificial Bee Colony ABC( Uehara, S et al , 2015)and proposed Differential 

Evolution based Particle Swarm Optimization PSODE algorithm. And the results clearly show that the proposed 

PSODE works prior to all those algorithms tested in terms of accuracy. The remaining sections of this paper are 

organized as follows. Section 2 defines the materials and method of the projected system. Section 3 illustrates the 

experimental results and discussion on various datasets and finally Section 4 concludes the paper with future 

enhancements. 

2. Materials And Methods Artificial Bee Colony (ABC) 

The ABC algorithm is a swarm-based, metaheuristic algorithm depends on s the searching performance of honey bee 
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groups or colony (Dervis Karaboga et al 2008). The classical technique is built using three major elements: 

a) Employed 

b) Unemployed foragers 

c) Food sources. 

In ABC algorithm the first part consists of employed bee whereas the second art onlooker bee. Each employed bee 

searches a food source, hence employed bee is equivalent to numeral count of food source. Employed bee finds the 

possible food source and share food source information to onlookers by dancing (Pratyusha et al,2013). The onlookers 

detect the employed bees dance inside the hive, and to choose the food source, however scouts search arbitrarily for 

new food sources (Uehara, S et al, 2015). 

The search sequence of ABC involves rules such as: 

 

(i) Employed bees search for food sources and shares details about food source to onlooker bees; 

(ii) Onlooker bees computing the nectar quality and selecting the food sources after gaining information about 

employing bees 

(iii) Defining the scout which bee transferring employee bee to feasible food sources. 

In ABC, a group of artificial bee examines optimal food sources (quality solutions based on fitness value). In molecular 

docking ABC finds the location of a protein ligand binding place (food source) characterizes a solution vector of the 

optimizing problem, and feature of the binding area (nectar amount) is signified by a fitness value calculated. The 

three kinds of bee survey for a global best solution in D-dimensional real grid area (parameter space), where D matches 

to the number of optimization structures (translation, orientation and conformation of ligands for protein-ligand 

docking) 

 

 

Algorithm 1 Pseudocode of ABC algorithm for Docking 

1. Initialize the population 𝑥 𝑖 (𝑖 = 1, 2, . . ., SN) 

2. Calculate the fitness energy F(v) of binding position using eq. Ebind = Einter + Eintra 

3. Repeat 

4. For each employed bee Phase 

Select random dimension of ligand as solution vi 

Calculate its fitness value F (vi) using eq. Ebind = Einter + Eintra 

Calculate the binding area values 𝑃𝑖 for the solution (v 𝑖) 

5. For each onlooker bee Phase 

Select a position𝑥𝑖 depending on 𝑃𝑖 

6. Scout Phase 

If limit reached reinitialize the position 

Evaluate evolutionary rate 
7. Update x0 best position 

8. Return x0 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

__________________________________________________________________________________ 

590 

Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) (Kennedy et al, 1995) introduced an optimized search method which is an 

evolutionary algorithm based on population at every iteration, all particles move in the problem space (search area) to 

find the optimal global solution. Every particle has a current position vector and velocity vector for further movement. 

In each iteration method, each solution is nominated by the fitness function being optimized. Every particle saves its 

position, moves in the search area randomly and calculate its fitness along with its velocity (Kai Chen et al, 2006). 

Additionally, it concerns the best fitness value, that have been expert during the operation of the algorithm the solution 

that attained this fitness, is mentioned as the individual best position. Liu et al, 2013 described it as randomized, 

population-based optimization method which was moved by the flocking performance of birds and human. 

PSO have been efficiently used in numerous real-world problems. The main area of such application is frequent 

purpose optimization, PSO is in standard well appropriate method to the docking calculation were a real- valued 

illustration of the ligand have to be reduced with respect to the fitness function. In PSO particles is used as population 

of solutions. Such particle moves over the search space to predict the best position (Hung-Ming Chen et al, 2007). 

The motion of a particle is inclined by the particle’s local search history and by the best positions that have been 

found by other neighbored particles in the swarm. For gbest PSO method, the velocity of particle i is calculated by 

v t+1 = v t + c r t [P   – x t] + c r t [ G – x t] --------------------------------------- (1) 

 

 

 

For each particle has its current i position on searching space and assume its optimal position as pi, (Nama sivayam, 

2007). The particle movement is evaluated by the velocity vector vi. For every iteration particle moves hence current 

position I and personal best position pi is calculated based on the velocity vi if it is better than the 

Pbest position f(xi) < f(pi), then xiupdated as new best position, i.e., pi = xi. Then it randomly chose another particle n 

within the search and vi velocity is calculated in every dimension d. The process is repeated until reaches terminal 

condition. often chosen as the particle that has the best personal best position within the search area (Marcus 

et al, 2015). 
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Differential Evaluation (DE) 

The Differential Evolution is a optimizing algorithm based on population search method to evaluate the global optimal 

solution for optimization problems in an efficient way. Population size P is initialized with the parameter value, for 

every population dimensional vector parameter is assumed as an individual population in DE procedure (Rene 

Thomsan,2003).t is the generation evaluate at every iteration, a maximum number of generations (tmax) is to obtain 

a global best solution. xi, tis the tth generation of ith population is write as {x1,i,t , x2,i,t, . . . , xD,i,t}(Vitaliy , 2006). 

Mutation 

Next to initialization process of population, Differential Evolution chooses a donor vector which is called mutant 

vector, Vi, t equivalent to every individual vector xi, t in the current position through mutation. The ith the donor 

vector of the current generation, t is denoted as: Vi,t = {v1,i,t , v2,i,t, . . . , vD,i,t}. Zhenyu et al , 2007 listed the 

regularly used mutation strategies. 

Crossover 

In Crossover, Phase trial vector ui, tis generated for every pair of mutant and target vector by performing the crossover 

operation ui, t = {u1,i,t , u2,i,t, . . . , uD,i,t}. In DE algorithm crossover operator plays an vital one to detect the search 

space. Generally, there are two types of crossover methods used exponential and binomial (Daniela Zaharie, 2009). 

Exponential crossover, choose an initial point integer n ∈ [1, D] randomly, in the vector where the interchange of 

components starts with primary vector. Then the trial vector is calculated in exponential crossover. In binomial 

crossover, crossover performed based on the ratio (CR) at every dimension (D). While the random number ran (0, 1) 

∈ [0, 1], and crossover ratio ∈ [0, 1] is merely taken from the equivalent target vector xi, t. Then the trial vector is 

calculated in binomial crossover. 

 

 

Algorithm 2 Pseudocode of PSO algorithm 

Initialize protein ligand binding position xij 

Initialize confidence of position c1, c2, velocity vijis the speed of changing position particle and r1 

and r2 are vector (0,1). 

Evaluate fitness value F(x) is the binding energy using eq. Ebind = Einter + Eintra 

Calculate Pbest value using equation (3.2) 

while 

number of iteration condition fail do 

calculate velocity and orientation of ligand i 

Evaluate fitness value for new position F(x) 

If F(xi)≤ (𝑥Pbest, i) /* Pbestis the best local new position of ligand */ 

then 𝑥Pbest, i= xi 

end if 

If F(xi) ≤ 𝐹 (𝑥gbest, i) /* Gbestis the global best position of ligand */ 

then 𝑥gbest, i= xi 

end if 

End while 
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Selection 

In this phase selection process is performed to reinitializing parameter with random and uniform with selection 

operator predefined range operator (Wenyin Gong et al, 2011). The selection operator decides the target vector xi, t 

or the trial vector uj, i, t may continue on further generation by considering its fitness values. The better individual 

can be selected as: xi, t+1 = ui, t if f (ui, t) ≤ f (xi, t) xi, these steps are repeatedly iterated into subsequent DE 

generations till reach the limit or terminal condition (Yang,2007). 

 

 

Lamarckian genetic algorithm 

Algorithm 3 Pseudocode of DE algorithm. 

Initialize the current position 

For t=1 to N do 

/ * mutation*/ 

For each position xi pick three randomlydifferent orientation x1, x2, x3 

Compute the new position using eq. v (t+1) = x (t)+ F(x (t)– x  ()t) 
i r1 r2 r3 

Evaluate objective function F(xm) using eq. Ebind = Einter + Eintra 

/ * Crossover*/ 

Crossing the mutant dimension i , j individual randomly 

Evaluate objective function F(xc) using eq. Ebind = Einter + Eintra 

/ End of Crossover / 

/ * Selection*/ 

If F(xm) < F(xc) 

F(xi) = F(xm) 

Else 

F(xi) = F(xc) 

/ End of Selection / 

Return F(xi) 
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LGA is the local search hybrid Genetic algorithm. At LGA, every state variable corresponds to gene. Ligand 

coordinates are considered as genotype and atomic coordinate in docking space are described as phenotype. Then the 

nergy is calculated from the genotype form its phenotype. In LGA the genotype variables are not inverted back .[12] 

Differential Evolution based PSO (PSODE) 

In the PSODE algorithm, PSO is executed at the beginning of each generation. In Molecular Docking PSO algorithm 

works as searching algorithm to find the different position of the binding site. PSO uses particle and swarm variables 

to execute. Here swarm represent the population or possible space in the binding area and particle represent the 

candidate in the binding area. The Fitness function is the lowest energy produced when binding which is calculated at 

each position by using chemical calculation formula. The global best solution is calculated to produce a optimal 

solution. After execution of PSO, process switches to DE. Results of PSO and DE will be compared and the best one 

will be updated. The process executes based on the probability of generation. 

Algorithm 5 Pseudo code of PSODE algorithm for Docking. 

Initialize protein ligand binding position xij confidence of position c1, c2, velocity vijis the speed of changing position 

particle and r1 and r2 are vector (0,1). 

Evaluate fitness value F(x) is the binding energy using eq. Ebind = Einter + Eintra Calculate Pbest value using equation 

while 

number of iteration condition fail do calculate velocityand orientation of ligand i Evaluate fitness value for new position 

F(xi) 

If F(xi)≤ 𝐹 (𝑥Pbest, i) /* Pbestis the best local new position of ligand */ then 𝑥Pbest, i= xi 

end if 

If F(xi) ≤ 𝐹(𝑥gbest, i) /* Gbestis the global best position of ligand */ then 𝑥gbest, i= xi 

end if 

Update it particle position and velocity xi and vi Update fitness F(x) 

For t=1 to N do 

/ * mutation*/ 

For each position xi pick three randomlydifferent orientation x1, x2, x3 Compute the new position using eq.vi(t+1) 

=xr1(t) + F(xr2(t) – xr3(t)) Evaluate objective function F(mx) using eq. Ebind = Einter + Eintra 

/ * Crossover*/ 

Crossing the mutant dimension i , j individual randomly 

Evaluate objective function F(cx) using eq. Ebind = Einter + Eintra 

/ End of Crossover / 

 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

__________________________________________________________________________________ 

594 

/ * Selection*/ If F(mx) < F(cx) 

F(xi) = F(mx) Else 

F(xi) = F(cx) 

/ End of Selection / If F(xi) < F(x) Update F(xi) = F(x) End while 

 

Figure.4 The workflow of proposed hybrid PSO and DE algorithm. 

Figure 4 represents the framework between the PSO and DE, named PSODE is finding the optimal solution for the 

docking bind problem. In PSODE the velocity of particles represents the position of ligand particle. In DE the particle 

velocity is updated through the selective processes using following Equation 
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v (t + 1) = v (t) + (u (t) − x (t)) (3) 

i i i i 

 

r and(0, 1), where vi (t) is the velocity of I th particle, ui (t) represents the velocity of trial vector , and xi (t) is the 

velocity of the target vector at generation t. The proposed algorithm experiments on 100 complex structures. The 

performances are calculated based on the accuracy, sensitivity, sensitivity, and Root Mean Square Deviation. The 

experimental results confirmed that the PSODE algorithm performs every protein ligand complex and improves the 

performance in a efficient way. In this chapter, the system architecture of the proposed algorithm is discussed. The 

existing and proposed algorithms are discussed in this algorithm. Finally, the proposed algorithm flowchart and 

advantages are described in this chapter. 

The Dataset used for experimental study 

In this research, protein-ligand complexes randomly selected from a SB2012 complex database that is used for the 

computational experiments. 

Data preparation 

Protein and ligand structures are pre-processed using AutoDock4.2.6. Pre-processing steps include removing water 

molecules, adding hydrogen bond for predicting better results, then the file converted to pdbqt required format, 

allocating the grid parameter file .gpf (searching space) for docking. Using Auto Grid binding energy is calculated 

with default grid size 22.5 ˚A. 

Parameterization 

The initial population used for PSO, DE, ABC and PSODE algorithms was 60; the energy function evaluations was set 

to maximum number of 22,000 generations. The possibility of executing a local search on an individual was 

0.05. The other parameters provided by the default setting were the same as in Auto Dock. 

Software 

Auto Dock is an open-source molecular docking software for protein-ligand docking, which predicts how ligands 

bind to the target or the grid area on the protein. A grid parameter file .gpf consist the information of searching space 

area of the docking. Autodock4.2.6 environment is used for docking calculation. Python 2.7 programming language 

was used for developing the code for searching algorithm. 

3. Results And Discussion 

Performance measures used in this study 

The comparison is made in terms of the performance metrics referred to as the accuracy, specificity, sensitivity, 

and F1-score that are defined in the following subsections. 

 

Sensitivity 

Sensitivity or recall is the percentage of positive circumstances that were correctly recognized, as calculated using 

the equation, 

 

𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 = 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (4) 
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𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 

In Figure 5 comparison results of the proposed approach with the existing method in terms of Sensitivity. Datasets are 

represented in X-axis and sensitivity values are denoted in Y-axis. From the bar chart, it is increased for the proposed 

approach compared to the existing approach. 

 

Figure 5 Performance Comparison of existing and proposed approaches for Sensitivity. 

Specificity 

True Negative rate (TN rate), or specificity, is the proportion of actual negatives which are predicted to be negative and 

is calculated as follows, 

 

 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆  

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = (5) 

𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 

 

Figure 6 Performance Comparison of existing and proposed approaches for Specificity 
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In Figure 6 Comparison results of the proposed approach with the existing method in terms of Specificity. Datasets 

are represented in X-axis and specificity values are denoted in Y-axis. From the bar chart, the proposed approach 

provides high specificity. 

Accuracy 

Accuracy is defined as the overall accuracy rate or classification accuracyand is calculated as follows, 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 

- ---------------------- (6) 

 

Figure 7 Performance Comparison of existing and proposed approaches for Accuracy 

 

Figure 7 shows that the comparison of the proposed approach and existing method in terms of Accuracy. Datasets are 

represented in X-axis and accuracy values are denoted in Y-axis. The accuracy value is increased for the proposed 

approach compared to the existing approach. 

Comparison of Performance of existing and proposed methods for protein-ligand complex data sets 

 

Table 1displays the comparison of the lowest docking energy of DE, PSO, ABC and PSODE 12 out of 100 complex 

ABC shows the best least energy whereas hybrid PSODE presents 88 out of 100 complexes. This shows the effect 

hybrid algorithm. In contrast the RMSD analysis of PSODE shows better results than ABC, DE, and PSO. 
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Figure 8 Protein ligand complex dataset with comparison of algorithms from 121P to 1A52 

 

 

Figure 9 Protein ligand complex dataset with comparison of algorithms from 1A5S to 11EP 
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Figure 10 Protein ligand complex dataset with comparison of algorithms from 1ACM to 1B80 

 

Figure 11 Protein ligand complex dataset with comparison of algorithms from 189S to 1BL7 
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Figure 12 Protein ligand complex dataset with comparison of algorithms from 1BN1 to 1BYG 

 

 

 

Figure 13 Protein ligand complex dataset with comparison of algorithms from 1C1C to 11NF 
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Figure 14 Protein ligand complex dataset with comparison of algorithms from 1CPS to 1IF8 

 

 

Figure 15 Protein ligand complex dataset with comparison of algorithms from 1EHL to 1IDA 

-35 

-30 

-25 
 

 
-20 
 

 
-15 
 

DE 

ABC 

PSODE 

PSO 

ACO 

SA 

-5 

1CPS  1D6S  1D9I  1dbb 1DUV 1eap  1EBG  1EEF 1EFY 1IF8 
0 

-35 

-30 

-25 
 

 
-20 
 

 
-15 
 

 

DE 

ABC 

PSODE 

PSO 

ACO 

SA 

-5 

1EHL 1EIX 1EP4  1ERE  1EUS  1F0S 1F0T 1F4E 1F4F 1IDA 
0 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

__________________________________________________________________________________ 

602 

 

Figure 16 Protein ligand complex dataset with comparison of algorithms from 1FD7 to 1HXW 

 

 

Figure 8 Comparison of DE, PSO, ABC and PSODE algorithm with docking energy. 
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Comparison of the least docking energy of DE, ABC, PSO, and PSODE 

Protein Id DE ABC PSO PSODE 

121P -17.180 -21.647 -21.131 -21.550 

182L -15.252 -12.750 -15.624 -15.794 

183L -16.200 -27.136 -19.926 -20.412 

185L -7.110 -8.745 -8.959 -9.784 

186L -6.700 -8.241 -8.442 -9.805 

187L -9.970 -12.263 -11.798 -12.562 

1A28 -13.280 -16.733 -16.334 -16.557 

1A4G -5.200 -6.396 -6.552 -7.950 

1A4Q -6.950 -8.549 -8.757 -9.763 

1A52 -11.350 -13.961 -14.301 -15.370 

1A5S -17.180 -21.131 -21.550 -21.647 

1A8I -13.280 -16.733 -16.334 -16.557 

1A9M -12.180 -14.981 -14.893 -15.347 

1aaq -20.418 -15.550 -20.916 -24.486 

1abe -10.025 -7.990 -10.269 -10.706 

1ABE -29.380 -36.137 -35.404 -37.019 

1ABF -15.240 -18.745 -19.202 -19.292 

1ACJ -7.480 -9.425 -9.063 -9.200 

1acm -11.414 -9.950 -11.693 -12.307 

1ACM -29.380 -36.137 -35.404 -37.019 

1AFK -10.000 -12.300 -11.141 -12.600 

 

Comparison of the lowest docking energy of DE, ABC, PSO, and PSODE 

Protein Id DE ABC PSO PSODE 
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1AGW -16.200 -27.136 -19.926 -19.926 

1aha -18.745 -13.950 -19.292 -18.745 

1AI5 -9.280 -11.414 -11.693 -12.307 

1AID -12.300 -9.950 -12.600 -12.300 

1AJV -17.392 -14.250 -19.928 -17.392 

1AZM -14.140 -17.392 -17.816 -19.928 

1B8O -6.700 -8.241 -8.442 -9.805 

1B9S -21.131 -16.070 -21.647 -21.131 

1B9T -10.150 -12.485 -12.789 -13.907 

1BA8 -15.500 -19.065 -19.345 -19.530 

1BAP -6.790 -10.579 -8.555 -20.412 

1bbp -28.757 -24.480 -29.459 -28.757 

1BDQ -15.930 -19.594 -19.197 -20.072 

1BDR -16.080 -19.778 -20.261 -23.786 

1BJI -16.080 -23.786 -19.778 -20.261 

1BL7 -6.950 -8.549 -8.757 -9.763 

1BN1 -9.970 -12.263 -11.798 -12.562 

1BN3 -7.480 -9.200 -9.063 -9.425 

1BN4 -11.970 -14.723 -15.082 -16.059 

1BNN -6.700 -9.805 -8.241 -8.442 

1BNT -6.950 -9.763 -8.549 -8.757 

1BNU -15.500 -19.065 -19.345 -19.530 

1BNV -6.700 -8.241 -8.442 -9.805 

1BP0 -8.900 -10.947 -9.879 -11.214 

1BYG -9.800 -12.054 -12.348 -13.536 

1C1C -10.000 -12.300 -11.141 -12.600 
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Comparison of the lowest docking energy of DE, ABC, PSO, and PSODE 

Protein Id DE ABC PSO PSODE 

1C4V -8.900 -10.947 -9.879 -11.214 

1C5S -7.720 -9.496 -9.487 -9.727 

1COM -6.280 -7.724 -7.913 -10.059 

1CPS -13.899 -10.850 -14.238 -15.423 

1D6S -16.600 -20.418 -20.916 -24.486 

1D9I -8.530 -10.492 -10.420 -10.748 

1dbb -11.290 -13.887 -13.123 -14.225 

1DUV -20.120 -24.748 -24.136 -25.351 

1eap -12.180 -14.981 -14.893 -15.347 

1EBG -20.120 -24.748 -24.136 -25.351 

1EEF -23.380 -28.757 -28.514 -29.459 

1EFY -7.480 -9.200 -9.063 -9.425 

1EHL -15.930 -19.594 -19.197 -20.072 

1EIX -8.160 -10.037 -10.282 -10.992 

1EP4 -16.200 -19.926 -20.412 -27.136 

1ERE -15.110 -18.585 -17.723 -19.039 

1EUS -22.930 -28.204 -28.355 -28.892 

1F0S -9.970 -12.263 -11.798 -12.562 

1F0T -8.240 -10.135 -11.024 -11.024 

1F4E -23.380 -28.757 -28.514 -29.459 

1F4F -9.800 -12.054 -12.348 -13.536 

1FD7 -8.240 -10.135 -11.024 -11.024 

1FEJ -10.000 -12.300 -11.141 -12.600 

1FJS -15.360 -18.893 -18.561 -19.354 

1FKI -8.240 -10.135 -11.024 -11.024 

1G48 -9.280 -11.414 -11.693 -12.307 
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1G52 -22.930 -28.204 -28.355 -28.892 

1GAH -6.950 -8.549 -8.757 -9.763 

1GHZ -29.380 -36.137 -35.404 -37.019 

 

Comparison of the lowest docking energy of DE, ABC, PSO, and PSODE 

Protein Id DE ABC PSO PSODE 

1GPK -13.280 -16.334 -16.557 -16.733 

1GWR -11.300 -13.899 -14.238 -15.423 

1HAK -6.700 -8.241 -8.442 -9.805 

1HDQ -9.980 -12.275 -12.575 -12.752 

1hdy -8.240 -10.135 -11.024 -11.024 

1HN4 -15.110 -18.585 -17.723 -19.039 

1HPV -10.000 -12.300 -11.141 -12.600 

 
1HQ2 -20.120 -24.748 -24.136 -25.351 

1HSH -11.300 -13.899 -14.238 -15.423 

1HSL -16.080 -19.778 -20.261 -23.786 

1HW9 -14.140 -17.392 -17.816 -19.928 

1HXW -11.290 -13.887 -13.123 -14.225 

1IDA -11.290 -13.887 -13.123 -14.225 

1IE9 -20.850 -25.646 -23.002 -26.271 

1IEP -15.110 -18.585 -17.723 -19.039 

1IF8 -17.180 -21.131 -21.550 -21.647 

1INF -10.000 -12.300 -11.141 -12.600 

1C86 -12.180 -14.981 -14.893 -15.347 

1C87 -8.100 -9.963 -10.206 -10.971 

1C88 -15.110 -18.585 -17.723 -19.039 

1CBX -8.900 -10.947 -9.879 -11.214 

1cdg -9.496 -7.130 -9.272 -9.727 
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Table 1. Comparison Of The Least Docking Energy of DE, PSO, ABC And Psode Algorithm. 

Figure 8 shows the rate RMSD( root mean square deviation ) values for all docking programs is compared to 100 

cases. This confirms PSODE algorithm is the efficient algorithm for docking search spaces. PSO and LGA predict the 

ligand position which is located long from the actual ligand binding site. Contrariwise, PSO and ABC algorithms have 

high RMSD value of 2.04 ˚A and 2.31 ˚A, which means that it calculates least energy for most of the cases but the 

deviation of predicted and pre tested binding pose is highly differentiate .For the 100 complexes, PSODE predict the 

binding position with low rate of RMSD. This reveals that proposed PSODE algorithm is appropriate for high 

dimensional docking applications. 

 

Figure 9 Comparison of RMSD of DE, PSO, ABC and PSODE algorithm. 

In drug designing and discovery studies, Protein-ligand docking is a core one. Multidimensional docking is a 

significant problem in protein-ligand docking because of inflated conformational search space. In this research, 

evolution-based particle swarm algorithm is proposed to solve the protein-ligand docking problem. Compared with 

PSO, ABC, DE, and PSODE, hybrid PSODE show docking accuracy with optimal results. ABC predicts a better 

energy value but rmsd accuracy is not effectual. To summarize, PSODE appears well matched for exact evaluation for 

molecular docking. 

4. Conclusion 

This paper represents the protein ligand docking methods, framework for proposed hybrid algorithm and classifies the 

docking results obtained from the previous algorithm used. A Framework is presented for future development work 

of this research. Based on these results, it is determined that the differential evolution-based particle swarm 

optimization (PSODE) algorithm provides better results than the existing protein ligand docking algorithm. Hence this 

research provides a substitute method for a molecular docking. The future enhancement of this research may 

concentrate on increasing the computing speed, and evaluating energy based on multi-objective function. 
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