Vol. 46 No. 04 (2025)

Product Edge-Antimagic Vertex Labeling of Graphs

Saibulla A¹ and M.G Fajlul Kareem²

¹Department of Mathematics and Actuarial Science, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India,

²College of Computing and Information Sciences, University of Technology and Applied Sciences-Al Musannah, Sultanate of Oman,

Abstract:- A (p, q)-graph G, is defined to be *product antimagic* if there is a labeling from E(G) onto $\{1, 2, \ldots, q\}$ such that, at each vertex u, the product of the labels on the edges incident with u are distinct. Similarly, a (p, q)-graph G is defined to be *product edge-antimagic* if there is a labeling f from $V(G) \cup E(G)$ onto $\{1, 2, \ldots, p + q\}$ with the property that the value f(u).f(v).f(uv), for any edge $uv \in E(G)$ are distinct. In this paper, we introduce the *product edge-antimagic vertex (PEAV) labeling* as a bijection f from V(G) to $\{1, 2, \ldots, p\}$ such that, for any edge $uv \in E(G)$, the product f(u).f(v) are distinct. Also we have proved the existence of PEAV labeling for paths and cycles.

Keywords: Graph Labeling, Product Magic Labeling, Product Antimagic Labeling.

1. Introduction

By a graph G we mean a finite, undirected, connected graph without any loops or multiple edges. Let V(G) and E(G) be the set of vertices and edges of a graph G respectively. The order and size of a graph G is denoted as p = |V(G)| and q = |E(G)|. For general graph theoretic notions we refer Harary [3].

A *labeling* of a graph is an assignment of numbers (usually positive or non-negative integers) to the vertices (a *vertex labeling*) or to the edges (an *edge labeling*) or to the combined set of vertices and edges (a *total labeling*) of the graph. There are many types of labelings and a detailed survey of many of them can be found in the dynamic survey of graph labeling by J.A. Gallian [2].

The *edge weight* of an edge uv, denoted by $\Lambda(uv)$, is defined as the sum of labels of the graph elements associated with uv. That is, if f is an edge labeling, then $\Lambda(uv) = f(uv)$; if f is a vertex labeling, then $\Lambda(uv) = f(u) + f(v)$; and if f is a total labeling, then $\Lambda(uv) = f(u) + f(v) + f(v)$.

Similarly the *vertex weight* of a vertex v, denoted by $\Lambda(v)$, is defined as the sum of labels of the graph elements associated with v. That is, if f is a vertex labeling, then $\Lambda(v) = \sum_{u \in N(v)} f(u)$; if f is an edge labeling, then

$$\Lambda(\mathbf{v}) = \sum_{u \in N(\mathbf{v})} f(u\mathbf{v}) \text{ ; and if } f \text{ is a total labeling, then } \Lambda(\mathbf{v}) = f(\mathbf{v}) + \sum_{u \in N(\mathbf{v})} f(u\mathbf{v}) \text{ .}$$

In 1970 Kotzig and Rosa [6] defined an *magic valuation* of a graph G as a bijection f from $V(G) \cup E(G)$ to the set $\{1, 2, \ldots, |V(G)| + |E(G)|\}$ such that for each edge $uv \in E(G)$, the edge weight $\Lambda(uv) = f(u) + f(uv) + f(v)$ is a constant. This notion was rediscovered by Ringel and Llodo [8] in 1996 who called this labeling as edge-magic.

As a natural extension of the notion of edge magic total labeling, Hartsfield and Ringel [4] introduced the concept of an *antimagic labeling* and they defined an *antimagic labeling* of a (p, q)-graph G as a bijection f from E(G) to the set $\{1, 2, \ldots, q\}$ such that the sums of label of the edges incident to each vertex $v \in V(G)$ are distinct.

In 2000, Figueroa-Centeno, Ichishima, and Muntaner-Batle [1] have introduced multiplicative analogs of magic and antimagic labelings. They define a graph G of size q to be *product magic* if there is a labeling f from E(G) onto $\{1, 2, ..., q\}$ such that, at each vertex v, the product of the labels on the edges incident with v is the same. They call a graph G of size q to be *product antimagic* if there is a labeling f from E(G) onto $\{1, 2, ..., q\}$, such that the products of the labels on the edges incident at each vertex v are distinct. They proved the following: a graph of size q is *product magic* if and only if $q \le 1$ (that is, if and only if it is K_2 or $\overline{K_n}$ or $K_2 \cup \overline{K_n}$); every path P_n ($n \ge 4$) is product antimagic; every cycle C_n is product antimagic; every 2-regular graph is product antimagic; and, if G is product antimagic, then so are $G + K_1$ and $G \odot \overline{K_n}$. They conjectured that a connected graph of size q is *product antimagic* if and only if $q \ge 3$.

Kaplan et al. [5] proved that the following graphs are *product antimagic*: the disjoint union of cycles and paths where each path has at least three edges; connected graphs with n vertices and m edges where $m \ge 4n \ln n$; all complete k-partite graphs except K_2 and $K_{1,2}$. In [7], Pikhurko characterizes all large graphs that are *product antimagic*.

Figueroa-Centeno, Ichishima and Muntaner-Batle [1] also defined a graph G with p vertices and q edges to be $product\ edge-magic\$ if there is a labeling f from $V(G)\cup E(G)$ onto $\{1,2,\ldots,p+q\}$ such that the value f(u).f(v).f(uv), for any edge $uv\in E(G)$ is a constant and $product\ edge-antimagic\$ if there is a labeling f from $V(G)\cup E(G)$ onto $\{1,2,\ldots,p+q\}$ with the property that the value f(u).f(v).f(uv), for any edge $uv\in E(G)$ are distinct. They proved that $K_2\cup \overline{K_n}$ is product edge-magic, a graph of size q without isolated vertices is product edge-magic if and only if $q\leq 1$ and every graph other than K_2 and $K_2\cup \overline{K_n}$ are product edge-antimagic.

K. Thirusangu, E. Bala and K. Balasangu [9] introduced two new labelings called *product antimagic labeling* and *total product antimagic labeling* for *directed graphs* and showed the existence of the same for Cayley digraphs of 2-generated 2- groups. They defined a (p, q)-digraph G(V, E) is (0, 1) product antimagic if there exist a bijective function f from E(G) onto the set $\{1, 2, \ldots, q\}$ such that for any pair of distinct vertices

 $u_i, v_j \in V(G)$, the product of the labels of the outgoing edges of v_i is distinct from the product of the labels of the outgoing edges of v_j .

In the following section we consider $V(P_n) = \{u_1, u_2, ..., u_n\}$ and $E(P_n) = \{u_1u_2, u_2u_3, ..., u_{n-1}u_n\}$ as the set of vertices and edges of the path P_n respectively. Also for the cycle C_n , $V(C_n) = \{u_1, u_2, ..., u_n\}$ and $E(C_n) = \{u_1u_2, u_2u_3, ..., u_{n-1}u_n, u_nu_1\}$ as the set of vertices and edges respectively.

2. Product Edge-Antimagic Vertex (PEAV) Labeling

Definition 2.1. We define a product edge-antimagic vertex (PEAV) labeling of a graph G as a bijection f from V(G) to $\{1, 2, \ldots, p\}$ such that, for any edge $uv \in G$, the product f(u).f(v) are distinct.

Theorem 2.2. Every path P_n , $n \ge 3$ has a PEAV labeling.

Proof:

Let us define a vertex labeling $f: V(P_n) \to \{1, 2, ..., n\}$ as

$$f(u_i) = i$$
 where $1 \le i \le n$.

Let π_i denotes the product of the labels on the end vertices of the edge $u_i u_{i+1}$ for $1 \le i \le n-1$.

Then
$$\pi_i = f(u_i) \cdot f(u_{i+1}) = i(i+1)$$
 for $1 \le i \le n-1$.

We observe that π_i is even and $\pi_i < \pi_j$ for $1 \le i < j \le n-1$.

Thus, $\pi_i \neq \pi_j$ for $1 \leq i < j \leq n-1$.

Hence f is a product edge-antimagic vertex labeling of P_n .

Theorem 2.3. Every cycle C_n , $n \ge 3$ has a PEAV labeling.

Proof:

Let π_i denotes the product of the labels on the end vertices of the edge u_iu_{i+1} for $1 \le i \le n-1$ and π_n denotes the product of the labels on the end vertices of the edge u_nu_1 .

Case 1: Assume that *n* is odd.

Let us define a vertex labeling $f: V(C_n) \rightarrow \{1, 2, ..., n\}$ as

$$f(u_i) = i$$
 where $1 \le i \le n$.

Then
$$\pi_i = f(u_i) \cdot f(u_{i+1}) = i(i+1)$$
 for $1 \le i \le n-1$

and
$$\pi_n = f(u_n). f(u_1) = n$$
.

We observe that π_i is even and $\pi_i < \pi_j$ for $1 \le i < j \le n-1$.

Thus, $\pi_i \neq \pi_j$ for $1 \le i < j \le n$.

Case 2: Assume that n is even.

Let us define a vertex labeling $f: V(C_n) \to \{1, 2, ..., n\}$ as

$$f(u_i) = \begin{cases} \frac{i+1}{2} & \text{; if } i \text{ is odd} \\ \frac{n+i}{2} & \text{; if } i \text{ is even} \end{cases}$$

Then, for $1 \le i \le n-1$,

$$\pi_{i} = \begin{cases} \left(\frac{i+1}{2}\right)\left(\frac{n+i+1}{2}\right); & \text{if } i \text{ is odd} \\ \left(\frac{n+i}{2}\right)\left(\frac{i+2}{2}\right) & \text{; if } i \text{ is even} \end{cases}$$

And $\pi_n = f(u_n).f(u_1) = n.$

We observe that $\pi_i < \pi_j$ for $1 \le i < j \le n-1$.

To complete the proof, we need to show that $\pi_i \neq n$ for $1 \leq i \leq n-1$.

Here it is clear that

$$\pi_1 = \left(\frac{1+1}{2}\right) \left(\frac{n+1+1}{2}\right) = \frac{n}{2} + 1 \neq n \qquad [\because n \ge 3]$$

$$\pi_2 = \left(\frac{n+2}{2}\right) \left(\frac{2+2}{2}\right) = n+2 \neq n$$

$$\pi_3 = \left(\frac{3+1}{2}\right) \left(\frac{n+3+1}{2}\right) = n+4 \neq n$$

For $4 \le i \le n-1$, suppose $\pi_i = n$.

Then, we observe that

For odd *i*,

$$\pi_{i} = n \quad \Rightarrow \left(\frac{i+1}{2}\right) \left(\frac{n+i+1}{2}\right) = n$$

$$\Rightarrow (i+1)(n+i+1) = 4n$$

$$\Rightarrow (i+1)(n+i+1) = 4n$$

$$\Rightarrow n = \frac{(i+1)^{2}}{3-i} < 0 \text{, which is not possible}$$

Also, For even i,

$$\pi_{i} = n \quad \Rightarrow \left(\frac{n+i}{2}\right) \left(\frac{i+2}{2}\right) = n$$

$$\Rightarrow (n+i)(i+2) = 4n$$

$$\Rightarrow n = \frac{i(i+2)}{2-i} < 0, \text{ which is not possible}$$

Thus, $\pi_i \neq \pi_j$ for $1 \le i < j \le n$.

Hence f is a product edge antimagic vertex labeling of C_n .

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 46 No. 04 (2025)

Refrences

- [1] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, Bertrand's postulate and magic product labelings, Bull. Instit. Combin. Appl., 30 (2000), 53 65.
- [2] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics 18 (2011), #DS6.
- [3] F. Harary, *Graph Theory*, Addison-Wesley (1994).
- [4] N. Hartsfield, G. Ringel, *Pearls in Graph Theory*, (Academic Press, Boston, San Diego, New York, London, 1990).
- [5] G. Kaplan, A. Lev and Y. Roditty, Bertrand's postulate, the prime number theorem and product anti-magic graphs, *Discrete Math.*, 308 (2008), 787–794.
- [6] A. Kotzig, A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., 13 (1970), 451 561.
- [7] O. Pikhurko, Characterization of product anti-magic graphs of large order, *Graphs and Combin.*, 23 (2007), 681–689.
- [8] G. Ringel and A. Llado, Another tree conjecture, Bull. Inst. Combin. Appl., 18 (1996) 83-85.
- [9] K. Thirusangu, E. Bala and K. Balasangu, *Product Antimagic Labelings in Cayley Digraphs of 2-Generated 2-Groups*, J. Appl. Math. & Informatics, 30 (2012), 49 56.