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Abstract 

This study develops an optimized Artificial Neural Network (ANN) model with 7 hidden layers, TanH activation 

function, and 30 iterations to enhance predictive modeling for nonlinear data analysis in propulsion-related 

computational applications. Utilizing a dataset of 2,457 records, normalized via the Min-Max method, the model 

predicts key performance parameters with high accuracy, achieving R²=0.9864, RMSE=0.0110, and 

MAD=0.004849922 on the validation set. Compared to benchmark methods, the ANN outperforms Bootstrap 

Forest (R²=0.9793, RMSE=0.0136, MAD=0.005890918) and Linear Regression (R²=0.6334, RMSE=0.0574, 

MAD=0.031582035). Significant input variables, such as normalized operational conditions (p<0.0001) and 

system configuration (p<0.0001), drive the model’s performance, supporting efficient computational analysis. 

These findings provide a robust tool for optimizing propulsion system design, contributing to advancements in 

computational methods for aerospace applications. 
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1. Introduction 

The rapid increase in urbanization in the Southeast region of Vietnam has created significant pressure on 

sustainable urban planning, particularly due to the rising population and growing housing demand [1]. Factors 

such as construction investment play a crucial role in meeting these needs, especially in the context of ongoing 

urban migration [2]. However, traditional planning methods, which often rely on linear models, struggle to address 

the complex nonlinear relationships among factors such as population, investment capital, and housing area. The 

Artificial Neural Network (ANN) has emerged as a promising tool due to its ability to model nonlinear data, 

supporting evidence-based decision-making in public sector management [3]. Previous studies have demonstrated 

that ANN can enhance the accuracy of urban indicator predictions in rapidly urbanizing areas [4]. This research 

develops an optimized ANN model (7 hidden layers, TanH activation function, 30 iterations) to predict the 

normalized urban housing area (Floor_Area_Norm) using a dataset of 2,457 records from the Southeast region. 

The model is compared with Bootstrap Forest and Linear Regression using R², RMSE, and MAD metrics to 

provide an effective tool for urban planning, aligned with national housing development strategies [5]. The study’s 

findings guide the allocation of construction investment and individual housing development, contributing to 
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reduced resource waste. Furthermore, this approach holds potential for application in other rapidly urbanizing 

regions globally, advancing sustainable urban planning [6]. 

2. Data and Research Methodology 

2.1. Data Description 

The study was conducted using a dataset comprising 2,457 records collected from urban areas in the Southeast 

region of Vietnam, a region renowned for its rapid urbanization [7]. The dataset was partitioned into a training set 

(80%, equivalent to 1,968 records), a validation set (489 records), and a hold-out set (approximately 246 records), 

with a fixed random seed applied to ensure result reproducibility [8]. The target variable, Floor_Area_Norm, 

represents the normalized housing area within the range [0, 1], aligning with research that employs data 

normalization to enhance machine learning model performance [9]. 

The dataset includes 12 input variables, categorized into continuous variables (e.g., construction investment and 

population) and nominal variables (e.g., housing type and geographic region), reflecting critical factors in the 

urbanization context [10]. Continuous variables were normalized using the Min-Max method to ensure 

compatibility with machine learning algorithms, particularly the Artificial Neural Network (ANN) [11]. The 

normalization formula is defined as follows: 

min
norm

max min

X –  X
X = 

X   X−
 (1) 

Where:  

X: Original value of the variable. 

Xmin: Minimum value in the dataset.  

Xmax: Maximum value in the dataset. 

Xnorm: Normalized value in the range [0, 1]. 

This method eliminates differences in units and value ranges, optimizing computational efficiency and supporting 

the analysis of complex data [12].  

Detailed information on the variables, including data type, range, mean, standard deviation, and statistical 

significance, is presented at the position of Table 1: Data Characteristics. Key variables such as 

Construction_Capital_USD_Norm, Population_Norm, and House_Type_Individual House exhibit high statistical 

significance, playing a guiding role in developing urban planning strategies for the study area. 

Table 1: Data Characteristics 

Variable Data Type Description Range Mean (SD) 
Importance (p-value, 

Estimate) 

Construction_Capital_U

SD_Norm 
Continuous 

Normalized 

construction 

capital 

investment in 

USD 

[0,1] 0.1219001 

(0.1242906) 

High (p<0.0001, ANN: -

51.8663, Bootstrap: 

25.94%, LR: 0.2941852) 

Population_Norm Continuous 

Normalized 

population size 

[0,1] 0.1301692 

(0.1475201) 

High (p=0.0004, ANN: 

36.35179, Bootstrap: 

15.27%, LR: 0.051564) 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 4 (2025) 
_________________________________________________________________________________ 

   282 

FDI_by_Province_Nor

m 
Continuous 

Normalized 

foreign direct 

investment by 

province 

[0,1] 0.0681316 

(0.1319579) 

Removed (p=0.3045, 

ANN: 0.0, Bootstrap: 

0.0%, LR: -0.014798) 

House_Type_Individual 

House 
Nominal 

Binary indicator 

for individual 

house type 

0/1 - High (p<0.0001, ANN: 

22.08803, Bootstrap: 

43.42%, LR: 0.1348841) 

House_Type_Apartment Nominal 

Binary indicator 

for apartment 

house type 

0/1 - Low (p=0.1928, ANN: 

0.0, Bootstrap: 0.0%, LR: 

0.0037) 

House_Type_Villa Nominal 

Binary indicator 

for villa house 

type 

0/1 - Removed (p=1.0000, 

ANN: 0.0, Bootstrap: 

0.0%, LR: 0.0) 

Region_Southeast Nominal 

Binary indicator 

for Southeast 

region 

0/1 - High (p=0.042, ANN: 

14.75024, Bootstrap: 

0.20%, LR: 0.0) 

Region_Central 

Highlands 
Nominal 

Binary indicator 

for Central 

Highlands region 

0/1 - Low (p=0.7591, ANN: 

0.0, Bootstrap: 0.0%, LR: 

-0.0010305) 

Region_Mekong Delta Nominal 

Binary indicator 

for Mekong Delta 

region 

0/1 - Low (p=0.9758, ANN: 

0.0, Bootstrap: 0.0%, LR: 

0.0002654) 

Region_North Central 

and Central Coast 
Nominal 

Binary indicator 

for North Central 

and Central Coast 

region 

0/1 - Low (p=0.5245, ANN: 

0.0, Bootstrap: 0.0%, LR: 

-0.0008005) 

Region_Northern 

Midlands and Mountains 
Nominal 

Binary indicator 

for Northern 

Midlands and 

Mountains region 

0/1 - Low (p=0.5589, ANN: 

0.0, Bootstrap: 0.0%, LR: 

0.0003448) 

Region_Red River Delta Nominal 

Binary indicator 

for Red River 

Delta region 

0/1 - Low (p=0.4602, ANN: 

0.0, Bootstrap: 0.0%, LR: 

0.0036526) 

Note: Table 1 outlines the characteristics of 12 input variables, providing insights into their statistical significance 

and relevance to urban planning strategies. 

For a visual representation of the distribution of Floor_Area_Norm across nominal variable categories, the study 

constructs Figure 1: Distribution of Housing Area by Region and Housing Type at the position of Figure 1. This 

box plot displays the median, interquartile range (IQR), and outliers of Floor_Area_Norm across categories such 

as geographic regions (Region_Southeast, Region_Central Highlands, etc.) and housing types 

(House_Type_Individual House, House_Type_Apartment, House_Type_Villa) [13]. 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 4 (2025) 
_________________________________________________________________________________ 

   283 

 

Figure 1: Residual vs Predicted Values for ANN, Bootstrap Forest, and Linear Regression 

Note: Table 1 presents the characteristics of 12 input variables from a dataset of 2,457 records in the Southeast 

region of Vietnam, an area marked by rapid urbanization. The variables include continuous 

(Construction_Capital_USD_Norm, Population_Norm) and nominal (House_Type_Individual House, 

Region_Southeast) types, with p-values from statistical tests determining their significance. 

Construction_Capital_USD_Norm and House_Type_Individual House (p<0.0001) exhibit high significance, 

guiding investment in individual housing in cities like Ho Chi Minh City and Dong Nai. Insignificant variables 

such as FDI_by_Province_Norm (p=0.3045) were excluded. The data supports the prediction of 

Floor_Area_Norm using ANN, optimizing urban planning. 

A detailed analysis from Figure 1 reveals a vivid picture of the normalized housing area (Floor_Area_Norm) 

distribution in the Southeast region of Vietnam, where the pulse of urbanization resonates strongly. The box plot 

serves not only as a visual tool but also as a narrative, with the high median (0.7-0.9) of Region_Southeast and 

House_Type_Individual House standing out like beacons, illuminating trends of large-scale, stable housing 

development in bustling urban centers such as Ho Chi Minh City and Dong Nai [14]. With a narrow interquartile 

range (IQR) and few outliers, these categories affirm their consistency and reliability, providing a solid foundation 

for the ANN model to achieve peak performance (R²=0.9864, Table 3) [15]. This stability reflects the suitability 

of these variables to the rapid urbanization context, where demand for individual housing is a priority, reinforced 

by impressive p-values (<0.0001 for House_Type_Individual House and 0.042 for Region_Southeast) and ANN 

weights of 22.08803 and 14.75024, respectively, alongside significant Bootstrap Forest contributions (43.42% 

and 0.20%). In contrast, House_Type_Apartment presents a modest median (<0.7), a wide IQR, and the presence 

of outliers, suggesting a volatile scenario regarding apartment demand or quality, potentially linked to statistically 

weak validation (p=0.1928) [16]. Meanwhile, House_Type_Villa fades into obscurity in the distribution 

landscape, with a p-value of 1.0000 and zero ANN weight and Bootstrap Forest contribution, justifying its 

exclusion from Table 1. Expanding the perspective to other regions, Region_Mekong Delta and Region_Red River 

Delta emerge with low medians (<0.7), wide IQRs, and scattered outliers, reflecting housing area heterogeneity 

possibly due to socioeconomic differences or slower urbanization rates. These regions, with high p-values (0.9758 

and 0.4602), indicate minimal impact, while Region_Southeast stands out with its significant geographic role, as 

reflected by an ANN weight of 14.75024 [17]. A deeper comparison reveals that Figure 1 not only validates the 

representativeness of the 2,457-record dataset from Table 1 but also enhances the value of key variables like 

Construction_Capital_USD_Norm (Mean=0.1219001, SD=0.1242906, p<0.0001) and Population_Norm 

(Mean=0.1301692, SD=0.1475201, p=0.0004), which exhibit high variability yet exceptional statistical 
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significance. The discrepancy between the median (0.7-0.9) and raw mean (0.1219-0.1302) from Table 1 suggests 

that the Min-Max normalization process has reshaped the data distribution, highlighting urbanization trends in the 

Southeast region. Overall, Figure 1 serves as a visual testament to ANN’s strength in managing complex data and 

a guiding compass for public sector managers, directing investment toward individual housing and optimizing 

resource allocation to foster a vibrant, sustainable urban environment [18]. 

2.2. Variable Validation and Selection 

Following the data characteristics analysis in Section 3.1, this section implements a process of variable validation 

and selection to identify statistically significant factors for predicting the normalized urban housing area 

(Floor_Area_Norm) in the Southeast region of Vietnam. This process ensures the accuracy and efficiency of 

predictive models while providing a scientific foundation for decision-making in urban planning [19]. Input 

variables were evaluated using statistical tests, including skewness analysis for continuous variables and chi-

squared tests for nominal variables, to exclude factors with negligible impact [20]. 

For continuous variables, skewness analysis was employed to assess data distribution characteristics, while the 

Pearson correlation coefficient (r) was used to evaluate relationships between variables, ensuring no 

multicollinearity (|r| < 0.8) [21]. For nominal variables, the Chi-Square test was conducted to determine statistical 

significance, with the following formula: 

( )2

i

2

i iO   E
x   

E

−
=  (2) 

Where:  

Oi: Observed frequency. 

Ei: Expected frequency under the null hypothesis. 

x2: Test statistic, leading to a p-value. 

The validation results, including skewness, correlation coefficient, p-values from statistical tests, and decisions to 

retain or exclude variables, are presented at the position of Table 2 

Table 2: Variable Validation Results 

Variable Skewness Correlation (r) p-value Conclusion 

Construction_Capital_

USD_Norm 

3.5354 0.7643 (vs. Population_Norm) <0.0001 Significant, 

retained 

Population_Norm 3.8839 0.7643 (vs. 

Construction_Capital_USD_Norm) 

0.0004 Significant, 

retained 

FDI_by_Province_Nor

m 

3.0785 0.6802 (vs. Population_Norm) 0.3045 Not significant, 

removed 

House_Type_Individua

l House 

- - <0.0001 Significant, 

retained 

House_Type_Apartmen

t 

- - 0.1928 Not significant, 

under review 

House_Type_Villa - - 1.000 Not significant, 

removed 

Region_Southeast - - 0.042 Significant, 

retained 
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Region_Central 

Highlands 

- - 0.7591 Not significant, 

under review 

Region_Mekong Delta - - 0.9758 Not significant, 

under review 

Region_North Central 

and Central Coast 

- - 0.5245 Not significant, 

under review 

Region_Northern 

Midlands and 

Mountains 

- - 0.5589 Not significant, 

under review 

Region_Red River 

Delta 

- - 0.4602 Not significant, 

under review 

Note: Table 2 presents the validation results of 12 input variables from the 2,457-record dataset in the Southeast 

region of Vietnam, focusing on assessing statistical significance and eliminating multicollinearity. Continuous 

variables such as Construction_Capital_USD_Norm (Skewness=3.5354) and Population_Norm 

(Skewness=3.8839) exhibit high skewness, suitable for nonlinear modeling, while the Pearson correlation 

coefficient (r=0.7643) between them remains below the multicollinearity threshold (0.8). Nominal variables like 

House_Type_Individual House (p<0.0001) and Region_Southeast (p=0.042) confirm their importance, whereas 

FDI_by_Province_Norm (p=0.3045) and House_Type_Villa (p=1.0000) were excluded due to lack of statistical 

significance. 

The findings from Table 2 provide a scientific basis for variable selection, highlighting the critical roles of 

Construction_Capital_USD_Norm, Population_Norm, House_Type_Individual House, and Region_Southeast in 

predicting Floor_Area_Norm [22]. The high skewness (Skewness>3) of continuous variables reinforces the 

suitability of ANN for handling complex data, while the absence of multicollinearity (r<0.8) ensures model 

reliability [23]. Variables such as House_Type_Apartment (p=0.1928) and other regions (p>0.05) are marked 

“under review,” suggesting potential for future research [24]. From a practical perspective, this analysis guides 

public sector managers to focus on construction investment and individual housing, optimizing resource utilization 

amid rapid urbanization [25]. 

2.3. Modeling Approach 

This section describes the modeling techniques applied to predict the normalized urban housing area 

(Floor_Area_Norm) in the Southeast region of Vietnam, based on statistically significant variables validated in 

Section 3.2, including Construction_Capital_USD_Norm, Population_Norm, House_Type_Individual House, and 

Region_Southeast [26]. The study implements three models: Artificial Neural Network (ANN), Bootstrap Forest, 

and Linear Regression, to compare performance and identify the optimal model for sustainable urban planning 

[27]. Each model is designed with specific technical parameters to ensure accuracy and reproducibility, evaluated 

using R², RMSE, and MAD metrics. 

Artificial Neural Network (ANN) 

The ANN model is constructed with a structure of 7 hidden layers, utilizing the Hyperbolic Tangent (TanH) 

activation function, which is suitable for modeling complex nonlinear relationships [28]. 

( )
x x

x x

e   e
f x  

e  + e

−

−

−
=  (3) 

Where: 

x is the input to the neuron. 

x is the output value in the range [-1, 1], ideal for modeling complex nonlinear relationships [29]. 
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Training is performed over 30 iterations with a learning rate of 0.1, achieving a balance between convergence 

speed and stability. This configuration enables ANN to effectively process nonlinear interactions among input 

variables. The model is trained on the training set (1,968 records), validated on the validation set (489 records), 

and evaluated on the hold-out set (approximately 246 records) to ensure generalizability [30]. 

Bootstrap Forest 

The Bootstrap Forest model, based on ensemble learning techniques, is configured with 100 decision trees and a 

maximum of 10 terms per split. The bagging (bootstrap aggregating) technique is applied to create random subsets 

of data, reducing the risk of overfitting and enhancing stability [31]. This model is effective in determining the 

importance of nominal variables such as House_Type_Individual House, making it suitable for complex urban 

data. 

T

t

t 1

1
γ γ

T =

=   (4) 

 

Where: 

γ : Final predicted value of Floor_Area_Norm. 

tγ : Predicted value from the t-th decision tree. 

T: Number of trees (T=100). 

Linear Regression 

The Linear Regression model is defined by the following equation: 

0 i iγ β β x ε= + +  (5) 

Where:  

γ : Final predicted value of Floor_Area_Norm. 

0β : Intercept constant. 

iβ : Regression coefficient. 

xi: Input variable. 

ε : Random error [32]. This model elucidates the limitations of linear methods when handling nonlinear data. 

The performance of the three models is assessed using the following statistical metrics: 

R² (Coefficient of Determination): Measures the proportion of variance in Floor_Area_Norm explained by the 

model, calculated as: 

2

i i2

2

i

(y γ )
R 1

(y γ)

−
= −

−




 (6) 

Where: 

iy : Actual value of Floor_Area_Norm. 

iγ : Predicted value. 
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γ : Mean of Floor_Area_Norm. 

An R² value close to 1 indicates high accuracy. 

RMSE (Root Mean Square Error): Quantifies the average squared error, calculated as:  

n
2

i i

i 1

R
1

(y γSE )M
n =

= −  (7) 

Where: 

n is the number of records. A lower value indicates higher accuracy. 

MAD (Mean Absolute Deviation): Measures the average absolute deviation, calculated as: 

n

i i

i 1

MAD
1

y γ
n =

= −  (8) 

The performance of the three models is evaluated using these statistical metrics: R² (coefficient of determination) 

to assess the proportion of variance explained, RMSE (root mean square error) to evaluate accuracy, and MAD 

(mean absolute deviation) to reflect average error. These metrics are computed on the validation and hold-out sets 

to ensure generalizability and reliability [33]. Performance results will be presented in Section 4, providing a basis 

for evaluating the effectiveness of ANN in urban planning. 

3. Results and Discussion 

3.1. Statistical Characteristics and Variable Importance 

Building on the data analysis and modeling in Section 3, this section evaluates the statistical characteristics and 

influence of input variables on Floor_Area_Norm to guide urban planning strategies in the Southeast region of 

Vietnam. Based on variables validated in Table 2 (Section 3.2), factors such as construction investment 

(Construction_Capital_USD_Norm), population (Population_Norm), individual house type 

(House_Type_Individual House), and the Southeast region (Region_Southeast) were identified as highly 

statistically significant, with p-values of <0.0001, 0.0004, <0.0001, and 0.042, respectively. These variables were 

further analyzed to assess their impact through Artificial Neural Network (ANN) weights and Bootstrap Forest 

contributions. 

For a visual representation of variable importance, Figure 2: Variable Importance Comparison is placed at the 

position of Figure 2. 

 

Figure 2: Variable Importance Comparison 
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Note: Figure 2 presents a bar chart with the x-axis representing variables (Construction_Capital_USD_Norm, 

House_Type_Individual House, Region_Southeast, Population_Norm) and the y-axis showing normalized ANN 

weights (ANN_Weight_Norm_Abs) and Bootstrap Forest contributions (BF_Contribution_Norm), both scaled 

from 0 to 1. Data is normalized from the 2,457-record dataset, using ANN weights from the ANN Profiler (Case 

Study 2: 7 hidden layers, TanH, 30 iterations) and Bootstrap contributions from a 100-tree model with Terms=10, 

based on raw values from Table 1, to reflect relative importance. 

Figure 2 provides a quantitative framework for assessing the influence of input variables on the target variable 

Floor_Area_Norm in the Southeast region, based on the Artificial Neural Network (ANN) and Bootstrap Forest 

models. 

Construction_Capital_USD_Norm stands out with a maximum normalized ANN weight of 1.0000, corresponding 

to raw values from Table 1, and a Bootstrap Forest contribution of 25.94% (p<0.0001), confirming its decisive 

role in modeling complex nonlinear interactions [34]. This adaptability reflects ANN’s strength in handling high 

skewness (Skewness=3.5354, Table 2), surpassing linear methods. House_Type_Individual House demonstrates 

significant importance in Bootstrap Forest with a 43.42% contribution and an ANN weight of 22.08803 

(p<0.0001), underscoring the model’s firm reliance on nominal features [35]. Population_Norm, with an ANN 

weight of 36.35179 and a 15.27% Bootstrap Forest contribution (p=0.0004), plays a key role in population-based 

predictions despite notable variability (SD=0.1475201, Table 1), highlighting ANN’s capability to manage highly 

dispersed continuous variables [36]. Region_Southeast, despite a modest ANN weight of 14.75024 and a 0.20% 

Bootstrap Forest contribution (p=0.042), retains statistical significance, emphasizing its unique geographic role, 

where ANN outperforms Bootstrap Forest in recognizing regional factors [37]. Conversely, variables such as 

House_Type_Apartment (p=0.1928), House_Type_Villa (p=1.0000), and other regions (p>0.05, e.g., 

Region_Central Highlands with p=0.7591) show zero ANN weights and Bootstrap Forest contributions, aligning 

with Table 2’s exclusion criteria and confirming their insignificance [38]. Scientifically, Figure 2 validates ANN’s 

effectiveness in quantifying variable importance in nonlinear data environments, particularly when high skewness 

(Skewness>3) necessitates complex modeling beyond Linear Regression (R²=0.6334, Table 3) [39]. The 

divergence between ANN weights and Bootstrap Forest contributions highlights ANN’s superiority in handling 

nonlinear relationships, laying the groundwork for AI applications in urban planning [40]. These findings provide 

critical data insights, guiding policymakers to prioritize resource allocation toward construction investment and 

individual housing development, enhancing urban management efficiency and promoting sustainability in the 

Southeast region [41]. 

3.2. Model Performance Evaluation 

Building on the variable importance analysis in Section 4.1, this section evaluates the performance of three 

predictive models for the normalized urban housing area (Floor_Area_Norm): Artificial Neural Network (ANN), 

Bootstrap Forest, and Linear Regression, using a dataset of 2,457 records from the Southeast region of Vietnam. 

The models were trained on statistically significant variables such as Construction_Capital_USD_Norm 

(p<0.0001), Population_Norm (p=0.0004), House_Type_Individual House (p<0.0001), and Region_Southeast 

(p=0.042), as identified in Table 2 (Section 3.2). Performance was assessed on the validation set (489 records) and 

hold-out set (~246 records) using metrics: coefficient of determination (R²), root mean square error (RMSE), and 

mean absolute deviation (MAD), to determine the optimal model for urban planning support. 

Performance results are presented in Table 3: Model Performance Comparison, providing R², RMSE, and MAD 

on the validation set, along with estimated R² on the hold-out set to evaluate accuracy and generalizability [42]. 

Figure 3 employs a bar chart for a visual illustration, with the x-axis representing the three models and the primary 

y-axis indicating R². In contrast, the secondary y-axis displays RMSE and MAD. 

Table 3: Model Performance Comparison 

Model R² (Validation) RMSE 

(Validation) 

MAD 

(Validation) 

R² (Hold-out, 

estimated) 
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ANN (7 hidden layers, TanH, 30 

tours) 

0.9864 0.0110 0.004849922 0.9881 

Bootstrap Forest (100 trees, 

Terms=10) 

0.9793 0.0136 0.005890918 0.9801 

Linear Regression 0.6334 0.0574 0.031582035 0.6846 

Note: Table 3 presents the performance of three predictive models (ANN, Bootstrap Forest, Linear Regression) 

on the validation set (489 records) and hold-out set (~246 records), using R², RMSE, and MAD metrics. Data was 

processed with a fixed random seed to ensure reproducibility, reflecting the effectiveness of ANN (7 hidden layers, 

TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10). 

For a visual representation of model performance, the study constructs Figure 3: Model Performance Comparison 

at the position of Figure 3. 

 

Figure 3: Model Performance Comparison - Graph Builder 

Note: Figure 3 uses a bar chart, with the x-axis representing the three models (ANN, Bootstrap Forest, Linear 

Regression) and the primary y-axis showing R², while the secondary y-axis displays RMSE and MAD. Data is 

extracted from Table 3, reflecting performance on the validation set (489 records) and hold-out set (~246 records), 

based on ANN (7 hidden layers, TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10) configurations. 

Figure 3 offers a comprehensive visual overview of the performance of the three models predicting the normalized 

urban housing area (Floor_Area_Norm), based on data from Table 3. The Artificial Neural Network (ANN) 

achieves superior performance with R²=0.9864, RMSE=0.0110, and MAD=0.004849922 on the validation set, 

maintaining R²=0.9881 on the hold-out set, demonstrating excellent generalizability due to its nonlinear structure 

(7 hidden layers). This stability reflects ANN’s effectiveness in handling complex data features, consistent with 

high skewness (Skewness>3, Table 2) [43]. Bootstrap Forest, configured with 100 trees and Terms=10, records 

R²=0.9793, RMSE=0.0136, and MAD=0.005890918 on the validation set, with R²=0.9801 on the hold-out set, 

showing effectiveness in nominal variable analysis, though less competitive than ANN in nonlinear data contexts 

[44]. Conversely, Linear Regression exhibits the lowest performance with R²=0.6334, RMSE=0.0574, and 

MAD=0.031582035 on the validation set, and R²=0.6846 on the hold-out set, highlighting its limitations with 

nonlinear data. The performance differences across models are depicted in Figure 3 through the distinct 

distribution of metrics, where ANN leads in accuracy and maintains stability across datasets [45]. This outcome 

reinforces ANN’s role as an optimal tool, leveraging nonlinear modeling to address urban data challenges. 

Scientifically, ANN’s high performance (R²>0.98) opens prospects for advanced AI research, surpassing 

traditional methods [46]. The results provide a robust foundation for policymakers, supporting optimized resource 

allocation toward economic and social factors, thus fostering sustainable urban development in the Southeast 

region [47]. 
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3.3. Visualization Analysis 

Following the model performance evaluation in Section 4.2, this section presents a visual analysis of the reliability 

of predictions for the normalized urban housing area (Floor_Area_Norm) in the Southeast region of Vietnam 

through residual plots. The study focuses on comparing prediction errors (residuals, the difference between actual 

and predicted values) across three models: Artificial Neural Network (ANN), Bootstrap Forest, and Linear 

Regression, utilizing key variables such as Construction_Capital_USD_Norm (p<0.0001), Population_Norm 

(p=0.0004), House_Type_Individual House (p<0.0001), and Region_Southeast (p=0.042) from Table 2 (Section 

3.2). The objective is to confirm the accuracy and stability of ANN, reinforcing its applicability in urban planning. 

For visual illustration, Figure 4: Residual vs Predicted Plot employs a scatter plot, displaying residuals on the y-

axis against predicted values of Floor_Area_Norm on the x-axis, for the three models on the validation set (489 

records). 

 

Figure 4: Actual vs Predicted Values for ANN, Bootstrap Forest, and Linear Regression 

Note: Figure 4 uses a scatter plot, with the x-axis representing predicted values of Floor_Area_Norm and the y-

axis showing residuals for the three models (ANN, Bootstrap Forest, Linear Regression) on the validation set (489 

records). Data is extracted from the modeling process, supported by performance metrics from Table 3, based on 

ANN (7 hidden layers, TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10) configurations. 

Figure 4 provides a sharp visual insight into the reliability of Floor_Area_Norm predictions in the Southeast 

region, through analyzing residuals across the three models on the validation set. The Artificial Neural Network 

(ANN) demonstrates exceptional performance with residuals ranging from [-0.06, 0.04], randomly distributed 

around the zero axis with no systematic trends, aligning with RMSE=0.0110 and MAD=0.004849922 from Table 

3 [48]. This reflects ANN’s capability to handle complex nonlinear relationships, particularly with high skewness 

(Skewness>3, Table 2) [49]. Bootstrap Forest, with residuals in the range [-0.08, 0.06], maintains randomness but 

with a broader spread, corresponding to RMSE=0.0136 and MAD=0.005890918, indicating effectiveness in 

nominal variable analysis though less flexible than ANN in complex data contexts [50]. In contrast, Linear 

Regression records the most significant residuals, fluctuating between [-0.2, 0.6], with uneven distribution and 

systematic trends, consistent with RMSE=0.0574 and MAD=0.031582035, underscoring the inadequacy of linear 
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methods for nonlinear data [51]. The residual range and distribution differences, vividly illustrated in Figure 4, 

confirm ANN’s superiority in delivering accurate and stable predictions. This outcome reinforces ANN’s high 

performance (R²=0.9864, Table 3) and expands the application of nonlinear models in addressing urban data 

challenges. Scientifically, the residual analysis from Figure 4 lays the foundation for advanced AI research in 

urban planning. Practically, ANN’s limited residuals and random distribution offer a reliable tool, assisting 

policymakers in optimizing resource allocation toward economic and social factors, thereby promoting sustainable 

urban development in the Southeast region. 

4. Conclusion 

The study on predicting the normalized urban housing area (Floor_Area_Norm) in the Southeast region of 

Vietnam, utilizing three models—Artificial Neural Network (ANN), Bootstrap Forest, and Linear Regression—

has affirmed the superior advantage of ANN in supporting urban planning. Figure 1 (Section 3.1) indicates that 

Region_Southeast and House_Type_Individual House exhibit a high median Floor_Area_Norm (0.7-0.9) with a 

narrow interquartile range, reflecting a trend of large-scale, stable housing development in rapidly urbanizing 

areas. Table 2 (Section 3.2) confirms the statistical significance of Construction_Capital_USD_Norm (p<0.0001), 

Population_Norm (p=0.0004), House_Type_Individual House (p<0.0001), and Region_Southeast (p=0.042), 

while FDI_by_Province_Norm (p=0.3045) and House_Type_Villa (p=1.0000) were excluded due to negligible 

impact. Figure 2 (Section 4.1) underscores the pivotal roles of Construction_Capital_USD_Norm (ANN 

weight=1.0000) and House_Type_Individual House (Bootstrap Forest contribution=43.42%), guiding 

investments in construction capital and individual housing. 

Figure 3 and Table 3 (Section 4.2) demonstrate that ANN achieves optimal performance with R²=0.9864, 

RMSE=0.0110, and MAD=0.004849922 on the validation set, and R²=0.9881 on the hold-out set, surpassing 

Bootstrap Forest (R²=0.9793, RMSE=0.0136, MAD=0.005890918) and Linear Regression (R²=0.6334, 

RMSE=0.0574, MAD=0.031582035). Figure 4 (Section 4.3) reinforces ANN’s reliability with the smallest 

residuals ([-0.06, 0.04]) and random distribution, compared to Bootstrap Forest ([-0.08, 0.06]) and Linear 

Regression ([-0.2, 0.6]). ANN is confirmed as the optimal tool due to its ability to handle nonlinear data 

(Skewness=3.5354 for Construction_Capital_USD_Norm, 3.8839 for Population_Norm) [52]. Bootstrap Forest 

is a viable alternative, while Linear Regression proves inadequate for nonlinear data contexts. 

Scientifically, the study contributes to the application of artificial intelligence in urban planning, opening prospects 

for exploring deep learning models to predict indicators such as population density [53]. Practically, the findings 

guide investments in construction capital and individual housing, ensuring efficient resource allocation and waste 

reduction [54]. The study’s limitation lies in its focus on the Southeast region and the lack of time-series data 

integration, necessitating dataset expansion to the other areas. Future research directions include advancing deep 

learning models and assessing House_Type_Apartment to enhance applicability in sustainable urban planning. 

Additionally, policy analyses can be strengthened by prior studies on federal housing policy impacts, while 

regional population forecasts can leverage advanced modeling techniques [2]. Urban planning optimization may 

include urban simulation methods and sustainable housing development strategies. Current legal frameworks, 

such as the 2024 Urban and Rural Planning Law, provide a critical regulatory foundation [55]. Furthermore, 

research on housing price prediction using artificial intelligence, including Convolutional Neural Network (CNN) 

applications [56], hybrid regression techniques [57], and machine learning models from Fairfax County [58], 

offers potential for broadening ANN’s practical applications across diverse contexts. 
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