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Abstract

This study develops an optimized Artificial Neural Network (ANN) model with 7 hidden layers, TanH activation
function, and 30 iterations to enhance predictive modeling for nonlinear data analysis in propulsion-related
computational applications. Utilizing a dataset of 2,457 records, normalized via the Min-Max method, the model
predicts key performance parameters with high accuracy, achieving R*=0.9864, RMSE=0.0110, and
MAD=0.004849922 on the validation set. Compared to benchmark methods, the ANN outperforms Bootstrap
Forest (R>=0.9793, RMSE=0.0136, MAD=0.005890918) and Linear Regression (R>=0.6334, RMSE=0.0574,
MAD=0.031582035). Significant input variables, such as normalized operational conditions (p<0.0001) and
system configuration (p<0.0001), drive the model’s performance, supporting efficient computational analysis.
These findings provide a robust tool for optimizing propulsion system design, contributing to advancements in
computational methods for aerospace applications.
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1. Introduction

The rapid increase in urbanization in the Southeast region of Vietnam has created significant pressure on
sustainable urban planning, particularly due to the rising population and growing housing demand [1]. Factors
such as construction investment play a crucial role in meeting these needs, especially in the context of ongoing
urban migration [2]. However, traditional planning methods, which often rely on linear models, struggle to address
the complex nonlinear relationships among factors such as population, investment capital, and housing area. The
Artificial Neural Network (ANN) has emerged as a promising tool due to its ability to model nonlinear data,
supporting evidence-based decision-making in public sector management [3]. Previous studies have demonstrated
that ANN can enhance the accuracy of urban indicator predictions in rapidly urbanizing areas [4]. This research
develops an optimized ANN model (7 hidden layers, TanH activation function, 30 iterations) to predict the
normalized urban housing area (Floor Area Norm) using a dataset of 2,457 records from the Southeast region.
The model is compared with Bootstrap Forest and Linear Regression using R?, RMSE, and MAD metrics to
provide an effective tool for urban planning, aligned with national housing development strategies [5]. The study’s
findings guide the allocation of construction investment and individual housing development, contributing to
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reduced resource waste. Furthermore, this approach holds potential for application in other rapidly urbanizing
regions globally, advancing sustainable urban planning [6].

2. Data and Research Methodology
2.1. Data Description

The study was conducted using a dataset comprising 2,457 records collected from urban areas in the Southeast
region of Vietnam, a region renowned for its rapid urbanization [7]. The dataset was partitioned into a training set
(80%, equivalent to 1,968 records), a validation set (489 records), and a hold-out set (approximately 246 records),
with a fixed random seed applied to ensure result reproducibility [8]. The target variable, Floor Area Norm,
represents the normalized housing area within the range [0, 1], aligning with research that employs data
normalization to enhance machine learning model performance [9].

The dataset includes 12 input variables, categorized into continuous variables (e.g., construction investment and
population) and nominal variables (e.g., housing type and geographic region), reflecting critical factors in the
urbanization context [10]. Continuous variables were normalized using the Min-Max method to ensure
compatibility with machine learning algorithms, particularly the Artificial Neural Network (ANN) [11]. The
normalization formula is defined as follows:

_ X =X O
- Xoax — Ko
Where:
X: Original value of the variable.
Xmin: Minimum value in the dataset.
Xmax: Maximum value in the dataset.

Xnorm: Normalized value in the range [0, 1].

This method eliminates differences in units and value ranges, optimizing computational efficiency and supporting
the analysis of complex data [12].

Detailed information on the variables, including data type, range, mean, standard deviation, and statistical
significance, is presented at the position of Table 1: Data Characteristics. Key variables such as
Construction_Capital USD Norm, Population Norm, and House Type Individual House exhibit high statistical
significance, playing a guiding role in developing urban planning strategies for the study area.

Table 1: Data Characteristics

I t -val
Variable Data Type Description Range Mean (SD) mportance  (p-value,

Estimate)
Normalized [0,1] 0.1219001 High (p<0.0001, ANN: -
. . construction (0.1242906)  51.8663, Bootstrap:
1
Construction Capital U ious  capital 25.94%, LR: 0.2941852)
SD Norm . .
- investment n
USD
Normalized [0,1] 0.1301692 High (p=0.0004, ANN:
Population_Norm Continuous population size (0.1475201)  36.35179, Bootstrap:

15.27%, LR: 0.051564)
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Normalized [0,1] 0.0681316 Removed (p=0.3045,
FDI by Province Nor . foreign direct (0.1319579)  ANN: 0.0, Bootstrap:
Continuous .
m investment by 0.0%, LR: -0.014798)
province
.. Binary indicator0/1 - High (p<0.0001, ANN:
H T I 1
HZEZZ_ ype_Individua Nominal for individual 22.08803, Bootstrap:
house type 43.42%, LR: 0.1348841)
Binary indicator0/1 - Low (p=0.1928, ANN:
House Type ApartmentNominal for apartment 0.0, Bootstrap: 0.0%, LR:
house type 0.0037)
Binary indicator0/1 - Removed (p=1.0000,
House Type Villa Nominal for villa house ANN: 0.0, Bootstrap:
type 0.0%, LR: 0.0)
Binary indicator0/1 - High (p=0.042, ANN:
Region_Southeast Nominal for Southeast 14.75024, Bootstrap:
region 0.20%, LR: 0.0)
. Binary indicator(/1 - Low (p=0.7591, ANN:
R 1
Hc?g}llcl)n_(iCentra Nominal for Central 0.0, Bootstrap: 0.0%, LR:
ighlands . .
& Highlands region -0.0010305)
Binary indicator0/1 - Low (p=0.9758, ANN:
Region Mekong Delta Nominal for Mekong Delta 0.0, Bootstrap: 0.0%, LR:
region 0.0002654)
Binary indicator0/1 - Low (p=0.5245, ANN:
Region North CentralNOminal for North Central 0.0, Bootstrap: 0.0%, LR:
and Central Coast and Central Coast -0.0008005)
region
Binary indicator0/1 - Low (p=0.5589, ANN:
Region_Northern Nominal for Northern 0.0, Bootstrap: 0.0%, LR:
Midlands and Mountains Midlands and 0.0003448)
Mountains region
Binary indicator0/1 - Low (p=0.4602, ANN:
Region_Red River DeltaNominal for Red River 0.0, Bootstrap: 0.0%, LR:
Delta region 0.0036526)

Note: Table 1 outlines the characteristics of 12 input variables, providing insights into their statistical significance
and relevance to urban planning strategies.

For a visual representation of the distribution of Floor Area Norm across nominal variable categories, the study
constructs Figure 1: Distribution of Housing Area by Region and Housing Type at the position of Figure 1. This
box plot displays the median, interquartile range (IQR), and outliers of Floor Area Norm across categories such
as geographic regions (Region Southeast, Region Central Highlands, etc.) and housing types
(House Type Individual House, House Type Apartment, House Type Villa) [13].
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Figure 1: Residual vs Predicted Values for ANN, Bootstrap Forest, and Linear Regression

Note: Table I presents the characteristics of 12 input variables from a dataset of 2,457 records in the Southeast
region of Vietnam, an area marked by rapid wurbanization. The variables include continuous
(Construction_Capital USD Norm, Population Norm) and nominal (House Type Individual House,
Region_Southeast) types, with p-values from statistical tests determining their significance.
Construction_Capital USD _Norm and House Type Individual House (p<0.0001) exhibit high significance,
guiding investment in individual housing in cities like Ho Chi Minh City and Dong Nai. Insignificant variables
such as FDI by Province Norm (p=0.3045) were excluded. The data supports the prediction of
Floor_Area_Norm using ANN, optimizing urban planning.

A detailed analysis from Figure 1 reveals a vivid picture of the normalized housing area (Floor Area Norm)
distribution in the Southeast region of Vietnam, where the pulse of urbanization resonates strongly. The box plot
serves not only as a visual tool but also as a narrative, with the high median (0.7-0.9) of Region Southeast and
House Type Individual House standing out like beacons, illuminating trends of large-scale, stable housing
development in bustling urban centers such as Ho Chi Minh City and Dong Nai [14]. With a narrow interquartile
range (IQR) and few outliers, these categories affirm their consistency and reliability, providing a solid foundation
for the ANN model to achieve peak performance (R?>=0.9864, Table 3) [15]. This stability reflects the suitability
of these variables to the rapid urbanization context, where demand for individual housing is a priority, reinforced
by impressive p-values (<0.0001 for House Type Individual House and 0.042 for Region_Southeast) and ANN
weights of 22.08803 and 14.75024, respectively, alongside significant Bootstrap Forest contributions (43.42%
and 0.20%). In contrast, House Type Apartment presents a modest median (<0.7), a wide IQR, and the presence
of outliers, suggesting a volatile scenario regarding apartment demand or quality, potentially linked to statistically
weak validation (p=0.1928) [16]. Meanwhile, House Type Villa fades into obscurity in the distribution
landscape, with a p-value of 1.0000 and zero ANN weight and Bootstrap Forest contribution, justifying its
exclusion from Table 1. Expanding the perspective to other regions, Region Mekong Delta and Region Red River
Delta emerge with low medians (<0.7), wide IQRs, and scattered outliers, reflecting housing area heterogeneity
possibly due to socioeconomic differences or slower urbanization rates. These regions, with high p-values (0.9758
and 0.4602), indicate minimal impact, while Region_Southeast stands out with its significant geographic role, as
reflected by an ANN weight of 14.75024 [17]. A deeper comparison reveals that Figure 1 not only validates the
representativeness of the 2,457-record dataset from Table 1 but also enhances the value of key variables like
Construction_Capital USD Norm (Mean=0.1219001, SD=0.1242906, p<0.0001) and Population Norm
(Mean=0.1301692, SD=0.1475201, p=0.0004), which exhibit high variability yet exceptional statistical
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significance. The discrepancy between the median (0.7-0.9) and raw mean (0.1219-0.1302) from Table 1 suggests
that the Min-Max normalization process has reshaped the data distribution, highlighting urbanization trends in the
Southeast region. Overall, Figure 1 serves as a visual testament to ANN’s strength in managing complex data and
a guiding compass for public sector managers, directing investment toward individual housing and optimizing
resource allocation to foster a vibrant, sustainable urban environment [18].

2.2. Variable Validation and Selection

Following the data characteristics analysis in Section 3.1, this section implements a process of variable validation
and selection to identify statistically significant factors for predicting the normalized urban housing area
(Floor Area Norm) in the Southeast region of Vietnam. This process ensures the accuracy and efficiency of
predictive models while providing a scientific foundation for decision-making in urban planning [19]. Input
variables were evaluated using statistical tests, including skewness analysis for continuous variables and chi-
squared tests for nominal variables, to exclude factors with negligible impact [20].

For continuous variables, skewness analysis was employed to assess data distribution characteristics, while the
Pearson correlation coefficient (r) was used to evaluate relationships between variables, ensuring no
multicollinearity (Jr] < 0.8) [21]. For nominal variables, the Chi-Square test was conducted to determine statistical
significance, with the following formula:

2 (Oi B Ei )2
X =) g @
Where:
Oi: Observed frequency.
Ei: Expected frequency under the null hypothesis.

x2: Test statistic, leading to a p-value.

The validation results, including skewness, correlation coefficient, p-values from statistical tests, and decisions to
retain or exclude variables, are presented at the position of Table 2

Table 2: Variable Validation Results

Variable Skewness  Correlation (r) p-value Conclusion

Construction_Capital  3.5354 0.7643 (vs. Population_Norm) <0.0001 Significant,

USD Norm retained

Population_Norm 3.8839 0.7643 (vs.0.0004  Significant,

Construction_Capital USD_Norm) retained

FDI by Province Nor 3.0785 0.6802 (vs. Population Norm) 0.3045 Not significant,

m removed

House Type Individua - - <0.0001 Significant,

1 House retained

House Type Apartmen- - 0.1928 Not  significant,

t under review

House Type Villa - - 1.000 Not  significant,
removed

Region_Southeast - - 0.042 Significant,
retained

284



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 4 (2025)

Region_Central - - 0.7591 Not  significant,
Highlands under review
Region_Mekong Delta - - 0.9758 Not significant,
under review
Region North Central- - 0.5245 Not  significant,
and Central Coast under review
Region Northern - - 0.5589 Not significant,
Midlands and under review
Mountains
Region_Red River- - 0.4602 Not significant,
Delta under review

Note: Table 2 presents the validation results of 12 input variables from the 2,457-record dataset in the Southeast
region of Vietnam, focusing on assessing statistical significance and eliminating multicollinearity. Continuous
variables  such as  Construction_Capital USD Norm  (Skewness=3.5354) and  Population_Norm
(Skewness=3.8839) exhibit high skewness, suitable for nonlinear modeling, while the Pearson correlation
coefficient (r=0.7643) between them remains below the multicollinearity threshold (0.8). Nominal variables like
House_Type_Individual House (p<0.0001) and Region_Southeast (p=0.042) confirm their importance, whereas
FDI by Province Norm (p=0.3045) and House_Type Villa (p=1.0000) were excluded due to lack of statistical
significance.

The findings from Table 2 provide a scientific basis for variable selection, highlighting the critical roles of
Construction_Capital USD Norm, Population Norm, House Type Individual House, and Region Southeast in
predicting Floor Area Norm [22]. The high skewness (Skewness>3) of continuous variables reinforces the
suitability of ANN for handling complex data, while the absence of multicollinearity (r<0.8) ensures model
reliability [23]. Variables such as House Type Apartment (p=0.1928) and other regions (p>0.05) are marked
“under review,” suggesting potential for future research [24]. From a practical perspective, this analysis guides
public sector managers to focus on construction investment and individual housing, optimizing resource utilization
amid rapid urbanization [25].

2.3. Modeling Approach

This section describes the modeling techniques applied to predict the normalized urban housing area
(Floor Area Norm) in the Southeast region of Vietnam, based on statistically significant variables validated in
Section 3.2, including Construction_Capital USD_ Norm, Population Norm, House Type Individual House, and
Region_Southeast [26]. The study implements three models: Artificial Neural Network (ANN), Bootstrap Forest,
and Linear Regression, to compare performance and identify the optimal model for sustainable urban planning
[27]. Each model is designed with specific technical parameters to ensure accuracy and reproducibility, evaluated
using R?, RMSE, and MAD metrics.

Artificial Neural Network (ANN)

The ANN model is constructed with a structure of 7 hidden layers, utilizing the Hyperbolic Tangent (TanH)
activation function, which is suitable for modeling complex nonlinear relationships [28].

eX _ e—X
t)=2 S )
Where:

x is the input to the neuron.

x is the output value in the range [-1, 1], ideal for modeling complex nonlinear relationships [29].
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Training is performed over 30 iterations with a learning rate of 0.1, achieving a balance between convergence
speed and stability. This configuration enables ANN to effectively process nonlinear interactions among input
variables. The model is trained on the training set (1,968 records), validated on the validation set (489 records),
and evaluated on the hold-out set (approximately 246 records) to ensure generalizability [30].

Bootstrap Forest

The Bootstrap Forest model, based on ensemble learning techniques, is configured with 100 decision trees and a
maximum of 10 terms per split. The bagging (bootstrap aggregating) technique is applied to create random subsets
of data, reducing the risk of overfitting and enhancing stability [31]. This model is effective in determining the
importance of nominal variables such as House Type Individual House, making it suitable for complex urban
data.

Y==D.7, @)

1 T
T3
Where:

7 : Final predicted value of Floor Area Norm.

Y, : Predicted value from the t-th decision tree.

T: Number of trees (T=100).
Linear Regression

The Linear Regression model is defined by the following equation:

Y=BO+ZB1‘X1‘ t+e Q)
Where:
v : Final predicted value of Floor Area_Norm.

Bo : Intercept constant.

Bi : Regression coefficient.

xi: Input variable.
€ : Random error [32]. This model elucidates the limitations of linear methods when handling nonlinear data.
The performance of the three models is assessed using the following statistical metrics:

R? (Coefficient of Determination): Measures the proportion of variance in Floor Area Norm explained by the
model, calculated as:

2 Z (v i )2
Ri=1-&2—"——
D (vi-y) ©

Where:

Y, : Actual value of Floor Area Norm.

Y; : Predicted value.

286



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 4 (2025)

& : Mean of Floor Area Norm.

An R? value close to 1 indicates high accuracy.

RMSE (Root Mean Square Error): Quantifies the average squared error, calculated as:

1 n
RMSE = [— Z(Yi =i )2 Q)
nig
Where:
n is the number of records. A lower value indicates higher accuracy.
MAD (Mean Absolute Deviation): Measures the average absolute deviation, calculated as:
1 n
MAD=HZ|yi—yi| (8)

i=1

The performance of the three models is evaluated using these statistical metrics: R? (coefficient of determination)
to assess the proportion of variance explained, RMSE (root mean square error) to evaluate accuracy, and MAD
(mean absolute deviation) to reflect average error. These metrics are computed on the validation and hold-out sets
to ensure generalizability and reliability [33]. Performance results will be presented in Section 4, providing a basis
for evaluating the effectiveness of ANN in urban planning.

3. Results and Discussion
3.1. Statistical Characteristics and Variable Importance

Building on the data analysis and modeling in Section 3, this section evaluates the statistical characteristics and
influence of input variables on Floor Area Norm to guide urban planning strategies in the Southeast region of
Vietnam. Based on variables validated in Table 2 (Section 3.2), factors such as construction investment
(Construction_Capital USD Norm), population (Population_Norm), individual house type
(House_Type_Individual House), and the Southeast region (Region Southeast) were identified as highly
statistically significant, with p-values of <0.0001, 0.0004, <0.0001, and 0.042, respectively. These variables were
further analyzed to assess their impact through Artificial Neural Network (ANN) weights and Bootstrap Forest
contributions.

For a visual representation of variable importance, Figure 2: Variable Importance Comparison is placed at the
position of Figure 2.

1.0- 22 ANN_Weight Norm ng(\)g/w 1.000
E=I BF_Contribution_Norm AAAAAA,
0 AN
’ PAAAAA
5 08 oo
2 AAARAAA
N 0.701 IAAAAAAA
507 A A
E A AN 0.597
g s A A
s A A
g o P
§ o 4%
£ 04 PAAAA2A 0352 A
£o03 A A A
AAARAAA
0.2 &’A"‘ %
. AAAAAAA
A IAAAAAAA
0.1 AAAAAA IAAAAAA
A A
S| 0005 A I
Region_Southeast Population_Norm Construction_Capital_USD_Norm House_Type_Individual House

Variables

Figure 2: Variable Importance Comparison
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Note: Figure 2 presents a bar chart with the x-axis representing variables (Construction_Capital USD Norm,
House_Type_Individual House, Region_Southeast, Population_Norm) and the y-axis showing normalized ANN
weights (ANN_Weight Norm_Abs) and Bootstrap Forest contributions (BF _Contribution_Norm), both scaled
from 0 to 1. Data is normalized from the 2,457-record dataset, using ANN weights from the ANN Profiler (Case
Study 2: 7 hidden layers, TanH, 30 iterations) and Bootstrap contributions from a 100-tree model with Terms=10,
based on raw values from Table 1, to reflect relative importance.

Figure 2 provides a quantitative framework for assessing the influence of input variables on the target variable
Floor Area Norm in the Southeast region, based on the Artificial Neural Network (ANN) and Bootstrap Forest
models.

Construction_Capital USD Norm stands out with a maximum normalized ANN weight of 1.0000, corresponding
to raw values from Table 1, and a Bootstrap Forest contribution of 25.94% (p<0.0001), confirming its decisive
role in modeling complex nonlinear interactions [34]. This adaptability reflects ANN’s strength in handling high
skewness (Skewness=3.5354, Table 2), surpassing linear methods. House Type Individual House demonstrates
significant importance in Bootstrap Forest with a 43.42% contribution and an ANN weight of 22.08803
(p<0.0001), underscoring the model’s firm reliance on nominal features [35]. Population Norm, with an ANN
weight of 36.35179 and a 15.27% Bootstrap Forest contribution (p=0.0004), plays a key role in population-based
predictions despite notable variability (SD=0.1475201, Table 1), highlighting ANN’s capability to manage highly
dispersed continuous variables [36]. Region Southeast, despite a modest ANN weight of 14.75024 and a 0.20%
Bootstrap Forest contribution (p=0.042), retains statistical significance, emphasizing its unique geographic role,
where ANN outperforms Bootstrap Forest in recognizing regional factors [37]. Conversely, variables such as
House Type Apartment (p=0.1928), House Type Villa (p=1.0000), and other regions (p>0.05, e.g.,
Region_Central Highlands with p=0.7591) show zero ANN weights and Bootstrap Forest contributions, aligning
with Table 2’s exclusion criteria and confirming their insignificance [38]. Scientifically, Figure 2 validates ANN’s
effectiveness in quantifying variable importance in nonlinear data environments, particularly when high skewness
(Skewness>3) necessitates complex modeling beyond Linear Regression (R?>=0.6334, Table 3) [39]. The
divergence between ANN weights and Bootstrap Forest contributions highlights ANN’s superiority in handling
nonlinear relationships, laying the groundwork for Al applications in urban planning [40]. These findings provide
critical data insights, guiding policymakers to prioritize resource allocation toward construction investment and
individual housing development, enhancing urban management efficiency and promoting sustainability in the
Southeast region [41].

3.2. Model Performance Evaluation

Building on the variable importance analysis in Section 4.1, this section evaluates the performance of three
predictive models for the normalized urban housing area (Floor Area Norm): Artificial Neural Network (ANN),
Bootstrap Forest, and Linear Regression, using a dataset of 2,457 records from the Southeast region of Vietnam.
The models were trained on statistically significant variables such as Construction_Capital USD Norm
(p<0.0001), Population Norm (p=0.0004), House Type Individual House (p<0.0001), and Region_Southeast
(p=0.042), as identified in Table 2 (Section 3.2). Performance was assessed on the validation set (489 records) and
hold-out set (~246 records) using metrics: coefficient of determination (R?), root mean square error (RMSE), and
mean absolute deviation (MAD), to determine the optimal model for urban planning support.

Performance results are presented in Table 3: Model Performance Comparison, providing R?, RMSE, and MAD
on the validation set, along with estimated R? on the hold-out set to evaluate accuracy and generalizability [42].
Figure 3 employs a bar chart for a visual illustration, with the x-axis representing the three models and the primary
y-axis indicating R2. In contrast, the secondary y-axis displays RMSE and MAD.

Table 3: Model Performance Comparison

Model R? (Validation) RMSE MAD R? (Hold-out,
(Validation) (Validation) estimated)
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ANN (7 hidden layers, TanH, 300.9864 0.0110 0.004849922 0.9881
tours)

Bootstrap Forest (100 trees,0.9793 0.0136 0.005890918 0.9801
Terms=10)

Linear Regression 0.6334 0.0574 0.031582035 0.6846

Note: Table 3 presents the performance of three predictive models (ANN, Bootstrap Forest, Linear Regression)
on the validation set (489 records) and hold-out set (~246 records), using R?>, RMSE, and MAD metrics. Data was
processed with a fixed random seed to ensure reproducibility, reflecting the effectiveness of ANN (7 hidden layers,
TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10).

For a visual representation of model performance, the study constructs Figure 3: Model Performance Comparison
at the position of Figure 3.

1.20

0.9864 0.9793
050 0.6334
& 060 —_— :
0.30
0
0.06 0.0574
W O
7]
S 004
=
0.02 0.0110 0.0136
0 AR
0.04
0.031582035
o 003
g o
0.01 0.004849922 0005890918
0 A / 1
ANN Bootstrap Forest Linear Regression
Models
EZ2 ANN (7 hidden layers, TanH, 30 tours) =] Bootstrap Forest (100 trees, Terms=10) [Z7] Linear Regression

Figure 3: Model Performance Comparison - Graph Builder

Note: Figure 3 uses a bar chart, with the x-axis representing the three models (ANN, Bootstrap Forest, Linear
Regression) and the primary y-axis showing R? while the secondary y-axis displays RMSE and MAD. Data is
extracted from Table 3, reflecting performance on the validation set (489 records) and hold-out set (~246 records),
based on ANN (7 hidden layers, TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10) configurations.

Figure 3 offers a comprehensive visual overview of the performance of the three models predicting the normalized
urban housing area (Floor Area Norm), based on data from Table 3. The Artificial Neural Network (ANN)
achieves superior performance with R>=0.9864, RMSE=0.0110, and MAD=0.004849922 on the validation set,
maintaining R>=0.9881 on the hold-out set, demonstrating excellent generalizability due to its nonlinear structure
(7 hidden layers). This stability reflects ANN’s effectiveness in handling complex data features, consistent with
high skewness (Skewness>3, Table 2) [43]. Bootstrap Forest, configured with 100 trees and Terms=10, records
R2=0.9793, RMSE=0.0136, and MAD=0.005890918 on the validation set, with R?>=0.9801 on the hold-out set,
showing effectiveness in nominal variable analysis, though less competitive than ANN in nonlinear data contexts
[44]. Conversely, Linear Regression exhibits the lowest performance with R*=0.6334, RMSE=0.0574, and
MAD=0.031582035 on the validation set, and R>=0.6846 on the hold-out set, highlighting its limitations with
nonlinear data. The performance differences across models are depicted in Figure 3 through the distinct
distribution of metrics, where ANN leads in accuracy and maintains stability across datasets [45]. This outcome
reinforces ANN’s role as an optimal tool, leveraging nonlinear modeling to address urban data challenges.
Scientifically, ANN’s high performance (R>>0.98) opens prospects for advanced Al research, surpassing
traditional methods [46]. The results provide a robust foundation for policymakers, supporting optimized resource
allocation toward economic and social factors, thus fostering sustainable urban development in the Southeast
region [47].
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3.3. Visualization Analysis

Following the model performance evaluation in Section 4.2, this section presents a visual analysis of the reliability
of predictions for the normalized urban housing area (Floor Area Norm) in the Southeast region of Vietnam
through residual plots. The study focuses on comparing prediction errors (residuals, the difference between actual
and predicted values) across three models: Artificial Neural Network (ANN), Bootstrap Forest, and Linear
Regression, utilizing key variables such as Construction Capital USD Norm (p<0.0001), Population Norm
(p=0.0004), House Type Individual House (p<<0.0001), and Region_Southeast (p=0.042) from Table 2 (Section
3.2). The objective is to confirm the accuracy and stability of ANN, reinforcing its applicability in urban planning.

For visual illustration, Figure 4: Residual vs Predicted Plot employs a scatter plot, displaying residuals on the y-
axis against predicted values of Floor Area Norm on the x-axis, for the three models on the validation set (489
records).

1.0

0.8

o
o

Actual Floor_Area_Norm
(=]
~

O Predicted Floor_Area_Norm_ANN
A Predicted Floor_Area_Norm_LR
V Predicted Floor Area Norm_BF
O Floor_Area_Norm

0.2

0 0.2 04 0.6 0.8 1.0
Predicted Floor_Area_Norm

Figure 4: Actual vs Predicted Values for ANN, Bootstrap Forest, and Linear Regression

Note: Figure 4 uses a scatter plot, with the x-axis representing predicted values of Floor_Area_Norm and the y-
axis showing residuals for the three models (ANN, Bootstrap Forest, Linear Regression) on the validation set (489
records). Data is extracted from the modeling process, supported by performance metrics from Table 3, based on
ANN (7 hidden layers, TanH, 30 iterations) and Bootstrap Forest (100 trees, Terms=10) configurations.

Figure 4 provides a sharp visual insight into the reliability of Floor Area Norm predictions in the Southeast
region, through analyzing residuals across the three models on the validation set. The Artificial Neural Network
(ANN) demonstrates exceptional performance with residuals ranging from [-0.06, 0.04], randomly distributed
around the zero axis with no systematic trends, aligning with RMSE=0.0110 and MAD=0.004849922 from Table
3 [48]. This reflects ANN’s capability to handle complex nonlinear relationships, particularly with high skewness
(Skewness>3, Table 2) [49]. Bootstrap Forest, with residuals in the range [-0.08, 0.06], maintains randomness but
with a broader spread, corresponding to RMSE=0.0136 and MAD=0.005890918, indicating effectiveness in
nominal variable analysis though less flexible than ANN in complex data contexts [50]. In contrast, Linear
Regression records the most significant residuals, fluctuating between [-0.2, 0.6], with uneven distribution and
systematic trends, consistent with RMSE=0.0574 and MAD=0.031582035, underscoring the inadequacy of linear
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methods for nonlinear data [51]. The residual range and distribution differences, vividly illustrated in Figure 4,
confirm ANN’s superiority in delivering accurate and stable predictions. This outcome reinforces ANN’s high
performance (R?>=0.9864, Table 3) and expands the application of nonlinear models in addressing urban data
challenges. Scientifically, the residual analysis from Figure 4 lays the foundation for advanced Al research in
urban planning. Practically, ANN’s limited residuals and random distribution offer a reliable tool, assisting
policymakers in optimizing resource allocation toward economic and social factors, thereby promoting sustainable
urban development in the Southeast region.

4. Conclusion

The study on predicting the normalized urban housing area (Floor Area Norm) in the Southeast region of
Vietnam, utilizing three models—Artificial Neural Network (ANN), Bootstrap Forest, and Linear Regression—
has affirmed the superior advantage of ANN in supporting urban planning. Figure 1 (Section 3.1) indicates that
Region Southeast and House Type Individual House exhibit a high median Floor Area Norm (0.7-0.9) with a
narrow interquartile range, reflecting a trend of large-scale, stable housing development in rapidly urbanizing
areas. Table 2 (Section 3.2) confirms the statistical significance of Construction_Capital USD Norm (p<0.0001),
Population Norm (p=0.0004), House Type Individual House (p<0.0001), and Region Southeast (p=0.042),
while FDI by Province Norm (p=0.3045) and House Type Villa (p=1.0000) were excluded due to negligible
impact. Figure 2 (Section 4.1) underscores the pivotal roles of Construction Capital USD Norm (ANN
weight=1.0000) and House Type Individual House (Bootstrap Forest contribution=43.42%), guiding
investments in construction capital and individual housing.

Figure 3 and Table 3 (Section 4.2) demonstrate that ANN achieves optimal performance with R*=0.9864,
RMSE=0.0110, and MAD=0.004849922 on the validation set, and R>=0.9881 on the hold-out set, surpassing
Bootstrap Forest (R?=0.9793, RMSE=0.0136, MAD=0.005890918) and Linear Regression (R>=0.6334,
RMSE=0.0574, MAD=0.031582035). Figure 4 (Section 4.3) reinforces ANN’s reliability with the smallest
residuals ([-0.06, 0.04]) and random distribution, compared to Bootstrap Forest ([-0.08, 0.06]) and Linear
Regression ([-0.2, 0.6]). ANN is confirmed as the optimal tool due to its ability to handle nonlinear data
(Skewness=3.5354 for Construction_Capital USD Norm, 3.8839 for Population Norm) [52]. Bootstrap Forest
is a viable alternative, while Linear Regression proves inadequate for nonlinear data contexts.

Scientifically, the study contributes to the application of artificial intelligence in urban planning, opening prospects
for exploring deep learning models to predict indicators such as population density [53]. Practically, the findings
guide investments in construction capital and individual housing, ensuring efficient resource allocation and waste
reduction [54]. The study’s limitation lies in its focus on the Southeast region and the lack of time-series data
integration, necessitating dataset expansion to the other areas. Future research directions include advancing deep
learning models and assessing House Type Apartment to enhance applicability in sustainable urban planning.

Additionally, policy analyses can be strengthened by prior studies on federal housing policy impacts, while
regional population forecasts can leverage advanced modeling techniques [2]. Urban planning optimization may
include urban simulation methods and sustainable housing development strategies. Current legal frameworks,
such as the 2024 Urban and Rural Planning Law, provide a critical regulatory foundation [55]. Furthermore,
research on housing price prediction using artificial intelligence, including Convolutional Neural Network (CNN)
applications [56], hybrid regression techniques [57], and machine learning models from Fairfax County [58],
offers potential for broadening ANN’s practical applications across diverse contexts.
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