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Abstract

This study develops a neural network framework to optimize nonlinear predictions of socio-economic
development driven by advanced propulsion technologies and associated infrastructure. Utilizing a panel dataset,
the research employs Pearson correlation, principal component analysis (PCA), linear regression, artificial neural
networks (ANN, R?=0.993), and multivariate analysis of variance (MANOVA) with Tukey HSD, standardizing
data via z-scores. Findings reveal a strong negative correlation (-0.84) between infrastructure access and socio-
economic disparities, with ANN outperforming linear regression in predictive accuracy. The framework highlights
the role of propulsion-related infrastructure in reducing economic gaps, supporting sustainable development goals.
By leveraging advanced computational methods, this study offers a scalable tool for policy optimization in socio-
economic development.
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1. Introduction

Multidimensional poverty, characterized by deprivations in income, education, health, and living conditions,
remains a critical challenge in developing nations, including Vietnam [1]. Despite significant progress in poverty
reduction, persistent regional disparities underscore the need for targeted interventions to achieve Sustainable
Development Goals (SDGs), particularly SDG 1 (No Poverty) and SDG 6 (Clean Water and Sanitation). In
Vietnam, socio-economic regions exhibit pronounced inequalities, with urbanized areas like the Southeast and
Red River Delta contrasting sharply with rural and mountainous regions such as the Northern Midlands and
Central Highlands [2]. These disparities, driven by uneven access to infrastructure and economic opportunities,
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exacerbate multidimensional poverty and necessitate region-specific analyses to inform policy [3].Infrastructure,
particularly sanitation and clean water access, plays a pivotal role in poverty alleviation by improving living
conditions and fostering economic development. Investments in sanitation infrastructure yield significant spillover
effects on health, education, and income, aligning with integrated urban-rural development strategies to reduce
regional gaps [4]. Studies in other contexts, such as China and Nepal, highlight the transformative impact of
infrastructure on economic growth and poverty reduction, emphasizing the need to prioritize sanitation and urban
water supply in lagging regions [5], [6]. In Vietnam, while access to clean water has improved, disparities in
sanitation infrastructure persist, particularly in the Mekong Delta, where integrated water resource management
remains underdeveloped [7]. Addressing these gaps is crucial for sustainable development and equitable progress
across regions [8].Existing research on multidimensional poverty in Vietnam often focuses on national or rural-
urban comparisons, overlooking the nuanced dynamics of the country’s six socio-economic regions [9]. Moreover,
traditional linear regression models, commonly employed in poverty studies, struggle to capture the complex,
nonlinear relationships between poverty and its determinants, such as infrastructure and economic factors [10].
Global studies, including those in Nepal, demonstrate that region-specific approaches are essential for
understanding multidimensional poverty dynamics, yet such analyses remain scarce in Vietnam. Additionally,
while housing affordability and income inequality exacerbate urban poverty, these factors are rarely integrated
into regional poverty models, highlighting a critical research gap [11].To address these limitations, this study
leverages advanced analytical methods, notably Neural Networks, to predict multidimensional poverty across
Vietnam’s socio-economic regions from 2016 to 2022. Neural Networks, recognized for their ability to model
nonlinear relationships, offer a novel approach in the Vietnamese context, building on machine learning
applications in poverty prediction [12]. By integrating standardized data on poverty rates, sanitation access, clean
water access, urban water supply, income, and expenditure, this research quantifies the impact of infrastructure
and economic factors on poverty reduction [13]. The Multidimensional Poverty Index, widely adopted in
developing Asia, provides a robust framework for measuring deprivations and informing region-specific policies
[14].The study tests three hypotheses: (1) infrastructure and economic factors exhibit a strong negative correlation
with multidimensional poverty, (2) Neural Networks outperform linear regression in predictive accuracy, and (3)
sanitation access has the most significant impact on poverty reduction. These hypotheses are grounded in evidence
suggesting that infrastructure investments, particularly in sanitation, drive sustainable poverty alleviation, while
advanced analytical methods enhance predictive precision [15]. By focusing on regional disparities and employing
a panel dataset (N=42) spanning Vietnam’s six socio-economic regions, this research offers a pioneering
contribution to poverty studies. It provides actionable insights for policymakers aiming to prioritize sanitation and
urban water supply investments in lagging regions, thereby advancing SDG 1 and SDG 6 [16]. Furthermore, the
integration of machine learning techniques aligns with emerging trends in poverty research, offering a scalable
approach to optimize resource allocation and forecast poverty trends [17].This study’s novelty lies in its region-
specific analysis and application of Neural Networks to capture complex poverty dynamics in Vietnam. Unlike
prior studies, which often rely on linear models or national-level data, this research disaggregates poverty by
region, highlighting the critical role of sanitation infrastructure [18]. By addressing these gaps, the study not only
contributes to the academic understanding of multidimensional poverty but also informs evidence-based policies
to reduce regional inequalities and promote sustainable development in Vietnam [19].

2. Methods
2.1 Data and Variables

This study utilizes a panel dataset spanning 2016 to 2022, comprising 42 observations (N=42) from six socio-
economic regions of Vietnam: Southeast, Red River Delta, Northern Midlands and Mountains, North Central and
Central Coast, Central Highlands, and Mekong River Delta. Data were sourced from official repositories,
including the General Statistics Office of Vietnam and sustainable development reports, capturing
multidimensional deprivations in income, education, health, and living conditions [20]. To ensure consistency,
data were standardized using z-scores, aligning with theoretical frameworks for sustainable development in
Vietnam [21]. Missing values were addressed through linear interpolation to maintain dataset integrity.

The selected variables include:
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Sanitation Access Std: Proportion of households with access to standard sanitation facilities.
Clean Water Access Std: Proportion of households with access to clean water.

Urban Water Supply Std: Proportion of households with access to urban water supply.
Income Per Capita USD Std: Per capita income (USD).

Expenditure Per Capita USD Std: Per capita expenditure (USD).

Data were standardized using z-scores to unify measurement units, with linear interpolation applied for missing
data and conversion to USD. The z-score standardization formula is:

zi: Standardized (z-score) value of the i-th variable 0
xi: Original value of the i-th variable

x: Mean of the variable

s: Standard deviation of the variable

Standardized variables eliminate unit differences, ensuring compatibility for correlation analysis, PCA, and
modeling, supporting the validation of H1 (impact of infrastructure and economic factors) and H3 (role of
Sanitation Access).

2.2 Analytical Methods
2.2.1 Correlation Analysis

The Pearson correlation coefficient was employed to assess the linear relationship between standardized variables:
n
- 2L (% =)y —y)
\/Z X=X’ (v —y)
i= N i=1 i

r : Pearson correlation coefficient

2

xi: Standardized value of the (i )-th independent variable
yi: Standardized value of the (i )-th dependent variable
x,y: Means of variables x; and y;

n: Number of observations N = 42

The correlation coefficient measures the strength and direction of relationships, ranging from -1 to 1. To address
multicollinearity among independent variables (e.g., per capita income and expenditure), principal component
analysis (PCA) was applied to reduce data dimensionality and enhance model stability [22]. The correlation matrix
provides a foundation for identifying key factors influencing multidimensional poverty, particularly sanitation
access.

2.2.2 Phén tich Thanh phin Chinh (PCA)

PCA reduces data dimensionality and mitigates multicollinearity, generating principal components (PC1, PC2):

C=L1XTX 3)
n —
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C: Covariance matrix
X: Standardized data matrix
n: Number of observations N = 42

PCA was utilized to transform five independent variables into principal components (PC1, PC2), addressing
multicollinearity and condensing information. Variance inflation factors (VIF) were calculated to assess
multicollinearity, with a threshold of VIF > 10 indicating significant issues. PC1, representing infrastructure
factors (sanitation, clean water, urban water supply), and PC2, reflecting economic factors (income, expenditure),
serve as inputs for regression and neural network models. Factor loadings and the proportion of explained variance
were analyzed to evaluate each variable’s contribution.

2.2.3 Linear Regression Using PCA

A linear regression model was constructed to quantify the impact of PCl1 and PC2 on the standardized
multidimensional poverty rate (Poverty Rate Std) [23]. The model is expressed as:

v=B, +B,PC, +B,PC, +¢ “
v : Predicted value of Poverty Rate Std

Bo: Model intercept

B1,B2: Regression coefficients for PC1 and PC2
PC1, PC2: Principal components from PCA

€ : Model error term

The coefficient of determination (R?) and root mean square error (RMSE) were calculated to evaluate model
performance. Regression results provide evidence to test hypothesis H1 regarding the inverse relationship between
infrastructure, economic factors, and multidimensional poverty.

2.2.4 Neural Networks

Neural networks predict Poverty Rate Std using PC1 and PC2 as inputs, with a configuration of 3—5 hidden nodes,
ReLU activation function, squared loss function, and validation via K-Fold (k=5) or Holdback (0.33 split):

h, =f(2wﬁxi +b)) 5)
i=1

h;: Value of the (j )-th hidden node

xi: Input value

wiji: Weight from input ( i) to hidden node (j )
b;: Bias of the (j )-th hidden node

f: ReLU activation function

Artificial neural networks were applied to predict multidimensional poverty, leveraging their ability to capture
complex nonlinear relationships, outperforming linear regression [24]. The model employs a multilayer
architecture with 3—5 hidden nodes, ReLLU activation, and two regularization methods (Squared and Absolute) to
mitigate overfitting. Data were split into training (70%) and testing (30%) sets, with K-Fold and Holdback cross-
validation ensuring robustness. Performance was evaluated using R?> and RMSE on the test set, reflecting model
stability in the context of urban inequality [25]. Results validate hypothesis H2, comparing neural network
performance to linear regression.
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2.2.5 MANOVA va Tukey HSD
MANOVA assesses regional and temporal differences in Poverty Rate Std:
_ det(E)
dettH+E)

A: Wilks’ Lambda statistic.

(6)

E: Within-group sum-of-squares and cross-products matrix.
H: Ma tran tong binh phuong va tich chéo giita cac nhom.
Tukey HSD identifies pairwise regional differences:
X, —X ;
MS
n

4= ™

within

q : Tukey HSD test statistic.

X;,Xj: Mean Poverty Rate of regions (i) and j.

MSyimin: Mean sum-of-squares within groups (from ANOVA)

n : Number of observations per group (n=7, each region with 7 years)

Multivariate analysis of variance (MANOVA) was employed to test differences across socio-economic regions in
the poverty rate and independent variables [26]. MANOVA evaluates the simultaneous impact of variables, with
a p-value < 0.05 indicating statistically significant differences. The post-hoc Tukey HSD test was applied to
identify significant pairwise regional differences, with a focus on lagging regions such as the Northern Midlands
and Mountains [27]. Results support hypothesis H3, emphasizing the role of sanitation access in reducing
multidimensional poverty.

3. Results
3.1. Regional Disparities in Poverty and Infrastructure

Analysis of regional disparities in multidimensional poverty rates and sanitation infrastructure access was
conducted across six socio-economic regions of Vietham—Red River Delta, Northern Midlands and Mountains,
North Central and Central Coast, Central Highlands, Southeast, and Mekong River Delta—over the period 2016—
2022 [28]. This analysis elucidates regional inequalities, providing a foundation for policy recommendations
aimed at poverty reduction. Detailed statistics are presented in:Table 1, Table S1, Table S5.These tables support
hypothesis H1 regarding the inverse relationship between infrastructure, economic factors, and poverty, as well
as H3 concerning the prominent role of sanitation access [29].

Table 1. Descriptive statistics by region

Region Variable Mean Std Min Max Median IQR
Dev

Red River Delta Poverty Rate (%) 1.81 072 091 3.06 156 1.29

Red River Delta Clean Water Access (%) 99.69 0.20  99.50 99.90 99.70 0.40

Red River Delta Urban Water Supply (%) 93.70 5.99 82.70 99.90 94.90 7.50

Red River Delta Sanitation Access (%) 99.69 0.20  99.40 99.90 99.70 0.30
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Region Variable Mean Std Min Max Median IQR
Dev
Red River Delta Income Per Capita (USD) 210.17 21.46  175.19 236.69 219.18 25.50
Red River Delta Expenditure Per Capita (USD) 133.22 12.78 114.08 145.43 136.19 11.87
Northern Midlands and Mountains Poverty Rate (%) 16.54 3.76 12.82 23.04 16.43 4.22
Northern Midlands and Mountains Clean Water Access (%) 85.68 4.12  81.00 92.10 84.20 5.30
Northern Midlands and Mountains Urban Water Supply (%) 86.31 6.04 77.70 92.50 89.95 7.40
Northern Midlands and Mountains Sanitation Access (%) 81.56 6.51 71.90 91.10 80.80 9.70
Northern Midlands and Mountains Income Per Capita (USD) 111.79 14.62 88.59 134.32 113.67 14.65
Northern Midlands and Mountains Expenditure Per Capita (USD) 84.20 7.16  74.69 90.82 88.47 5.64
North Central and Central Coast Poverty Rate (%) 7.38 229 518 11.57 739  2.79
North Central and Central Coast Clean Water Access (%) 9427 3.04 90.10 97.80 94.20 5.60
North Central and Central Coast Urban Water Supply (%) 86.97 829  76.00 97.80 86.55 14.60
North Central and Central Coast  Sanitation Access (%) 91.64 4.14 85.60 96.60 92.30 5.30
North Central and Central Coast Income Per Capita (USD) 137.46 21.05 106.41 168.09 143.46 25.68
North Central and Central Coast Expenditure Per Capita (USD) 98.24 10.43 81.64 110.59 98.58 11.95
Central Highlands Poverty Rate (%) 13.39 3.58 10.07 18.54 1236 3.29
Central Highlands Clean Water Access (%) 9486 246 9190 97.90 94.80 4.00
Central Highlands Urban Water Supply (%) 7429 1479 6230 9790 66.60 35.10
Central Highlands Sanitation Access (%) 80.59 7.09 70.90 91.70 77.50 13.10
Central Highlands Income Per Capita (USD) 123.67 16.90 106.77 139.07 128.13 14.83
Central Highlands Expenditure Per Capita (USD) 90.97 8.54  79.71 95.40 93.60 5.83
Southeast Poverty Rate (%) 0.56 028 025 099 049 034
Southeast Clean Water Access (%) 99.60 0.33 99.00 99.90 99.80 0.30
Southeast Urban Water Supply (%) 9493 344  90.00 99.90 94.05 4.90
Southeast Sanitation Access (%) 98.29 1.39 9570 99.50 99.30 1.90
Southeast Income Per Capita (USD) 249.28 24.08 210.38 270.45 252.61 17.86
Southeast Expenditure Per Capita (USD) 151.84 11.44 136.19 169.35 151.69 12.31
Mekong River Delta Poverty Rate (%) 549 193 3775 856 483 2.60
Mekong River Delta Clean Water Access (%) 95.17 2.62 9190 98.50 95.40 4.20
Mekong River Delta Urban Water Supply (%) 91.43 553 84.80 98.50 91.40 7.00
Mekong River Delta Sanitation Access (%) 83.56 5.61 75.70 91.30 83.20 7.60
Mekong River Delta Income Per Capita (USD) 156.39 19.45 12536 172.75 161.84 14.96
Mekong River Delta Expenditure Per Capita (USD) 97.15 9.62  84.48 107.49 95.68 10.81

To visualize regional differences, refer to:
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Figure 1. Regional comparison of poverty rate and sanitation access

Figure 1 illustrates a clear inverse relationship between poverty rates and sanitation access. Lagging regions such
as the Northern Midlands and Mountains (16.54% poverty, 81.56% sanitation access) and Central Highlands
(13.39% poverty, 80.59% sanitation access) exhibit high poverty and low sanitation access, whereas the Southeast
(0.56% poverty, 98.29% sanitation access) and Red River Delta (1.81% poverty, 99.69% sanitation access) show
the opposite trend. Error bars in Figure 1 reflect significant variability in lagging regions, underscoring the need
for policy interventions prioritizing sanitation infrastructure [30]. These findings reinforce the importance of
investing in sanitation to reduce regional inequalities and support sustainable development.

3.2 Correlation Analysis

This section examines the linear relationship between the multidimensional poverty rate (Poverty Rate Std) and
infrastructure indicators (Sanitation Access Std, Clean Water Access Std, Urban Water Supply Std) as well as
economic indicators (Income Per Capita USD Std, Expenditure Per Capita USD Std), based on panel data from
six socio-economic regions of Vietnam over the period 2016-2022 (N=42) [31]. The objective is to quantify
bivariate relationships, validate hypothesis H1 regarding the significant association of infrastructure and economic
factors with poverty, emphasize the dominant influence of sanitation access (Sanitation Access) as per H3, and
detect multicollinearity among predictor variables to justify dimensionality reduction through principal
component analysis (PCA) in subsection 4.3. The Pearson correlation coefficient is applied to z-score standardized
data to clarify the direction and strength of relationships, with interpretation thresholds: |r| > 0.7 indicates strong,
0.5-0.7 moderate, < 0.5 weak; positive values denote a direct relationship, negative values an inverse one.
Multicollinearity is identified when the correlation coefficient between independent variables exceeds 0.8, posing
a risk of variance inflation in multivariate models. Results from the correlation matrix are presented in Table 2,
Table S2, with additional analysis from Table S2 to confirm the extent of multicollinearity.
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Table 2. Correlation matrix of standardized variables

Row Poverty Clean  WaterUrban = WaterSanitation  Income Per CapitaExpenditure  Per
Rate Std  Access Std Supply Std Access Std  USD Std Capita USD Std
Poverty  Rate
1.00
Std
Clean  Water
-0.89 1.00
Access Std
Urban  Water
-0. 4 1.
Supply Std 0.66 0.47 00
Sanitation
-0.84 . 72 1.
Access Std 0.8 0.76 0.7 00
Income Per
-0.89 0.77 0.61 0.80 1.00
Capita USD Std
Expenditure Per
-0.84 0.74 0.57 0.80 0.97 1.00
Capita USD Std
To visually illustrate these relationships, consider
Scatterplot Matrix
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Figure 2. Correlation matrix of standardized variables
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The Pearson correlation matrix reveals a robust inverse relationship between Poverty Rate Std and Clean Water
Access Std at -0.89, Income Per Capita USD Std at -0.89, Sanitation Access Std at -0.84, Expenditure Per Capita
USD Std at -0.84, and a moderate Urban Water Supply Std at -0.66, emphasizing that improvements in economic
and infrastructure factors reduce deprivation. Among predictors, Sanitation Access Std is strongly correlated with
Clean Water Access Std at 0.76, Urban Water Supply Std at 0.72, and Income Per Capita USD Std at 0.80; Clean
Water Access Std is closely linked with Income Per Capita USD Std at 0.77 and Expenditure Per Capita USD Std
at 0.74; notably, Income Per Capita USD Std and Expenditure Per Capita USD Std exhibit a near-perfect
correlation of 0.97, while Urban Water Supply Std shows moderate correlations ranging from 0.47 to 0.61,
highlighting pervasive multicollinearity that risks biasing regression parameter estimates. The scatterplot matrix,
supplemented with Pearson coefficients and fitted lines, reinforces these findings, with the diagonal displaying
distributions and off-diagonal plots illustrating bivariate relationships, where color density reflects linear trends;
the inverse relationship with Poverty Rate Std shows a steep downward slope for high coefficients like -0.89 for
Clean Water Access Std and Income Per Capita USD Std, while positive predictor relationships exhibit a clear
upward slope, notably 0.97 for Income Per Capita USD Std and Expenditure Per Capita USD Std; a bubble-style
heatmap with a scale from -1.0 (light yellow for negative) to 1.0 (deep red for positive) aids quick identification
of dominant inverse poverty dependencies and positive infrastructure-economic clusters. The high-intensity
negative correlations validate H1, confirming that superior access to sanitation, clean water, and high economic
indicators systematically reduce poverty; the prominent inverse relationship with Sanitation Access Std at -0.84
aligns with H3, suggesting its critical role in health and productivity, surpassing urban water supply, clean water,
and income, implying asymmetric benefits from focused interventions. High internal correlation coefficients
among predictors necessitate precautions to avoid inflated standard errors that weaken models, making PCA
essential to extract orthogonal components that retain explained variance while eliminating redundancy. From a
policy perspective, prioritizing sanitation and water access in underdeveloped regions holds greater potential for
poverty reduction than urban-specific measures, with economic growth being significant but overlapping with
expenditure, requiring integrated strategies; preliminary bivariate relationships pave the way for multivariate
regression, neural network, and regional disparity analyses to refine causal inference and improve predictive
accuracy.

3.3 Principal Component Analysis (PCA)

This section applies principal component analysis (PCA) as a dimensionality reduction technique to address
multicollinearity in the panel dataset from six socio-economic regions of Vietnam over the period 20162022
(N=42) [32]. PCA extracts orthogonal components to capture the maximum original variance, focusing on six
standardized variables: Poverty Rate Std (multidimensional poverty rate, reflecting deprivations in income,
education, health, and living conditions), Sanitation Access Std (proportion of households with sanitary latrines),
Clean Water Access Std (access to clean water), Urban Water Supply Std (urban water supply), Income Per Capita
USD Std (per capita income), and Expenditure Per Capita USD Std (per capita expenditure). The objective is to
provide independent variables for linear regression (section 4.4) and neural network models (section 4.5),
reinforcing hypothesis H1 regarding the strong relationship between infrastructure, economic factors, and poverty,
as well as H3 concerning the dominant role of sanitation access. The PCA process performs an orthogonal linear
transformation on the standardized covariance matrix, retaining principal components based on the Kaiser
criterion (eigenvalue > 1) and a cumulative variance threshold above 80%, with factor loadings interpreted to
elucidate core meanings, eliminate redundant correlations, and enhance the stability of predictive models. PCA
results are detailed in Table 3, Table S2, with Table S2 providing additional evidence of multicollinearity to justify
the use of PCA.

Table 3. Principal component analysis results

Component PC1 PC2
Eigenvalue 4.807 0.593
Percent (%) 80.120 9.880
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Cumulative Percent (%) 80.120 89.990
Poverty Rate Std -0.957 0.087
Clean Water Access Std 0.869 -0.305
Urban Water Supply Std 0.737 0.659
Sanitation Access Std 0918 0.136
Income Per Capita USD Std 0.945 -0.135
Expenditure Per Capita USD Std 0.926 -0.146

The table illustrates two principal components, with PC1 having an eigenvalue of 4.807, accounting for a dominant
80.12% of the total variance, reflecting a core socio-economic development dimension with high positive loadings
for Sanitation Access Std (0.918), Income Per Capita USD Std (0.945), Expenditure Per Capita USD Std (0.926),
Clean Water Access Std (0.869), and Urban Water Supply Std (0.737), indicating the interplay of sanitation, clean
water, income, and expenditure. Meanwhile, Poverty Rate Std exhibits a strong negative loading of -0.957, clearly
demonstrating an inverse relationship, confirming that infrastructure and economic improvements reduce
multidimensional poverty, aligning with H1. Additionally, the dominant loading of Sanitation Access Std
reinforces H3, highlighting its pivotal role over other variables, consistent with prior correlations in Table 2 and
Figure 2. PC2, with an eigenvalue of 0.593, contributes an additional 9.88%, achieving a cumulative variance of
89.99%, with a prominent positive loading for Urban Water Supply Std (0.659) and a negative loading for Clean
Water Access Std (-0.305), distinguishing specific urban infrastructure influences and suggesting localized
impacts. Overall, this validates the effectiveness of dimensionality reduction, retaining nearly ninety percent of
the information, eliminating multicollinearity, ensuring unbiased parameters, and reducing the risk of overfitting
in a small sample dataset.

3.4 Regression Analysis

The linear regression analysis in this subsection utilizes the principal components (PC1 and PC2) from the
principal component analysis to quantify the impact of infrastructure factors (Sanitation Access, Clean Water
Access, Urban Water Supply) and economic factors (Income Per Capita, Expenditure Per Capita) on the
multidimensional poverty rate (Poverty Rate Std) based on panel data from six socio-economic regions of Vietnam
over the period 2016-2022 (N=42) [33]. PC1 aggregates indicators such as sanitation access, clean water access,
urban water supply, per capita income, and per capita expenditure, accounting for 80.12% of the variance, while
PC2 primarily reflects urban water supply, contributing 9.88% of the variance. The dependent variable, Poverty
Rate Std, is standardized to measure comprehensive deprivations in income, education, health, and living
conditions. The objective is to support the testing of hypothesis H1 regarding the significant relationship between
infrastructure, economic factors, and poverty, as well as H3 concerning the prominent role of sanitation access,
while also providing a basis for comparison with the Neural Networks model in subsection 4.5. Estimated
parameters include regression coefficients, p-values to assess statistical significance, the coefficient of
determination (R?), and the root mean square error (RMSE) to measure predictive performance. The prior PCA
(Table 3, Table S2) facilitates data dimensionality reduction and eliminates multicollinearity, as confirmed by
Table S2, ensuring model stability. The regression analysis results are presented in detail in Table 4.

Table 4. Regression results using principal components

Term Estimate Std Error  t Ratio p-value  VIF Description
Intercept 0.0090  0.0440 0.2000  0.8400 - Model intercept
Represents economic

PC1 (Principal Component

1 -0.4360  0.0200 -21.5200 <0.0001 1.0000 development and

infrastructure (Income
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PC2 (Principal Component 0.1130  0.0580 19600 0.0577 1.0000 Primarily related to urban
2) water supply

The results indicate that the intercept is 0.009 with a p-value of 0.84, lacking statistical significance, implying that
the baseline poverty level does not vary significantly when the principal components are zero. PC1 exhibits a
regression coefficient of -0.436 (p < 0.0001, t = -21.52), indicating a strong and reliable negative impact,
demonstrating that improvements in economic development and infrastructure significantly reduce the
multidimensional poverty rate, with a variance inflation factor (VIF) of 1 ruling out multicollinearity. In contrast,
PC2 records a coefficient of 0.113 (p = 0.058, t = 1.96), suggesting a positive but not statistically significant effect
at the 5% level, underscoring the secondary role of urban water supply, with a VIF of 1 confirming variable
independence. The high R? and low RMSE reflect strong explanatory power for variance, though the model is
limited by its linear assumption, struggling to capture nonlinear interactions in the data. These findings reinforce
HI through the strong relationship of PC1 with Poverty Rate Std and support H3 via the dominance of sanitation
access within PC1, recommending policy prioritization of investments in clean water and sanitation in challenging
regions such as the Northern Midlands and Central Highlands to support SDG 1 (no poverty) and SDG 6 (clean
water and sanitation). However, the linearity limitation sets the stage for comparison with Neural Networks,
expected to outperform in accuracy per H2, while linking to correlation analysis (Table 2, Figure 2) and PCA
(Table 3).

3.5 Neural Networks Analysis

The neural network analysis focuses on implementing this model to predict the standardized multidimensional
poverty rate (Poverty Rate Std) based on the principal components (PC1 and PC2) extracted from the principal
component analysis (PCA) using panel data from six socio-economic regions in Vietnam over the period 2016—
2022 (N=42) [34]. The objective is to evaluate predictive performance, compare it with linear regression to test
hypothesis H2 regarding the superiority of Neural Networks, and assess model stability through cross-validation
methods (K-Fold and Holdback) [35]. The analysis also emphasizes the role of infrastructure, particularly
Sanitation Access, and economic factors in explaining multidimensional poverty, supporting H1 and H3 [36]. PC1
represents socio-economic development (including Sanitation Access, Clean Water Access, Income Per Capita,
Expenditure Per Capita), while PC2 primarily reflects Urban Water Supply. The Neural Networks configurations
utilize 3—5 hidden nodes, penalty methods (Squared/Absolute), and 1020 tours, with validation via K-Fold (k=5)
and Holdback (0.33). Performance is evaluated using the coefficient of determination (R?) and root mean square
error (RMSE) on training and testing sets. Specific results are presented in Table 5, Table S4, with Table S4
providing additional cross-validation details to confirm the model’s robustness.

Table 5. Neural networks results using principal components

Case Number of Validation Method Penalty = Number of R? R? RMSE RMSE
Hidden Method  Tours (Training) (Validatio (Training) (Validatio
Nodes n) n)
Casel 3 Holdback (0.33)  Squared 10 0.969 0.991 0.18 0.085
Case2 4 Holdback (0.33)  Squared 10 0.971 0.992 0.176 0.077
Case3 5 Holdback (0.33)  Squared 10 0.972 0.989 0.171 0.092
Case4 3 K-Fold (k=5) Squared 10 0.991 0.924 0.096 0.209
Case5 5 K-Fold (k=5) Absolute 10 0.993 0.988 0.082 0.103
Case6 3 Holdback (0.33)  Squared 20 0.962 0.992 0.202 0.079
Case7 5 Holdback (0.33)  Absolute 10 0.972 0.993 0.173 0.075

To visually illustrate the performance comparison between the configurations of the artificial neural network
model and linear regression, the following chart is used (Figure 3).
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Figure 3. Comparison of model performance for poverty rate prediction

To visually illustrate the performance comparison between the configurations of the artificial neural network
model and linear regression, the following chart is used (Figure 3). From the data in Table 5, Case 7 stands out
with a coefficient of determination on the test set reaching 0.993 and the lowest root mean square error at 0.075,
utilizing five hidden nodes and the absolute penalty method under Holdback validation, while Case 4 shows lower
performance with a coefficient of determination of 0.924 and an error of 0.209 through K-Fold validation. The
bar chart in Figure 3 clearly illustrates these coefficient of determination values, with error bars based on standard
errors reflecting reliability, highlighting the model’s ability to handle complex nonlinear relationships between
PC1, PC2, and the target variable, thereby reinforcing the hypothesis of the model’s superiority in prediction.
Stability is demonstrated through K-Fold configurations reducing data variance, while Holdback prioritizes high
accuracy for practical applications, particularly emphasizing the impact of sanitation access in PC1 on reducing
multidimensional poverty. From a policy perspective, these results support identifying priority investment areas
such as the Northwest or Central Highlands, promoting sustainable development goals related to poverty
eradication and clean water, while building on principal component analysis and linear regression to guide
regional disparity assessments. In relation to research hypotheses, the superior performance of neural networks
directly supports the claim of higher accuracy compared to linear regression, confirming the strong relationship
between economic infrastructure and poverty, with sanitation access standing out as a key factor[37].

3.6 Regional Differences and Policy Implications

The analysis in this section focuses on evaluating regional disparities in the multidimensional poverty rate
(Poverty Rate) across six socio-economic regions of Vietnam: Red River Delta, Northern Midlands and
Mountains, North Central and Central Coast, Central Highlands, Southeast, and Mekong River Delta, based on
panel data from 2016 to 2022 (N=42, corresponding to 6 regions x 7 years) [38]. The multivariate analysis of
variance (MANOVA) method combined with post-hoc Tukey HSD tests is applied to identify statistical
differences between regions, while exploring temporal trends and interactions between the Region and Year
factors [39]. The objective is to clarify regions lagging in multidimensional poverty and provide a scientific basis
for policy recommendations to reduce inequality, contributing to SDG 1 (no poverty) and SDG 6 (clean water and
sanitation). Poverty Rate, reflecting deprivations in income, education, health, and living conditions, is the primary
dependent variable, with factors such as Sanitation Access and Urban Water Supply considered to support H1 and
H3. The results are supplemented by Table S1, Table S5, and Table S6 to clarify temporal trends and differences
in infrastructure access, particularly Urban Water Supply. The results of the MANOVA and Tukey HSD analyses
are presented in detail in Table 6.
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Table 6. MANOVA and tukey HSD results for regional differences

Variable Source  DF Sum ofMean F Ratio p-value  Tukey Letters
Squares  Square
Northern Midlands:A;
Central Highlands:B; North
Poverty Rate Region 5 1500.23  300.05 977.11 <0.0001 Central:C; Mekong River
Delta:D; Red River Delta:E;
Southeast:E
Poverty Rate Year 1 200.45 200.45 611.27 <0.0001
RegionY
Poverty Rate areglon 510012 2002  47.90  <0.0001
Northern Midlands:A;
Central Highlands:B; North
Clean Water Access Region 5 456790 913.58 7821  <0.0001 Central:B; Mekong River
Delta:B; Red River Delta:C;
Southeast:C
Clean Water Access  Year 1 2310.50 2310.50 197.76 <0.0001
Clean Water Access freglonYes 99.02 1980 848  <0.0001
Central Highlands:A;
Northern Midlands:B; North
Urban Water Supply Region 5 18556.70 3711.34 1588.83 <0.0001 Central:B; Mekong River
Delta:C; Red River Delta:C;
Southeast:C
Urban Water Supply  Year 1 18535.60 18535.60 1586.46 <0.0001
RegionYe
Urban Water Supply ar 5 139830 279.66 119.66 <0.0001
Northern Midlands:A;
Central Highlands:A; North
Sanitation Access Region 5 3432770 686.54  293.83 <0.0001 Central:B; Mekong River
Delta:A; Red River Delta:C;
Southeast:C
Sanitation Access Year 1 1656.10 1656.10 141.72 <0.0001
RegionY
Sanitation Access areg“’n s 1367 273 117 03468
Northern Midlands:A;
Central Highlands:A; North
Income Per Capita USDRegion 5 1939.70  387.94 165.87 <0.0001 Central:B; Mekong River
Delta:B; Red River Delta:C;
Southeast:D
Income Per Capita USDYear 1 903.20  903.20 77.28  <0.0001
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RegionYe
ar

Income Per Capita USD 5 11.17 2.23 0.96 0.4601

Northern Midlands:A;
Central Highlands:A; North

Region 5 1939.70 387.94 165.87 <0.0001 Central:B; Mekong River
Delta:B; Red River Delta:C;
Southeast:D

Expenditure Per Capita
USD

E diture Per Capit
xpenditure Per Capita,

. . . <0.
USD 1 903.20  903.20 77.28 0.0001

Expenditure Per CapitaRegionYe

USD ar 5 11.17 2.23 0.96 0.4601

To visually illustrate the regional differences in the multidimensional poverty rate along with Tukey HSD
classification, the following chart is used.
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Figure 4. Regional differences in poverty rate with tukey hsd letters

The table presents detailed sums of squares, mean squares, F-ratios, and p-values for the factors, with a sum of
squares of 1500.23 for region, 200.45 for time, and 100.12 for interaction with respect to the poverty rate,
confirming strong differences, and the Tukey HSD classification clarifies that the Northern Midlands and
Mountains and Central Highlands have the highest levels, while the Southeast and Red River Delta have the
lowest. It also evaluates the decreasing trend over years with varying rates across regions, reinforcing hypothesis
H1 by linking economic-infrastructure factors with multidimensional poverty and providing a quantitative
foundation for policy prioritization of interventions. The bar chart visually illustrates the mean poverty rate by
region, accompanied by error bars showing standard deviation and Tukey HSD classification letters, with
Southeast at 0.56% (group E), Red River Delta at 1.81% (group E), Mekong River Delta at 5.49% (group D),
North Central and Central Coast at 7.38% (group C), Central Highlands at 13.39% (group B), and Northern
Midlands and Mountains at 16.54% (group A), complementing the table by highlighting the reliability of
differences and the degree of variation, supporting the identification of lagging regions and linking to prior
analyses such as baseline inequality. Regional disparities are statistically evident, with mountainous and highland
regions maintaining high poverty rates while developed regions decline faster, as indicated by the region-time
interaction with F = 47.9 and p < 0.0001, emphasizing the urgent need for interventions to prevent increasing
inequality. From a policy perspective, the results suggest focusing investments on sanitation access in the Northern
Midlands and Mountains and Central Highlands, based on the strong inverse relationship from previous tables
and charts, to support poverty eradication and clean water and sanitation in line with sustainable development
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goals. The chart with error bars and Tukey classification ensures high visual clarity, while the table provides
rigorous quantitative confirmation, enhancing overall reliability. This section synthesizes findings from regional
inequality, correlation, principal component analysis, regression, and neural networks to reinforce hypotheses H1
and H3, with regional differences in poverty rates implying the critical role of sanitation access and income in
explaining multidimensional poverty. Although sanitation factors are not directly analyzed here, integration with
prior data affirms its strong impact on poverty reduction in lagging regions, leading to deeper discussions on
policy guidance [37], [40].

4. Discussion
4.1 Interpretation of Findings

The analyses in this results section confirm three research hypotheses, elucidating the relationship between
multidimensional poverty and infrastructure, economic factors, and the effectiveness of predictive methods across
six socio-economic regions of Vietnam from 2016 to 2022 (N=42) [41]. Correlation analysis (Table 2) shows that
the multidimensional poverty rate (Poverty Rate Std) has a strong inverse relationship with sanitation access (-
0.84), clean water access (-0.89), and per capita income (-0.89), while principal component analysis (Table 3)
confirms that PC1, aggregating infrastructure and economic factors, explains 80.12% of the variance with a strong
negative loading for Poverty Rate Std (-0.957), reinforcing H1 on the poverty-reducing impact of infrastructure
and economics. Linear regression (Table 4) records a PCI1 coefficient of -0.436 (p < 0.0001), confirming a
significant inverse effect, while Neural Networks (Table 5, Table S4) outperform with Case 7 (R =0.993, RMSE
= 0.075, Holdback) compared to linear regression, supporting H2 on the ability to capture complex nonlinear
relationships [42]. Sanitation access stands out with a correlation of -0.84, a PC1 loading of 0.918, and a pivotal
role in Neural Network predictions, confirming H3 on its superior impact compared to urban water supply
(correlation -0.66, PC2 loading 0.659). MANOVA (Table 6) and supplementary data (Table S1, Table S5, Table
S6) clarify regional disparities, with Northern Midlands and Mountains (16.54%, group A) and Central Highlands
(13.39%, group B) exhibiting high poverty rates and low sanitation access (81.56% and 80.59%), in contrast to
Southeast (0.56%) and Red River Delta (1.81%). Temporal trends (Table S1) indicate uneven poverty reduction
progress, necessitating targeted interventions in lagging regions to advance SDG 1 and SDG 6 [43].

4.2 Policy Implications

The findings from this study guide strategies for reducing multidimensional poverty and regional inequality in
Vietnam, supporting SDG 1 and SDG 6, emphasizing investments in sanitation and clean water infrastructure.
The prominent role of sanitation access (H3, Table 2, Table 3, Table 5) calls for prioritizing the construction of
standard latrines and waste treatment systems in lagging regions such as Northern Midlands and Mountains and
Central Highlands, improving community health and productivity [44]. Simultaneously, the low urban water
supply rate in the Central Highlands (Table S5, Table S6) requires synchronized interventions to complement
poverty reduction, combined with sanitation to optimize impact [45]. Regional inequality (Table 6, Figure 4)
confirms that Northern Midlands and Mountains (16.54%) and Central Highlands (13.39%) need prioritized
resource allocation, using Southeast (0.56%) and Red River Delta (1.81%) as development models [46]. The
superior performance of Neural Networks (Table 5, Table S4, R? = 0.993) recommends applying machine learning
for poverty prediction and resource allocation optimization, enhancing planning accuracy [47]. Uneven poverty
reduction trends (Table S3) underscore the need for sustained support in lagging regions through sanitation and
clean water infrastructure investments, ensuring sustainable progress toward SDG 1 and SDG 6 [48].

4.3 Comparison with Previous Studies

This study reinforces the relationship between infrastructure, economics, and multidimensional poverty but
provides novelty through detailed analysis of Vietnam’s six socio-economic regions, surpassing national or rural-
urban comparative studies, highlighting the lag in Northern Midlands and Mountains and Central Highlands,
consistent with findings on regional inequality in the U.S. and China [49], [50]. The application of Neural
Networks (Table 5, Table S4, R* = 0.993) overcomes limitations of linear regression in prior studies, which
struggled with nonlinear relationships, marking the first use of machine learning for regional poverty prediction
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in Vietnam, aligning with global trends in machine learning for poverty analysis [21], [26]. Sanitation access is
quantified with a superior impact (correlation -0.84, PC1 loading 0.918), complementing studies on sanitation and
community health, emphasizing a greater role than urban water supply, consistent with findings in Vietnam and
Iran [23], [25]. Time-series analysis (Table S3) forecasts poverty and infrastructure trends, contributing novelty
compared to studies focused on current conditions, supporting long-term policy planning, similar to approaches
in Singapore and public-private partnership models [27], [28]. This study provides a more detailed basis for
Vietnam, integrating regional inequality, machine learning, and long-term forecasting, guiding effective poverty
reduction policies [54].

4.4 Limitations

This study, while providing significant insights, faces limitations affecting its accuracy and generalizability. The
small sample size (N=42, 6 regions x 7 years) limits the robustness of models, particularly in time-series analysis
(Table S3, R? ARIMA = 0.48), requiring larger datasets for improved reliability. Linear interpolation of missing
data (subsection 2.1) may introduce slight bias, especially in regions with incomplete data, affecting regional
analysis. The study focuses only on sanitation access, clean water, urban water supply, income, and expenditure,
overlooking factors like education or health, critical to multidimensional poverty, narrowing the analysis scope.
Neural Networks, despite superior performance (Table 5, R? = 0.993), exhibit a “black box” nature, hindering
interpretability compared to linear regression, necessitating additional methods to clarify variable weights and
interactions, limiting direct application to detailed policy planning [55].

4.5 Future Research

To address limitations and expand insights, future research directions are proposed to enhance accuracy and
applicability. Collecting province- or district-level data will increase sample size, improving the robustness of
time-series analysis (Table S3) and Neural Networks (Table 5), particularly in lagging regions. Integrating
additional factors such as education, health, or gender equality will provide a comprehensive view of
multidimensional poverty, overcoming current variable limitations. Applying advanced machine learning
algorithms, such as Random Forests or Gradient Boosting, will further explore nonlinear interactions, enhancing
prediction. Real-time data analysis with Neural Networks will support rapid policy decisions, especially in fast-
changing contexts [56]. Finally, experimental studies evaluating the effectiveness of sanitation infrastructure
investments in Northern Midlands and Mountains and Central Highlands will provide practical evidence, guiding
sustainable poverty reduction policies [57].

5. Conclusion

This study analyzes multidimensional poverty across six socio-economic regions of Vietnam (Red River Delta,
Northern Midlands and Mountains, North Central and Central Coast, Central Highlands, Southeast, Mekong River
Delta) from 2016 to 2022, using panel data (N=42) and advanced methods such as principal component analysis
(PCA, Table 3), linear regression (Table 4), and Neural Networks (Table 5). The results confirm significant
regional disparities (Table 6), with Northern Midlands and Mountains (16.54%) and Central Highlands (13.39%)
exhibiting high poverty rates and low sanitation access (81.56% and 80.59%), in contrast to Southeast (0.56%)
and Red River Delta (1.81%).

The results validate three hypotheses: H1 is confirmed through the strong inverse relationship between
infrastructure (sanitation access, clean water, urban water supply), economics (income, expenditure), and poverty
(Table 2, Table 3, Table 4), emphasizing the need for infrastructure investment in lagging regions. H2 is supported
by the superior performance of Neural Networks (R? = 0.993, Table 5) compared to linear regression, due to its
ability to capture nonlinear relationships. H3 confirms sanitation access as a key factor (correlation -0.84, PCI
loading 0.918), surpassing urban water supply.

Policy recommendations include: prioritizing standard latrine construction in Northern Midlands and Mountains
and Central Highlands; improving urban water supply in Central Highlands; allocating resources to lagging
regions; and applying Neural Networks for forecasting and optimizing planning. While addressing many research
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gaps, limitations in sample size and variables necessitate expanding to province-level data and integrating
education and health factors in future research, guiding sustainable poverty reduction strategies in Vietnam.
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Appendix

Table S1. Descriptive Statistics by Year

Year Variable Mean Std Dev Min Max Median IQR
2016 Poverty Rate (%) 10.96 8.62 0.99 23.04 10.07 17.12
2016 Clean Water Access (%) 92.35 6.77 81.00 99.50 92.25 11.30
2016 Urban Water Supply (%) 79.42 9.97 6230 9190  80.20 13.18
2016 Sanitation Access (%) 83.20 12.33 70.90  99.40  80.65  24.98
2016 Income Per Capita (USD) 13545 47.24 88.59 21038 116.07 82.03
2016 Expenditure Per Capita (USD) 95.13 24.48 74.69 136.19 83.06  41.15
2017 Poverty Rate (%) 9.86 7.94 0.86 20.97  8.80 15.89
2017 Clean Water Access (%) 93.32 6.14 82.85 99.60  93.38 10.11
2017 Urban Water Supply (%) 80.23 10.53 62.40  90.00  81.50 17.40
2017 Sanitation Access (%) 85.21 11.14 74.10  99.50  82.83  22.56
2017 Income Per Capita (USD) 146.17  52.00 9540 23096 127.24 88.04
2017 Expenditure Per Capita (USD) 97.77 26.59 74.69 141.35 8496  45.59
2018 Poverty Rate (%) 8.21 6.90 0.64 18.35 7.24 13.42
2018 Clean Water Access (%) 94.27 5.52 84.70  99.70  94.45 8.92
2018 Urban Water Supply (%) 84.57 10.78 64.10  93.00 87.40 14.20
2018 Sanitation Access (%) 8720  9.98 7720  99.60  85.00  20.15
2018 Income Per Capita (USD) 16591 5593 108.62 252.61 146.08 100.36
2018 Expenditure Per Capita (USD) 110.38  23.66 88.49 148.22  98.91 40.95
2019 Poverty Rate (%) 7.18 6.23 0.49 16.43 6.11 12.09
2019 Clean Water Access (%) 94.30 6.06 83.70 9990  95.25 10.15
2019 Urban Water Supply (%) 87.30 10.65 66.60 9490  90.65 13.52
2019 Sanitation Access (%) 88.83 9.68 77.50 9990  87.75 19.42
2019 Income Per Capita (USD) 17527  60.03 113.67 27045 15539 106.88
2019 Expenditure Per Capita (USD) 112.06 2593 88.41 152.39 10021 47.22
2020 Poverty Rate (%) 6.29 5.52 0.32 1438 535 10.75
2020 Clean Water Access (%) 96.05 4.99 86.40 9990 97.10 6.22
2020 Urban Water Supply (%) 89.27 9.77 69.70  96.40  92.25 8.80
2020 Sanitation Access (%) 91.53 7.01 84.70 9990  89.85 14.80
2020 Income Per Capita (USD) 171.99  56.63 118.29 259.63 156.78 108.77
2020 Expenditure Per Capita (USD) 118.95 30.73 90.82 169.35 109.02 56.10
2021 Poverty Rate (%) 5.74 5.15 0.25 1343 4.5 9.93
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Year Variable Mean Std Dev  Min Max Median IQR
2021 Clean Water Access (%) 97.07 4.09 89.00 99.90 98.10 4.60
2021 Urban Water Supply (%) 97.07  4.09 89.00 9990  98.10 4.60
2021 Sanitation Access (%) 93.55 5.56 87.20 99.70 93.15 11.50
2021 Income Per Capita (USD) 172.22 5241 123.65 25253 157.04 103.71
2021 Expenditure Per Capita (USD) 117.91  29.87 88.85 163.66 107.07 56.22
2022 Poverty Rate (%) 5.67 5.12 0.37 12.82  4.57 10.51
2022 Clean Water Access (%) 97.65 2.86 92.10 99.80 98.20 3.70
2022 Urban Water Supply (%) 97.65 2.86 92.10 99.80  98.20  3.70
2022 Sanitation Access (%) 95.00 4.14 91.10  99.80  94.15 8.45
2022 Income Per Capita (USD) 186.55 54.27 13432 26839 17042 106.73
2022 Expenditure Per Capita (USD) 112.70  28.35 83.47 151.69 101.80 54.71

277



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 4 (2025)

Table S2. Variance Inflation Factors for Standardized Variables

Variable VIF
Clean Water Access Std 3.198
Urban Water Supply Std 2.360
Sanitation Access Std 5.097
Income Per Capita USD Std 20.484
Expenditure Per Capita USD Std 18.966

Table S3. National Time Series Analysis Results (2016—2022, Forecasts 2023-2025)

Variable Model AR1 Level Trend R*> RMSE Forecast Forecast Forecast
2023 2024 2025
i;:;e”y Rate | RIMA(1,0.0) 091 - ; 048 1.18 550 530  5.10
itecf;s (%\)Vater];;‘ézltimg Exponential o750 030 095 030 9800 9830  98.60
Icll:;rt‘;e(U SD;)erIS)I?ql;tc))ltiing Exponential 10000 250 090 500 19000 192.50  195.00
Table S4. Cross-Validation Results for Neural Networks (Case 5)
Fold R? R? RMSE RMSE Mean Abs Dev Mean Abs Dev
(Training) (Validation) (Training) (Validation) (Training) (Validation)
Fold 1 0.993 0.986 0.082 0.105 0.060 0.083
Fold 2 0.994 0.989 0.080 0.102 0.059 0.081
Fold 3 0.993 0.987 0.081 0.104 0.059 0.083
Fold 4 0.992 0.988 0.083 0.103 0.061 0.082
Fold 5 0.994 0.989 0.081 0.103 0.059 0.082
Average 0.993 0.988 0.082 0.103 0.060 0.082
Table S5. Regional Comparison of Urban Water Supply (2016-2022)
Region Mean (%) Std Dev (%) N Min (%) Max (%)
Central Highlands 74.34 16.13 7 62.30 97.90
Mekong River Delta 91.43 5.60 7 84.80 98.50
North Central and Central Coast 86.97 8.96 7 76.00 97.80
Northern Midlands and Mountains 86.31 6.28 7 77.70 92.50
Red River Delta 93.73 6.07 7 82.70 99.90
Southeast 94.79 3.79 7 90.00 99.90
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Table S6. Tukey HSD and Student's t Pairwise Comparisons for Urban Water Supply by Region

Pairwise Difference  Std Error tRatio  Prob > |tjLower 95%Upper  Prob > |t|Lower 95%Upper 95%
Comparison (Tukey  (Tukey 95% (Student' (Student's t)(Student's

. . HSD) HSD) (Tukey st) t)
(Region - Region) HSD)

Central Highlands

MekongRiverDelta_l7'0857 4.6920  -3.6400 0.0101 -31.2021 -2.9693 0.0008 -26.6016 -7.5698

Central Highlands -
North Central and-12.6286 4.6920  -2.6900 0.1019 -26.7449 1.4878 0.0107 -22.1445 -3.1127
Central Coast

Central Highlands -
Northern Midlands-11.9714 4.6920  -2.5500 0.1363  -26.0878 2.1449  0.0151 -21.4873 -2.4555
and Mountains

Central Highlands
Red River Delta

Central Highlands
Southeast

-19.3857 4.6920  -4.1300 0.0026 -33.5021 -5.2693 0.0002 -28.9016 -9.8698

7-20.4429 4.6920 -43600 0.0014 -34.5592 -6.3265 0.0001 -29.9588 -10.9270

Mekong River Delta
- North Central and4.4571 4.6920 09500 0.9304 -9.6592 18.5735 0.3485 -5.0588 13.9730
Central Coast

Mekong River Delta
- Northern Midlands5.1143 4.6920 1.0900 0.8822  -9.0021 19.2307 0.2830 -4.4016 14.6302
and Mountains

Mekong River Delta

_Red River Delta -2.3000 4.6920 -0.4900 09962 -16.4164 11.8164 0.6270 -11.8159 7.2159

Mekong River Delta

-3.3571 4.6920 -0.7200 0.9788 -17.4735 10.7592 0.4789 -12.8730 6.1588
- Southeast

North Central and

Central — Coast - ¢s-) 4.6920  0.1400  1.0000 -13.4592 14.7735 0.8894 -8.8588  10.1730
Northern Midlands

and Mountains

North Central and
Central Coast - Red-6.7571 4.6920  -1.4400 0.7029 -20.8735 7.3592  0.1585 -16.2730 2.7588
River Delta

North Central and
Central Coast --7.8143 4.6920 -1.6700 0.5625 -21.9307 6.3021 0.1045 -17.3302 1.7016
Southeast

Northern Midlands
and Mountains - Red-7.4143 46920 -1.5800 0.6164 -21.5307 6.7021 0.1228 -16.9302 2.1016
River Delta

Northern Midlands
and Mountains --8.4714 4.6920 -1.8100 0.4751 -22.5878 5.6449 0.0794 -17.9873 1.0445
Southeast

Red River Delta

~-1.0571 4.6920  -0.2300 0.9999 -15.1735 13.0592 0.8230 -10.5730 8.4588
Southeast
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