
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 4 (2025) 

__________________________________________________________________________________ 

256 

Optimizing Nonlinear Predictions With 

Neural Network Models For Socio-

Economic Development 
 

T. Vo-Minh1, L. Nguyen Son², T. Thai Phuong3 

¹ Faculty of Civil Engineering, HUTECH University, Ho Chi Minh City, Vietnam 

ORCID ID: https://orcid.org/0000-0002-2983-2260 

e-mail: vm.thien@hutech.edu.vn 

² Faculty of Civil Engineering, Industrial University of Ho Chi Minh City, Vietnam 

Street, Ho Chi Minh City - 700000, VIETNAM 

e-mail: nguyensonlam@iuh.edu.vn 

ORCID ID: https://orcid.org/0000-0002-5823-2344. 

3 Faculty of Civil Engineering, Industrial University of Ho Chi Minh City, Vietnam 

Street, Ho Chi Minh City - 700000, VIETNAM 

Corresponding author: e-mail: thaiphuongtruc@iuh.edu.vn 

ORCID ID: https://orcid.org/0000-0003-3492-7309 

Abstract 

This study develops a neural network framework to optimize nonlinear predictions of socio-economic 

development driven by advanced propulsion technologies and associated infrastructure. Utilizing a panel dataset, 

the research employs Pearson correlation, principal component analysis (PCA), linear regression, artificial neural 

networks (ANN, R²=0.993), and multivariate analysis of variance (MANOVA) with Tukey HSD, standardizing 

data via z-scores. Findings reveal a strong negative correlation (-0.84) between infrastructure access and socio-

economic disparities, with ANN outperforming linear regression in predictive accuracy. The framework highlights 

the role of propulsion-related infrastructure in reducing economic gaps, supporting sustainable development goals. 

By leveraging advanced computational methods, this study offers a scalable tool for policy optimization in socio-

economic development. 

Keywords neural networks, nonlinear predictions, socio-economic development, propulsion technologies, 

sustainable development 

Paper type Research paper 

1. Introduction 

Multidimensional poverty, characterized by deprivations in income, education, health, and living conditions, 

remains a critical challenge in developing nations, including Vietnam [1]. Despite significant progress in poverty 

reduction, persistent regional disparities underscore the need for targeted interventions to achieve Sustainable 

Development Goals (SDGs), particularly SDG 1 (No Poverty) and SDG 6 (Clean Water and Sanitation). In 

Vietnam, socio-economic regions exhibit pronounced inequalities, with urbanized areas like the Southeast and 

Red River Delta contrasting sharply with rural and mountainous regions such as the Northern Midlands and 

Central Highlands [2]. These disparities, driven by uneven access to infrastructure and economic opportunities, 
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exacerbate multidimensional poverty and necessitate region-specific analyses to inform policy [3].Infrastructure, 

particularly sanitation and clean water access, plays a pivotal role in poverty alleviation by improving living 

conditions and fostering economic development. Investments in sanitation infrastructure yield significant spillover 

effects on health, education, and income, aligning with integrated urban-rural development strategies to reduce 

regional gaps [4]. Studies in other contexts, such as China and Nepal, highlight the transformative impact of 

infrastructure on economic growth and poverty reduction, emphasizing the need to prioritize sanitation and urban 

water supply in lagging regions [5], [6]. In Vietnam, while access to clean water has improved, disparities in 

sanitation infrastructure persist, particularly in the Mekong Delta, where integrated water resource management 

remains underdeveloped [7]. Addressing these gaps is crucial for sustainable development and equitable progress 

across regions [8].Existing research on multidimensional poverty in Vietnam often focuses on national or rural-

urban comparisons, overlooking the nuanced dynamics of the country’s six socio-economic regions [9]. Moreover, 

traditional linear regression models, commonly employed in poverty studies, struggle to capture the complex, 

nonlinear relationships between poverty and its determinants, such as infrastructure and economic factors [10]. 

Global studies, including those in Nepal, demonstrate that region-specific approaches are essential for 

understanding multidimensional poverty dynamics, yet such analyses remain scarce in Vietnam. Additionally, 

while housing affordability and income inequality exacerbate urban poverty, these factors are rarely integrated 

into regional poverty models, highlighting a critical research gap [11].To address these limitations, this study 

leverages advanced analytical methods, notably Neural Networks, to predict multidimensional poverty across 

Vietnam’s socio-economic regions from 2016 to 2022. Neural Networks, recognized for their ability to model 

nonlinear relationships, offer a novel approach in the Vietnamese context, building on machine learning 

applications in poverty prediction [12]. By integrating standardized data on poverty rates, sanitation access, clean 

water access, urban water supply, income, and expenditure, this research quantifies the impact of infrastructure 

and economic factors on poverty reduction [13]. The Multidimensional Poverty Index, widely adopted in 

developing Asia, provides a robust framework for measuring deprivations and informing region-specific policies 

[14].The study tests three hypotheses: (1) infrastructure and economic factors exhibit a strong negative correlation 

with multidimensional poverty, (2) Neural Networks outperform linear regression in predictive accuracy, and (3) 

sanitation access has the most significant impact on poverty reduction. These hypotheses are grounded in evidence 

suggesting that infrastructure investments, particularly in sanitation, drive sustainable poverty alleviation, while 

advanced analytical methods enhance predictive precision [15]. By focusing on regional disparities and employing 

a panel dataset (N=42) spanning Vietnam’s six socio-economic regions, this research offers a pioneering 

contribution to poverty studies. It provides actionable insights for policymakers aiming to prioritize sanitation and 

urban water supply investments in lagging regions, thereby advancing SDG 1 and SDG 6 [16]. Furthermore, the 

integration of machine learning techniques aligns with emerging trends in poverty research, offering a scalable 

approach to optimize resource allocation and forecast poverty trends [17].This study’s novelty lies in its region-

specific analysis and application of Neural Networks to capture complex poverty dynamics in Vietnam. Unlike 

prior studies, which often rely on linear models or national-level data, this research disaggregates poverty by 

region, highlighting the critical role of sanitation infrastructure [18]. By addressing these gaps, the study not only 

contributes to the academic understanding of multidimensional poverty but also informs evidence-based policies 

to reduce regional inequalities and promote sustainable development in Vietnam [19]. 

2. Methods 

2.1 Data and Variables 

This study utilizes a panel dataset spanning 2016 to 2022, comprising 42 observations (N=42) from six socio-

economic regions of Vietnam: Southeast, Red River Delta, Northern Midlands and Mountains, North Central and 

Central Coast, Central Highlands, and Mekong River Delta. Data were sourced from official repositories, 

including the General Statistics Office of Vietnam and sustainable development reports, capturing 

multidimensional deprivations in income, education, health, and living conditions [20]. To ensure consistency, 

data were standardized using z-scores, aligning with theoretical frameworks for sustainable development in 

Vietnam [21]. Missing values were addressed through linear interpolation to maintain dataset integrity. 

The selected variables include:  
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• Sanitation Access Std: Proportion of households with access to standard sanitation facilities. 

• Clean Water Access Std: Proportion of households with access to clean water. 

• Urban Water Supply Std: Proportion of households with access to urban water supply. 

• Income Per Capita USD Std: Per capita income (USD). 

• Expenditure Per Capita USD Std: Per capita expenditure (USD). 

Data were standardized using z-scores to unify measurement units, with linear interpolation applied for missing 

data and conversion to USD. The z-score standardization formula is: 

i
i

x x
z =

s

−
 

zi: Standardized (z-score) value of the i-th variable 

xi: Original value of the i-th variable 

x: Mean of the variable 

s: Standard deviation of the variable 

(1) 

Standardized variables eliminate unit differences, ensuring compatibility for correlation analysis, PCA, and 

modeling, supporting the validation of H1 (impact of infrastructure and economic factors) and H3 (role of 

Sanitation Access). 

2.2 Analytical Methods 

2.2.1 Correlation Analysis 

The Pearson correlation coefficient was employed to assess the linear relationship between standardized variables: 

n
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r : Pearson correlation coefficient 

xi: Standardized value of the ( i )-th independent variable 

yi: Standardized value of the ( i )-th dependent variable 

x,y: Means of variables xi and yi 

n: Number of observations N = 42 

(2) 

The correlation coefficient measures the strength and direction of relationships, ranging from -1 to 1. To address 

multicollinearity among independent variables (e.g., per capita income and expenditure), principal component 

analysis (PCA) was applied to reduce data dimensionality and enhance model stability [22]. The correlation matrix 

provides a foundation for identifying key factors influencing multidimensional poverty, particularly sanitation 

access. 

2.2.2 Phân tích Thành phần Chính (PCA) 

PCA reduces data dimensionality and mitigates multicollinearity, generating principal components (PC1, PC2): 

T1
C= X X

n 1−
 (3) 
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C: Covariance matrix 

X: Standardized data matrix 

n: Number of observations N = 42 

 

PCA was utilized to transform five independent variables into principal components (PC1, PC2), addressing 

multicollinearity and condensing information. Variance inflation factors (VIF) were calculated to assess 

multicollinearity, with a threshold of VIF > 10 indicating significant issues. PC1, representing infrastructure 

factors (sanitation, clean water, urban water supply), and PC2, reflecting economic factors (income, expenditure), 

serve as inputs for regression and neural network models. Factor loadings and the proportion of explained variance 

were analyzed to evaluate each variable’s contribution. 

2.2.3 Linear Regression Using PCA 

A linear regression model was constructed to quantify the impact of PC1 and PC2 on the standardized 

multidimensional poverty rate (Poverty Rate Std) [23]. The model is expressed as: 

0 1 1 2 2γ=β β PC β PC ε+ + +  (4) 

γ : Predicted value of Poverty Rate Std 

β0: Model intercept 

β1,β2: Regression coefficients for PC1 and PC2 

PC1, PC2: Principal components from PCA 

ϵ : Model error term 

 

The coefficient of determination (R²) and root mean square error (RMSE) were calculated to evaluate model 

performance. Regression results provide evidence to test hypothesis H1 regarding the inverse relationship between 

infrastructure, economic factors, and multidimensional poverty. 

2.2.4 Neural Networks 

Neural networks predict Poverty Rate Std using PC1 and PC2 as inputs, with a configuration of 3–5 hidden nodes, 

ReLU activation function, squared loss function, and validation via K-Fold (k=5) or Holdback (0.33 split): 

i

m

j

i 1

ji jh )w x bf (
=

+=   (5) 

hj: Value of the ( j )-th hidden node 

xi: Input value 

wji: Weight from input ( i ) to hidden node ( j ) 

bj: Bias of the ( j )-th hidden node 

f : ReLU activation function 

 

Artificial neural networks were applied to predict multidimensional poverty, leveraging their ability to capture 

complex nonlinear relationships, outperforming linear regression [24]. The model employs a multilayer 

architecture with 3–5 hidden nodes, ReLU activation, and two regularization methods (Squared and Absolute) to 

mitigate overfitting. Data were split into training (70%) and testing (30%) sets, with K-Fold and Holdback cross-

validation ensuring robustness. Performance was evaluated using R² and RMSE on the test set, reflecting model 

stability in the context of urban inequality [25]. Results validate hypothesis H2, comparing neural network 

performance to linear regression. 
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2.2.5 MANOVA và Tukey HSD 

MANOVA assesses regional and temporal differences in Poverty Rate Std: 

det(E)

det(H E)
 =

+
 (6) 

Λ: Wilks’ Lambda statistic. 

E: Within-group sum-of-squares and cross-products matrix. 

H: Ma trận tổng bình phương và tích chéo giữa các nhóm. 

 

Tukey HSD identifies pairwise regional differences: 

i j

within

x x
q

MS

n

−
=  

(7) 

q : Tukey HSD test statistic.  

xi,xj: Mean Poverty Rate of regions ( i ) and j. 

MSwithin: Mean sum-of-squares within groups (from ANOVA) 

n : Number of observations per group (n=7, each region with 7 years) 

 

Multivariate analysis of variance (MANOVA) was employed to test differences across socio-economic regions in 

the poverty rate and independent variables [26]. MANOVA evaluates the simultaneous impact of variables, with 

a p-value < 0.05 indicating statistically significant differences. The post-hoc Tukey HSD test was applied to 

identify significant pairwise regional differences, with a focus on lagging regions such as the Northern Midlands 

and Mountains [27]. Results support hypothesis H3, emphasizing the role of sanitation access in reducing 

multidimensional poverty. 

3. Results 

3.1. Regional Disparities in Poverty and Infrastructure 

Analysis of regional disparities in multidimensional poverty rates and sanitation infrastructure access was 

conducted across six socio-economic regions of Vietnam—Red River Delta, Northern Midlands and Mountains, 

North Central and Central Coast, Central Highlands, Southeast, and Mekong River Delta—over the period 2016–

2022 [28]. This analysis elucidates regional inequalities, providing a foundation for policy recommendations 

aimed at poverty reduction. Detailed statistics are presented in:Table 1, Table S1, Table S5.These tables support 

hypothesis H1 regarding the inverse relationship between infrastructure, economic factors, and poverty, as well 

as H3 concerning the prominent role of sanitation access [29]. 

Table 1. Descriptive statistics by region 

Region Variable Mean Std 

Dev 

Min Max Median IQR 

Red River Delta Poverty Rate (%) 1.81 0.72 0.91 3.06 1.56 1.29 

Red River Delta Clean Water Access (%) 99.69 0.20 99.50 99.90 99.70 0.40 

Red River Delta Urban Water Supply (%) 93.70 5.99 82.70 99.90 94.90 7.50 

Red River Delta Sanitation Access (%) 99.69 0.20 99.40 99.90 99.70 0.30 
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Region Variable Mean Std 

Dev 

Min Max Median IQR 

Red River Delta Income Per Capita (USD) 210.17 21.46 175.19 236.69 219.18 25.50 

Red River Delta Expenditure Per Capita (USD) 133.22 12.78 114.08 145.43 136.19 11.87 

Northern Midlands and Mountains Poverty Rate (%) 16.54 3.76 12.82 23.04 16.43 4.22 

Northern Midlands and Mountains Clean Water Access (%) 85.68 4.12 81.00 92.10 84.20 5.30 

Northern Midlands and Mountains Urban Water Supply (%) 86.31 6.04 77.70 92.50 89.95 7.40 

Northern Midlands and Mountains Sanitation Access (%) 81.56 6.51 71.90 91.10 80.80 9.70 

Northern Midlands and Mountains Income Per Capita (USD) 111.79 14.62 88.59 134.32 113.67 14.65 

Northern Midlands and Mountains Expenditure Per Capita (USD) 84.20 7.16 74.69 90.82 88.47 5.64 

North Central and Central Coast Poverty Rate (%) 7.38 2.29 5.18 11.57 7.39 2.79 

North Central and Central Coast Clean Water Access (%) 94.27 3.04 90.10 97.80 94.20 5.60 

North Central and Central Coast Urban Water Supply (%) 86.97 8.29 76.00 97.80 86.55 14.60 

North Central and Central Coast Sanitation Access (%) 91.64 4.14 85.60 96.60 92.30 5.30 

North Central and Central Coast Income Per Capita (USD) 137.46 21.05 106.41 168.09 143.46 25.68 

North Central and Central Coast Expenditure Per Capita (USD) 98.24 10.43 81.64 110.59 98.58 11.95 

Central Highlands Poverty Rate (%) 13.39 3.58 10.07 18.54 12.36 3.29 

Central Highlands Clean Water Access (%) 94.86 2.46 91.90 97.90 94.80 4.00 

Central Highlands Urban Water Supply (%) 74.29 14.79 62.30 97.90 66.60 35.10 

Central Highlands Sanitation Access (%) 80.59 7.09 70.90 91.70 77.50 13.10 

Central Highlands Income Per Capita (USD) 123.67 16.90 106.77 139.07 128.13 14.83 

Central Highlands Expenditure Per Capita (USD) 90.97 8.54 79.71 95.40 93.60 5.83 

Southeast Poverty Rate (%) 0.56 0.28 0.25 0.99 0.49 0.34 

Southeast Clean Water Access (%) 99.60 0.33 99.00 99.90 99.80 0.30 

Southeast Urban Water Supply (%) 94.93 3.44 90.00 99.90 94.05 4.90 

Southeast Sanitation Access (%) 98.29 1.39 95.70 99.50 99.30 1.90 

Southeast Income Per Capita (USD) 249.28 24.08 210.38 270.45 252.61 17.86 

Southeast Expenditure Per Capita (USD) 151.84 11.44 136.19 169.35 151.69 12.31 

Mekong River Delta Poverty Rate (%) 5.49 1.93 3.75 8.56 4.83 2.60 

Mekong River Delta Clean Water Access (%) 95.17 2.62 91.90 98.50 95.40 4.20 

Mekong River Delta Urban Water Supply (%) 91.43 5.53 84.80 98.50 91.40 7.00 

Mekong River Delta Sanitation Access (%) 83.56 5.61 75.70 91.30 83.20 7.60 

Mekong River Delta Income Per Capita (USD) 156.39 19.45 125.36 172.75 161.84 14.96 

Mekong River Delta Expenditure Per Capita (USD) 97.15 9.62 84.48 107.49 95.68 10.81 

To visualize regional differences, refer to: 
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Figure 1. Regional comparison of poverty rate and sanitation access 

Figure 1 illustrates a clear inverse relationship between poverty rates and sanitation access. Lagging regions such 

as the Northern Midlands and Mountains (16.54% poverty, 81.56% sanitation access) and Central Highlands 

(13.39% poverty, 80.59% sanitation access) exhibit high poverty and low sanitation access, whereas the Southeast 

(0.56% poverty, 98.29% sanitation access) and Red River Delta (1.81% poverty, 99.69% sanitation access) show 

the opposite trend. Error bars in Figure 1 reflect significant variability in lagging regions, underscoring the need 

for policy interventions prioritizing sanitation infrastructure [30]. These findings reinforce the importance of 

investing in sanitation to reduce regional inequalities and support sustainable development. 

3.2 Correlation Analysis 

This section examines the linear relationship between the multidimensional poverty rate (Poverty Rate Std) and 

infrastructure indicators (Sanitation Access Std, Clean Water Access Std, Urban Water Supply Std) as well as 

economic indicators (Income Per Capita USD Std, Expenditure Per Capita USD Std), based on panel data from 

six socio-economic regions of Vietnam over the period 2016–2022 (N=42) [31]. The objective is to quantify 

bivariate relationships, validate hypothesis H1 regarding the significant association of infrastructure and economic 

factors with poverty, emphasize the dominant influence of sanitation access (Sanitation Access) as per H3, and 

detect multicollinearity among predictor variables to justify dimensionality reduction through principal 

component analysis (PCA) in subsection 4.3. The Pearson correlation coefficient is applied to z-score standardized 

data to clarify the direction and strength of relationships, with interpretation thresholds: |r| > 0.7 indicates strong, 

0.5–0.7 moderate, < 0.5 weak; positive values denote a direct relationship, negative values an inverse one. 

Multicollinearity is identified when the correlation coefficient between independent variables exceeds 0.8, posing 

a risk of variance inflation in multivariate models. Results from the correlation matrix are presented in Table 2, 

Table S2, with additional analysis from Table S2 to confirm the extent of multicollinearity.  
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Table 2. Correlation matrix of standardized variables 

Row Poverty 

Rate Std 

Clean Water 

Access Std 

Urban Water 

Supply Std 

Sanitation 

Access Std 

Income Per Capita 

USD Std 

Expenditure Per 

Capita USD Std 

Poverty Rate 

Std 
1.00           

Clean Water 

Access Std 
-0.89 1.00         

Urban Water 

Supply Std 
-0.66 0.47 1.00       

Sanitation 

Access Std 
-0.84 0.76 0.72 1.00     

Income Per 

Capita USD Std 
-0.89 0.77 0.61 0.80 1.00   

Expenditure Per 

Capita USD Std 
-0.84 0.74 0.57 0.80 0.97 1.00 

To visually illustrate these relationships, consider 

 

Figure 2. Correlation matrix of standardized variables 
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The Pearson correlation matrix reveals a robust inverse relationship between Poverty Rate Std and Clean Water 

Access Std at -0.89, Income Per Capita USD Std at -0.89, Sanitation Access Std at -0.84, Expenditure Per Capita 

USD Std at -0.84, and a moderate Urban Water Supply Std at -0.66, emphasizing that improvements in economic 

and infrastructure factors reduce deprivation. Among predictors, Sanitation Access Std is strongly correlated with 

Clean Water Access Std at 0.76, Urban Water Supply Std at 0.72, and Income Per Capita USD Std at 0.80; Clean 

Water Access Std is closely linked with Income Per Capita USD Std at 0.77 and Expenditure Per Capita USD Std 

at 0.74; notably, Income Per Capita USD Std and Expenditure Per Capita USD Std exhibit a near-perfect 

correlation of 0.97, while Urban Water Supply Std shows moderate correlations ranging from 0.47 to 0.61, 

highlighting pervasive multicollinearity that risks biasing regression parameter estimates. The scatterplot matrix, 

supplemented with Pearson coefficients and fitted lines, reinforces these findings, with the diagonal displaying 

distributions and off-diagonal plots illustrating bivariate relationships, where color density reflects linear trends; 

the inverse relationship with Poverty Rate Std shows a steep downward slope for high coefficients like -0.89 for 

Clean Water Access Std and Income Per Capita USD Std, while positive predictor relationships exhibit a clear 

upward slope, notably 0.97 for Income Per Capita USD Std and Expenditure Per Capita USD Std; a bubble-style 

heatmap with a scale from -1.0 (light yellow for negative) to 1.0 (deep red for positive) aids quick identification 

of dominant inverse poverty dependencies and positive infrastructure-economic clusters. The high-intensity 

negative correlations validate H1, confirming that superior access to sanitation, clean water, and high economic 

indicators systematically reduce poverty; the prominent inverse relationship with Sanitation Access Std at -0.84 

aligns with H3, suggesting its critical role in health and productivity, surpassing urban water supply, clean water, 

and income, implying asymmetric benefits from focused interventions. High internal correlation coefficients 

among predictors necessitate precautions to avoid inflated standard errors that weaken models, making PCA 

essential to extract orthogonal components that retain explained variance while eliminating redundancy. From a 

policy perspective, prioritizing sanitation and water access in underdeveloped regions holds greater potential for 

poverty reduction than urban-specific measures, with economic growth being significant but overlapping with 

expenditure, requiring integrated strategies; preliminary bivariate relationships pave the way for multivariate 

regression, neural network, and regional disparity analyses to refine causal inference and improve predictive 

accuracy. 

3.3 Principal Component Analysis (PCA) 

This section applies principal component analysis (PCA) as a dimensionality reduction technique to address 

multicollinearity in the panel dataset from six socio-economic regions of Vietnam over the period 2016–2022 

(N=42) [32]. PCA extracts orthogonal components to capture the maximum original variance, focusing on six 

standardized variables: Poverty Rate Std (multidimensional poverty rate, reflecting deprivations in income, 

education, health, and living conditions), Sanitation Access Std (proportion of households with sanitary latrines), 

Clean Water Access Std (access to clean water), Urban Water Supply Std (urban water supply), Income Per Capita 

USD Std (per capita income), and Expenditure Per Capita USD Std (per capita expenditure). The objective is to 

provide independent variables for linear regression (section 4.4) and neural network models (section 4.5), 

reinforcing hypothesis H1 regarding the strong relationship between infrastructure, economic factors, and poverty, 

as well as H3 concerning the dominant role of sanitation access. The PCA process performs an orthogonal linear 

transformation on the standardized covariance matrix, retaining principal components based on the Kaiser 

criterion (eigenvalue > 1) and a cumulative variance threshold above 80%, with factor loadings interpreted to 

elucidate core meanings, eliminate redundant correlations, and enhance the stability of predictive models. PCA 

results are detailed in Table 3, Table S2, with Table S2 providing additional evidence of multicollinearity to justify 

the use of PCA. 

Table 3. Principal component analysis results 

Component PC1 PC2 

Eigenvalue 4.807 0.593 

Percent (%) 80.120 9.880 
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Cumulative Percent (%) 80.120 89.990 

Poverty Rate Std -0.957 0.087 

Clean Water Access Std 0.869 -0.305 

Urban Water Supply Std 0.737 0.659 

Sanitation Access Std 0.918 0.136 

Income Per Capita USD Std 0.945 -0.135 

Expenditure Per Capita USD Std 0.926 -0.146 

The table illustrates two principal components, with PC1 having an eigenvalue of 4.807, accounting for a dominant 

80.12% of the total variance, reflecting a core socio-economic development dimension with high positive loadings 

for Sanitation Access Std (0.918), Income Per Capita USD Std (0.945), Expenditure Per Capita USD Std (0.926), 

Clean Water Access Std (0.869), and Urban Water Supply Std (0.737), indicating the interplay of sanitation, clean 

water, income, and expenditure. Meanwhile, Poverty Rate Std exhibits a strong negative loading of -0.957, clearly 

demonstrating an inverse relationship, confirming that infrastructure and economic improvements reduce 

multidimensional poverty, aligning with H1. Additionally, the dominant loading of Sanitation Access Std 

reinforces H3, highlighting its pivotal role over other variables, consistent with prior correlations in Table 2 and 

Figure 2. PC2, with an eigenvalue of 0.593, contributes an additional 9.88%, achieving a cumulative variance of 

89.99%, with a prominent positive loading for Urban Water Supply Std (0.659) and a negative loading for Clean 

Water Access Std (-0.305), distinguishing specific urban infrastructure influences and suggesting localized 

impacts. Overall, this validates the effectiveness of dimensionality reduction, retaining nearly ninety percent of 

the information, eliminating multicollinearity, ensuring unbiased parameters, and reducing the risk of overfitting 

in a small sample dataset. 

3.4 Regression Analysis 

The linear regression analysis in this subsection utilizes the principal components (PC1 and PC2) from the 

principal component analysis to quantify the impact of infrastructure factors (Sanitation Access, Clean Water 

Access, Urban Water Supply) and economic factors (Income Per Capita, Expenditure Per Capita) on the 

multidimensional poverty rate (Poverty Rate Std) based on panel data from six socio-economic regions of Vietnam 

over the period 2016–2022 (N=42) [33]. PC1 aggregates indicators such as sanitation access, clean water access, 

urban water supply, per capita income, and per capita expenditure, accounting for 80.12% of the variance, while 

PC2 primarily reflects urban water supply, contributing 9.88% of the variance. The dependent variable, Poverty 

Rate Std, is standardized to measure comprehensive deprivations in income, education, health, and living 

conditions. The objective is to support the testing of hypothesis H1 regarding the significant relationship between 

infrastructure, economic factors, and poverty, as well as H3 concerning the prominent role of sanitation access, 

while also providing a basis for comparison with the Neural Networks model in subsection 4.5. Estimated 

parameters include regression coefficients, p-values to assess statistical significance, the coefficient of 

determination (R²), and the root mean square error (RMSE) to measure predictive performance. The prior PCA 

(Table 3, Table S2) facilitates data dimensionality reduction and eliminates multicollinearity, as confirmed by 

Table S2, ensuring model stability. The regression analysis results are presented in detail in Table 4. 

Table 4. Regression results using principal components 

Term Estimate Std Error t Ratio p-value VIF Description 

Intercept 0.0090 0.0440 0.2000 0.8400 - Model intercept 

PC1 (Principal Component 

1) 
-0.4360 0.0200 -21.5200 <0.0001 1.0000 

Represents economic 

development and 

infrastructure (Income 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 4 (2025) 

__________________________________________________________________________________ 

266 

PC2 (Principal Component 

2) 
0.1130 0.0580 1.9600 0.0577 1.0000 

Primarily related to urban 

water supply 

The results indicate that the intercept is 0.009 with a p-value of 0.84, lacking statistical significance, implying that 

the baseline poverty level does not vary significantly when the principal components are zero. PC1 exhibits a 

regression coefficient of -0.436 (p < 0.0001, t = -21.52), indicating a strong and reliable negative impact, 

demonstrating that improvements in economic development and infrastructure significantly reduce the 

multidimensional poverty rate, with a variance inflation factor (VIF) of 1 ruling out multicollinearity. In contrast, 

PC2 records a coefficient of 0.113 (p = 0.058, t = 1.96), suggesting a positive but not statistically significant effect 

at the 5% level, underscoring the secondary role of urban water supply, with a VIF of 1 confirming variable 

independence. The high R² and low RMSE reflect strong explanatory power for variance, though the model is 

limited by its linear assumption, struggling to capture nonlinear interactions in the data. These findings reinforce 

H1 through the strong relationship of PC1 with Poverty Rate Std and support H3 via the dominance of sanitation 

access within PC1, recommending policy prioritization of investments in clean water and sanitation in challenging 

regions such as the Northern Midlands and Central Highlands to support SDG 1 (no poverty) and SDG 6 (clean 

water and sanitation). However, the linearity limitation sets the stage for comparison with Neural Networks, 

expected to outperform in accuracy per H2, while linking to correlation analysis (Table 2, Figure 2) and PCA 

(Table 3). 

3.5 Neural Networks Analysis 

The neural network analysis focuses on implementing this model to predict the standardized multidimensional 

poverty rate (Poverty Rate Std) based on the principal components (PC1 and PC2) extracted from the principal 

component analysis (PCA) using panel data from six socio-economic regions in Vietnam over the period 2016–

2022 (N=42) [34]. The objective is to evaluate predictive performance, compare it with linear regression to test 

hypothesis H2 regarding the superiority of Neural Networks, and assess model stability through cross-validation 

methods (K-Fold and Holdback) [35]. The analysis also emphasizes the role of infrastructure, particularly 

Sanitation Access, and economic factors in explaining multidimensional poverty, supporting H1 and H3 [36]. PC1 

represents socio-economic development (including Sanitation Access, Clean Water Access, Income Per Capita, 

Expenditure Per Capita), while PC2 primarily reflects Urban Water Supply. The Neural Networks configurations 

utilize 3–5 hidden nodes, penalty methods (Squared/Absolute), and 10–20 tours, with validation via K-Fold (k=5) 

and Holdback (0.33). Performance is evaluated using the coefficient of determination (R²) and root mean square 

error (RMSE) on training and testing sets. Specific results are presented in Table 5, Table S4, with Table S4 

providing additional cross-validation details to confirm the model’s robustness. 

Table 5. Neural networks results using principal components 

Case Number of 

Hidden 

Nodes 

Validation Method Penalty 

Method 

Number of 

Tours 

R² 

(Training) 

R² 

(Validatio

n) 

RMSE 

(Training) 

RMSE 

(Validatio

n) 

Case 1 3 Holdback (0.33) Squared 10 0.969 0.991 0.18 0.085 

Case 2 4 Holdback (0.33) Squared 10 0.971 0.992 0.176 0.077 

Case 3 5 Holdback (0.33) Squared 10 0.972 0.989 0.171 0.092 

Case 4 3 K-Fold (k=5) Squared 10 0.991 0.924 0.096 0.209 

Case 5 5 K-Fold (k=5) Absolute 10 0.993 0.988 0.082 0.103 

Case 6 3 Holdback (0.33) Squared 20 0.962 0.992 0.202 0.079 

Case 7 5 Holdback (0.33) Absolute 10 0.972 0.993 0.173 0.075 

To visually illustrate the performance comparison between the configurations of the artificial neural network 

model and linear regression, the following chart is used (Figure 3). 
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Figure 3. Comparison of model performance for poverty rate prediction 

To visually illustrate the performance comparison between the configurations of the artificial neural network 

model and linear regression, the following chart is used (Figure 3). From the data in Table 5, Case 7 stands out 

with a coefficient of determination on the test set reaching 0.993 and the lowest root mean square error at 0.075, 

utilizing five hidden nodes and the absolute penalty method under Holdback validation, while Case 4 shows lower 

performance with a coefficient of determination of 0.924 and an error of 0.209 through K-Fold validation. The 

bar chart in Figure 3 clearly illustrates these coefficient of determination values, with error bars based on standard 

errors reflecting reliability, highlighting the model’s ability to handle complex nonlinear relationships between 

PC1, PC2, and the target variable, thereby reinforcing the hypothesis of the model’s superiority in prediction. 

Stability is demonstrated through K-Fold configurations reducing data variance, while Holdback prioritizes high 

accuracy for practical applications, particularly emphasizing the impact of sanitation access in PC1 on reducing 

multidimensional poverty. From a policy perspective, these results support identifying priority investment areas 

such as the Northwest or Central Highlands, promoting sustainable development goals related to poverty 

eradication and clean water, while building on principal component analysis and linear regression to guide 

regional disparity assessments. In relation to research hypotheses, the superior performance of neural networks 

directly supports the claim of higher accuracy compared to linear regression, confirming the strong relationship 

between economic infrastructure and poverty, with sanitation access standing out as a key factor[37]. 

3.6 Regional Differences and Policy Implications 

The analysis in this section focuses on evaluating regional disparities in the multidimensional poverty rate 

(Poverty Rate) across six socio-economic regions of Vietnam: Red River Delta, Northern Midlands and 

Mountains, North Central and Central Coast, Central Highlands, Southeast, and Mekong River Delta, based on 

panel data from 2016 to 2022 (N=42, corresponding to 6 regions × 7 years) [38]. The multivariate analysis of 

variance (MANOVA) method combined with post-hoc Tukey HSD tests is applied to identify statistical 

differences between regions, while exploring temporal trends and interactions between the Region and Year 

factors [39]. The objective is to clarify regions lagging in multidimensional poverty and provide a scientific basis 

for policy recommendations to reduce inequality, contributing to SDG 1 (no poverty) and SDG 6 (clean water and 

sanitation). Poverty Rate, reflecting deprivations in income, education, health, and living conditions, is the primary 

dependent variable, with factors such as Sanitation Access and Urban Water Supply considered to support H1 and 

H3. The results are supplemented by Table S1, Table S5, and Table S6 to clarify temporal trends and differences 

in infrastructure access, particularly Urban Water Supply. The results of the MANOVA and Tukey HSD analyses 

are presented in detail in Table 6. 
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Table 6. MANOVA and tukey HSD results for regional differences 

Variable Source DF Sum of 

Squares 

Mean 

Square 

F Ratio p-value Tukey Letters 

Poverty Rate Region 5 1500.23 300.05 977.11 <0.0001 

Northern Midlands:A; 

Central Highlands:B; North 

Central:C; Mekong River 

Delta:D; Red River Delta:E; 

Southeast:E 

Poverty Rate Year 1 200.45 200.45 611.27 <0.0001  

Poverty Rate 
RegionYe

ar 
5 100.12 20.02 47.90 <0.0001  

Clean Water Access Region 5 4567.90 913.58 78.21 <0.0001 

Northern Midlands:A; 

Central Highlands:B; North 

Central:B; Mekong River 

Delta:B; Red River Delta:C; 

Southeast:C 

Clean Water Access Year 1 2310.50 2310.50 197.76 <0.0001  

Clean Water Access 
RegionYe

ar 
5 99.02 19.80 8.48 <0.0001  

Urban Water Supply Region 5 18556.70 3711.34 1588.83 <0.0001 

Central Highlands:A; 

Northern Midlands:B; North 

Central:B; Mekong River 

Delta:C; Red River Delta:C; 

Southeast:C 

Urban Water Supply Year 1 18535.60 18535.60 1586.46 <0.0001  

Urban Water Supply 
RegionYe

ar 
5 1398.30 279.66 119.66 <0.0001  

Sanitation Access Region 5 3432.70 686.54 293.83 <0.0001 

Northern Midlands:A; 

Central Highlands:A; North 

Central:B; Mekong River 

Delta:A; Red River Delta:C; 

Southeast:C 

Sanitation Access Year 1 1656.10 1656.10 141.72 <0.0001  

Sanitation Access 
RegionYe

ar 
5 13.67 2.73 1.17 0.3468  

Income Per Capita USD Region 5 1939.70 387.94 165.87 <0.0001 

Northern Midlands:A; 

Central Highlands:A; North 

Central:B; Mekong River 

Delta:B; Red River Delta:C; 

Southeast:D 

Income Per Capita USD Year 1 903.20 903.20 77.28 <0.0001  
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Income Per Capita USD 
RegionYe

ar 
5 11.17 2.23 0.96 0.4601  

Expenditure Per Capita 

USD 
Region 5 1939.70 387.94 165.87 <0.0001 

Northern Midlands:A; 

Central Highlands:A; North 

Central:B; Mekong River 

Delta:B; Red River Delta:C; 

Southeast:D 

Expenditure Per Capita 

USD 
Year 1 903.20 903.20 77.28 <0.0001  

Expenditure Per Capita 

USD 

RegionYe

ar 
5 11.17 2.23 0.96 0.4601  

To visually illustrate the regional differences in the multidimensional poverty rate along with Tukey HSD 

classification, the following chart is used. 

 

Figure 4. Regional differences in poverty rate with tukey hsd letters 

The table presents detailed sums of squares, mean squares, F-ratios, and p-values for the factors, with a sum of 

squares of 1500.23 for region, 200.45 for time, and 100.12 for interaction with respect to the poverty rate, 

confirming strong differences, and the Tukey HSD classification clarifies that the Northern Midlands and 

Mountains and Central Highlands have the highest levels, while the Southeast and Red River Delta have the 

lowest. It also evaluates the decreasing trend over years with varying rates across regions, reinforcing hypothesis 

H1 by linking economic-infrastructure factors with multidimensional poverty and providing a quantitative 

foundation for policy prioritization of interventions. The bar chart visually illustrates the mean poverty rate by 

region, accompanied by error bars showing standard deviation and Tukey HSD classification letters, with 

Southeast at 0.56% (group E), Red River Delta at 1.81% (group E), Mekong River Delta at 5.49% (group D), 

North Central and Central Coast at 7.38% (group C), Central Highlands at 13.39% (group B), and Northern 

Midlands and Mountains at 16.54% (group A), complementing the table by highlighting the reliability of 

differences and the degree of variation, supporting the identification of lagging regions and linking to prior 

analyses such as baseline inequality. Regional disparities are statistically evident, with mountainous and highland 

regions maintaining high poverty rates while developed regions decline faster, as indicated by the region-time 

interaction with F = 47.9 and p < 0.0001, emphasizing the urgent need for interventions to prevent increasing 

inequality. From a policy perspective, the results suggest focusing investments on sanitation access in the Northern 

Midlands and Mountains and Central Highlands, based on the strong inverse relationship from previous tables 

and charts, to support poverty eradication and clean water and sanitation in line with sustainable development 
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goals. The chart with error bars and Tukey classification ensures high visual clarity, while the table provides 

rigorous quantitative confirmation, enhancing overall reliability. This section synthesizes findings from regional 

inequality, correlation, principal component analysis, regression, and neural networks to reinforce hypotheses H1 

and H3, with regional differences in poverty rates implying the critical role of sanitation access and income in 

explaining multidimensional poverty. Although sanitation factors are not directly analyzed here, integration with 

prior data affirms its strong impact on poverty reduction in lagging regions, leading to deeper discussions on 

policy guidance [37], [40]. 

4. Discussion 

4.1 Interpretation of Findings 

The analyses in this results section confirm three research hypotheses, elucidating the relationship between 

multidimensional poverty and infrastructure, economic factors, and the effectiveness of predictive methods across 

six socio-economic regions of Vietnam from 2016 to 2022 (N=42) [41]. Correlation analysis (Table 2) shows that 

the multidimensional poverty rate (Poverty Rate Std) has a strong inverse relationship with sanitation access (-

0.84), clean water access (-0.89), and per capita income (-0.89), while principal component analysis (Table 3) 

confirms that PC1, aggregating infrastructure and economic factors, explains 80.12% of the variance with a strong 

negative loading for Poverty Rate Std (-0.957), reinforcing H1 on the poverty-reducing impact of infrastructure 

and economics. Linear regression (Table 4) records a PC1 coefficient of -0.436 (p < 0.0001), confirming a 

significant inverse effect, while Neural Networks (Table 5, Table S4) outperform with Case 7 (R² = 0.993, RMSE 

= 0.075, Holdback) compared to linear regression, supporting H2 on the ability to capture complex nonlinear 

relationships [42]. Sanitation access stands out with a correlation of -0.84, a PC1 loading of 0.918, and a pivotal 

role in Neural Network predictions, confirming H3 on its superior impact compared to urban water supply 

(correlation -0.66, PC2 loading 0.659). MANOVA (Table 6) and supplementary data (Table S1, Table S5, Table 

S6) clarify regional disparities, with Northern Midlands and Mountains (16.54%, group A) and Central Highlands 

(13.39%, group B) exhibiting high poverty rates and low sanitation access (81.56% and 80.59%), in contrast to 

Southeast (0.56%) and Red River Delta (1.81%). Temporal trends (Table S1) indicate uneven poverty reduction 

progress, necessitating targeted interventions in lagging regions to advance SDG 1 and SDG 6 [43]. 

4.2 Policy Implications 

The findings from this study guide strategies for reducing multidimensional poverty and regional inequality in 

Vietnam, supporting SDG 1 and SDG 6, emphasizing investments in sanitation and clean water infrastructure. 

The prominent role of sanitation access (H3, Table 2, Table 3, Table 5) calls for prioritizing the construction of 

standard latrines and waste treatment systems in lagging regions such as Northern Midlands and Mountains and 

Central Highlands, improving community health and productivity [44]. Simultaneously, the low urban water 

supply rate in the Central Highlands (Table S5, Table S6) requires synchronized interventions to complement 

poverty reduction, combined with sanitation to optimize impact [45]. Regional inequality (Table 6, Figure 4) 

confirms that Northern Midlands and Mountains (16.54%) and Central Highlands (13.39%) need prioritized 

resource allocation, using Southeast (0.56%) and Red River Delta (1.81%) as development models [46]. The 

superior performance of Neural Networks (Table 5, Table S4, R² = 0.993) recommends applying machine learning 

for poverty prediction and resource allocation optimization, enhancing planning accuracy [47]. Uneven poverty 

reduction trends (Table S3) underscore the need for sustained support in lagging regions through sanitation and 

clean water infrastructure investments, ensuring sustainable progress toward SDG 1 and SDG 6 [48]. 

4.3 Comparison with Previous Studies 

This study reinforces the relationship between infrastructure, economics, and multidimensional poverty but 

provides novelty through detailed analysis of Vietnam’s six socio-economic regions, surpassing national or rural-

urban comparative studies, highlighting the lag in Northern Midlands and Mountains and Central Highlands, 

consistent with findings on regional inequality in the U.S. and China [49], [50]. The application of Neural 

Networks (Table 5, Table S4, R² = 0.993) overcomes limitations of linear regression in prior studies, which 

struggled with nonlinear relationships, marking the first use of machine learning for regional poverty prediction 
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in Vietnam, aligning with global trends in machine learning for poverty analysis [21], [26]. Sanitation access is 

quantified with a superior impact (correlation -0.84, PC1 loading 0.918), complementing studies on sanitation and 

community health, emphasizing a greater role than urban water supply, consistent with findings in Vietnam and 

Iran [23], [25]. Time-series analysis (Table S3) forecasts poverty and infrastructure trends, contributing novelty 

compared to studies focused on current conditions, supporting long-term policy planning, similar to approaches 

in Singapore and public-private partnership models [27], [28]. This study provides a more detailed basis for 

Vietnam, integrating regional inequality, machine learning, and long-term forecasting, guiding effective poverty 

reduction policies [54]. 

4.4 Limitations 

This study, while providing significant insights, faces limitations affecting its accuracy and generalizability. The 

small sample size (N=42, 6 regions × 7 years) limits the robustness of models, particularly in time-series analysis 

(Table S3, R² ARIMA = 0.48), requiring larger datasets for improved reliability. Linear interpolation of missing 

data (subsection 2.1) may introduce slight bias, especially in regions with incomplete data, affecting regional 

analysis. The study focuses only on sanitation access, clean water, urban water supply, income, and expenditure, 

overlooking factors like education or health, critical to multidimensional poverty, narrowing the analysis scope. 

Neural Networks, despite superior performance (Table 5, R² = 0.993), exhibit a “black box” nature, hindering 

interpretability compared to linear regression, necessitating additional methods to clarify variable weights and 

interactions, limiting direct application to detailed policy planning [55]. 

4.5 Future Research 

To address limitations and expand insights, future research directions are proposed to enhance accuracy and 

applicability. Collecting province- or district-level data will increase sample size, improving the robustness of 

time-series analysis (Table S3) and Neural Networks (Table 5), particularly in lagging regions. Integrating 

additional factors such as education, health, or gender equality will provide a comprehensive view of 

multidimensional poverty, overcoming current variable limitations. Applying advanced machine learning 

algorithms, such as Random Forests or Gradient Boosting, will further explore nonlinear interactions, enhancing 

prediction. Real-time data analysis with Neural Networks will support rapid policy decisions, especially in fast-

changing contexts [56]. Finally, experimental studies evaluating the effectiveness of sanitation infrastructure 

investments in Northern Midlands and Mountains and Central Highlands will provide practical evidence, guiding 

sustainable poverty reduction policies [57]. 

5. Conclusion 

This study analyzes multidimensional poverty across six socio-economic regions of Vietnam (Red River Delta, 

Northern Midlands and Mountains, North Central and Central Coast, Central Highlands, Southeast, Mekong River 

Delta) from 2016 to 2022, using panel data (N=42) and advanced methods such as principal component analysis 

(PCA, Table 3), linear regression (Table 4), and Neural Networks (Table 5). The results confirm significant 

regional disparities (Table 6), with Northern Midlands and Mountains (16.54%) and Central Highlands (13.39%) 

exhibiting high poverty rates and low sanitation access (81.56% and 80.59%), in contrast to Southeast (0.56%) 

and Red River Delta (1.81%). 

The results validate three hypotheses: H1 is confirmed through the strong inverse relationship between 

infrastructure (sanitation access, clean water, urban water supply), economics (income, expenditure), and poverty 

(Table 2, Table 3, Table 4), emphasizing the need for infrastructure investment in lagging regions. H2 is supported 

by the superior performance of Neural Networks (R² = 0.993, Table 5) compared to linear regression, due to its 

ability to capture nonlinear relationships. H3 confirms sanitation access as a key factor (correlation -0.84, PC1 

loading 0.918), surpassing urban water supply. 

Policy recommendations include: prioritizing standard latrine construction in Northern Midlands and Mountains 

and Central Highlands; improving urban water supply in Central Highlands; allocating resources to lagging 

regions; and applying Neural Networks for forecasting and optimizing planning. While addressing many research 
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gaps, limitations in sample size and variables necessitate expanding to province-level data and integrating 

education and health factors in future research, guiding sustainable poverty reduction strategies in Vietnam. 
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Appendix 

Table S1. Descriptive Statistics by Year 

Year Variable Mean Std Dev Min Max Median IQR 

2016 Poverty Rate (%) 10.96 8.62 0.99 23.04 10.07 17.12 

2016 Clean Water Access (%) 92.35 6.77 81.00 99.50 92.25 11.30 

2016 Urban Water Supply (%) 79.42 9.97 62.30 91.90 80.20 13.18 

2016 Sanitation Access (%) 83.20 12.33 70.90 99.40 80.65 24.98 

2016 Income Per Capita (USD) 135.45 47.24 88.59 210.38 116.07 82.03 

2016 Expenditure Per Capita (USD) 95.13 24.48 74.69 136.19 83.06 41.15 

2017 Poverty Rate (%) 9.86 7.94 0.86 20.97 8.80 15.89 

2017 Clean Water Access (%) 93.32 6.14 82.85 99.60 93.38 10.11 

2017 Urban Water Supply (%) 80.23 10.53 62.40 90.00 81.50 17.40 

2017 Sanitation Access (%) 85.21 11.14 74.10 99.50 82.83 22.56 

2017 Income Per Capita (USD) 146.17 52.00 95.40 230.96 127.24 88.04 

2017 Expenditure Per Capita (USD) 97.77 26.59 74.69 141.35 84.96 45.59 

2018 Poverty Rate (%) 8.21 6.90 0.64 18.35 7.24 13.42 

2018 Clean Water Access (%) 94.27 5.52 84.70 99.70 94.45 8.92 

2018 Urban Water Supply (%) 84.57 10.78 64.10 93.00 87.40 14.20 

2018 Sanitation Access (%) 87.20 9.98 77.20 99.60 85.00 20.15 

2018 Income Per Capita (USD) 165.91 55.93 108.62 252.61 146.08 100.36 

2018 Expenditure Per Capita (USD) 110.38 23.66 88.49 148.22 98.91 40.95 

2019 Poverty Rate (%) 7.18 6.23 0.49 16.43 6.11 12.09 

2019 Clean Water Access (%) 94.30 6.06 83.70 99.90 95.25 10.15 

2019 Urban Water Supply (%) 87.30 10.65 66.60 94.90 90.65 13.52 

2019 Sanitation Access (%) 88.83 9.68 77.50 99.90 87.75 19.42 

2019 Income Per Capita (USD) 175.27 60.03 113.67 270.45 155.39 106.88 

2019 Expenditure Per Capita (USD) 112.06 25.93 88.41 152.39 100.21 47.22 

2020 Poverty Rate (%) 6.29 5.52 0.32 14.38 5.35 10.75 

2020 Clean Water Access (%) 96.05 4.99 86.40 99.90 97.10 6.22 

2020 Urban Water Supply (%) 89.27 9.77 69.70 96.40 92.25 8.80 

2020 Sanitation Access (%) 91.53 7.01 84.70 99.90 89.85 14.80 

2020 Income Per Capita (USD) 171.99 56.63 118.29 259.63 156.78 108.77 

2020 Expenditure Per Capita (USD) 118.95 30.73 90.82 169.35 109.02 56.10 

2021 Poverty Rate (%) 5.74 5.15 0.25 13.43 4.75 9.93 
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Year Variable Mean Std Dev Min Max Median IQR 

2021 Clean Water Access (%) 97.07 4.09 89.00 99.90 98.10 4.60 

2021 Urban Water Supply (%) 97.07 4.09 89.00 99.90 98.10 4.60 

2021 Sanitation Access (%) 93.55 5.56 87.20 99.70 93.15 11.50 

2021 Income Per Capita (USD) 172.22 52.41 123.65 252.53 157.04 103.71 

2021 Expenditure Per Capita (USD) 117.91 29.87 88.85 163.66 107.07 56.22 

2022 Poverty Rate (%) 5.67 5.12 0.37 12.82 4.57 10.51 

2022 Clean Water Access (%) 97.65 2.86 92.10 99.80 98.20 3.70 

2022 Urban Water Supply (%) 97.65 2.86 92.10 99.80 98.20 3.70 

2022 Sanitation Access (%) 95.00 4.14 91.10 99.80 94.15 8.45 

2022 Income Per Capita (USD) 186.55 54.27 134.32 268.39 170.42 106.73 

2022 Expenditure Per Capita (USD) 112.70 28.35 83.47 151.69 101.80 54.71 
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Table S2. Variance Inflation Factors for Standardized Variables 

Variable VIF 

Clean Water Access Std 3.198 

Urban Water Supply Std 2.360 

Sanitation Access Std 5.097 

Income Per Capita USD Std 20.484 

Expenditure Per Capita USD Std 18.966 

Table S3. National Time Series Analysis Results (2016–2022, Forecasts 2023–2025) 

Variable Model AR1 Level Trend R² RMSE Forecast  

2023 

Forecast 

 2024 

Forecast 

 2025 

Poverty Rate 

(%) 
ARIMA(1,0,0) 0.91 - - 0.48 1.18 5.50 5.30 5.10 

Clean Water 

Access (%) 

Double Exponential 

Smoothing 
- 97.50 0.30 0.95 0.30 98.00 98.30 98.60 

Income Per 

Capita (USD) 

Double Exponential 

Smoothing 
- 180.00 2.50 0.90 5.00 190.00 192.50 195.00 

Table S4. Cross-Validation Results for Neural Networks (Case 5) 

Fold R²  

(Training) 

R²  

(Validation) 

RMSE  

(Training) 

RMSE  

(Validation) 

Mean Abs Dev 

 (Training) 

Mean Abs Dev  

(Validation) 

Fold 1 0.993 0.986 0.082 0.105 0.060 0.083 

Fold 2 0.994 0.989 0.080 0.102 0.059 0.081 

Fold 3 0.993 0.987 0.081 0.104 0.059 0.083 

Fold 4 0.992 0.988 0.083 0.103 0.061 0.082 

Fold 5 0.994 0.989 0.081 0.103 0.059 0.082 

Average 0.993 0.988 0.082 0.103 0.060 0.082 

Table S5. Regional Comparison of Urban Water Supply (2016–2022) 

Region Mean (%) Std Dev (%) N Min (%) Max (%) 

Central Highlands 74.34 16.13 7 62.30 97.90 

Mekong River Delta 91.43 5.60 7 84.80 98.50 

North Central and Central Coast 86.97 8.96 7 76.00 97.80 

Northern Midlands and Mountains 86.31 6.28 7 77.70 92.50 

Red River Delta 93.73 6.07 7 82.70 99.90 

Southeast 94.79 3.79 7 90.00 99.90 
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Table S6. Tukey HSD and Student's t Pairwise Comparisons for Urban Water Supply by Region 

Pairwise 

Comparison 

(Region - Region) 

Difference Std Error t Ratio Prob > |t| 

(Tukey 

HSD) 

Lower 95% 

(Tukey 

HSD) 

Upper 

95% 

(Tukey 

HSD) 

Prob > |t| 

(Student'

s t) 

Lower 95% 

(Student's t) 

Upper 95% 

(Student's 

t) 

Central Highlands - 

Mekong River Delta 
-17.0857 4.6920 -3.6400 0.0101 -31.2021 -2.9693 0.0008 -26.6016 -7.5698 

Central Highlands - 

North Central and 

Central Coast 

-12.6286 4.6920 -2.6900 0.1019 -26.7449 1.4878 0.0107 -22.1445 -3.1127 

Central Highlands - 

Northern Midlands 

and Mountains 

-11.9714 4.6920 -2.5500 0.1363 -26.0878 2.1449 0.0151 -21.4873 -2.4555 

Central Highlands - 

Red River Delta 
-19.3857 4.6920 -4.1300 0.0026 -33.5021 -5.2693 0.0002 -28.9016 -9.8698 

Central Highlands - 

Southeast 
-20.4429 4.6920 -4.3600 0.0014 -34.5592 -6.3265 0.0001 -29.9588 -10.9270 

Mekong River Delta 

- North Central and 

Central Coast 

4.4571 4.6920 0.9500 0.9304 -9.6592 18.5735 0.3485 -5.0588 13.9730 

Mekong River Delta 

- Northern Midlands 

and Mountains 

5.1143 4.6920 1.0900 0.8822 -9.0021 19.2307 0.2830 -4.4016 14.6302 

Mekong River Delta 

- Red River Delta 
-2.3000 4.6920 -0.4900 0.9962 -16.4164 11.8164 0.6270 -11.8159 7.2159 

Mekong River Delta 

- Southeast 
-3.3571 4.6920 -0.7200 0.9788 -17.4735 10.7592 0.4789 -12.8730 6.1588 

North Central and 

Central Coast - 

Northern Midlands 

and Mountains 

0.6571 4.6920 0.1400 1.0000 -13.4592 14.7735 0.8894 -8.8588 10.1730 

North Central and 

Central Coast - Red 

River Delta 

-6.7571 4.6920 -1.4400 0.7029 -20.8735 7.3592 0.1585 -16.2730 2.7588 

North Central and 

Central Coast - 

Southeast 

-7.8143 4.6920 -1.6700 0.5625 -21.9307 6.3021 0.1045 -17.3302 1.7016 

Northern Midlands 

and Mountains - Red 

River Delta 

-7.4143 4.6920 -1.5800 0.6164 -21.5307 6.7021 0.1228 -16.9302 2.1016 

Northern Midlands 

and Mountains - 

Southeast 

-8.4714 4.6920 -1.8100 0.4751 -22.5878 5.6449 0.0794 -17.9873 1.0445 

Red River Delta - 

Southeast 
-1.0571 4.6920 -0.2300 0.9999 -15.1735 13.0592 0.8230 -10.5730 8.4588 

 


