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Abstract 

This paper introduces Spherical Neutrosophic Hesitant Fuzzy Sets (SNHFS) a novel 

extension that combines neutrosophic logic, hesitant fuzzy sets and spherical constraints to 

handle uncertainty and indeterminacy in decision-making scenarios. The SNHFS framework 

addresses the limitations of existing fuzzy set theories by incorporating three membership 

functions  with hesitant values while maintaining the spherical constraint that the sum of 

squares of membership degrees does not exceed unity. We establish fundamental set-theoretic 

operations, topological properties and distance measures for SNHFS. The theoretical 

framework includes comprehensive proofs of idempotent laws, commutative laws, 

associative laws and De Morgan's laws. Additionally, we develop SNHF topological spaces 

and investigate continuity properties. The proposed distance measure satisfies all metric 

properties making it suitable for similarity assessments and clustering applications. Our 

findings demonstrate that SNHFS provides a more flexible and robust framework for 

handling complex uncertainty scenarios compared to existing approaches, with potential 

applications in multi-criteria decision making, pattern recognition  and artificial intelligence 

systems. 

Keywords: Spherical fuzzy sets, Neutrosophic sets, Hesitant fuzzy sets, Topology, Distance 
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1. Introduction 

 In the realm of uncertainty modeling and decision-making under imprecise 

information, fuzzy set theory has evolved significantly since its inception by Zadeh [1]. The 

classical fuzzy set theory, characterized by a single membership function has been extended 

in various directions to address different types of uncertainties and decision-making 

scenarios. These extensions include intuitionistic fuzzy sets [2], neutrosophic sets [3], 

hesitant fuzzy sets [4], and spherical fuzzy sets [5].Neutrosophic sets, introduced by 

Smarandache [3], represent a powerful generalization of fuzzy sets and intuitionistic fuzzy 

sets. They are characterized by three membership functions: truth-membership, 

indeterminacy-membership, and falsity-membership, which can handle incomplete, 

inconsistent, and indeterminate information effectively. The single-valued neutrosophic sets 

[6] have been widely applied in various fields including decision-making [7], pattern 

recognition [8] and medical diagnosis [9]. 
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 Hesitant fuzzy sets, proposed by Torra [4] address situations where decision-makers 

hesitate among several possible membership values for an element. This hesitation naturally 

occurs in real-world scenarios where experts may have different opinions or when the 

available information is insufficient for precise evaluation. The hesitant fuzzy set theory has 

been successfully applied in group decision-making [10], risk assessment [11] and supplier 

selection [12].Spherical fuzzy sets, introduced by Kutlu Gündoğdu and Kahraman [5], extend 

neutrosophic sets by imposing a spherical constraint on the membership functions. This 

constraint ensures that the sum of squares of truth, indeterminacy, and falsity membership 

degrees does not exceed unity, providing a more flexible framework than intuitionistic fuzzy 

sets while maintaining mathematical rigor. Spherical fuzzy sets have shown promising results 

in multi-criteria decision making [13], performance evaluation [14]. Meher Taj and 

Kumaravel analyzed and found a system based on fuzzy Petri nets for measuring employee 

performance [15], knowledge systems [16] and color systems [17]. 

 Despite these advances, existing fuzzy set extensions have limitations in handling 

complex real-world scenarios that involve multiple types of uncertainties simultaneously. For 

instance, decision-makers may experience hesitation about neutrosophic membership values 

while requiring the mathematical elegance of spherical constraints. Traditional neutrosophic 

sets do not accommodate hesitation, while hesitant fuzzy sets lack the comprehensive 

uncertainty representation of neutrosophic logic. 

 To address these limitations, this paper introduces Spherical Neutrosophic Hesitant 

Fuzzy Sets (SNHFS), which integrate the strengths of neutrosophic sets, hesitant fuzzy sets, 

and spherical constraints. The SNHFS framework allows decision-makers to express 

hesitation about truth, indeterminacy, and falsity membership values while maintaining the 

spherical constraint for mathematical consistency. 

The main contributions of this paper are: 

1. Theoretical Foundation: We establish the mathematical framework for SNHFS, 

including definitions, basic operations, and fundamental properties. 

2. Set-Theoretic Properties: We prove essential laws including idempotent, 

commutative, associative and De Morgan's laws for SNHFS operations. 

3. Topological Framework: We develop SNHF topological spaces and investigate 

properties of interior, closure and neighborhood concepts. 

4. Distance Measures: We propose a distance measure for SNHFS that satisfies all 

metric properties and demonstrate its effectiveness. 

5. Continuity Theory: We extend the concept of continuity to SNHF topological spaces 

and provide multiple characterizations. 

 The remainder of this paper is organized as follows: Section 2 presents the 

preliminary concepts and definitions. Section 3 establishes the theoretical properties through 

comprehensive theorems and proofs. Section 4 develops the continuity theory for SNHF 

spaces. Section 5 provides concluding remarks and future research directions. 

2. Preliminaries 

2.1 Neutrosophic Sets 
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Neutrosophic sets  introduced by Smarandache [3], provide a comprehensive framework for 

handling uncertainty by incorporating three membership functions: truth, indeterminacy  and 

falsity. 

Definition 2.1.1: Let U be a universe of discourse. A Neutrosophic set A in    U is 

characterised by a truth-membership function 𝑇𝐴 an indeterminacy membership function 𝐼𝐴 

and a falsity-membership function 𝐹𝐴 where:[3] 

𝑇𝐴, 𝐼𝐴, 𝐹𝐴 : U→ (0−, 1+) are functions 

and 0≤𝑇𝐴(x) + 𝐼𝐴(x) + 𝐹𝐴(x) ≤3+. 

The Neutrosophic set is represented as: 

A = {(x, 𝑇𝐴(x), 𝐼𝐴(x),𝐹𝐴(x))| x€U} 

For practical applications, Smarandache and Wang et al. [8] introduced the concept of a 

single valued Neutrosophic set. 

Definition 2.1.2: A single-valued Neutrosophic set (SVNS) A over U is defined as: [8] 

A = {(x, 𝑇𝐴(x),  𝐼𝐴(x), 𝐹𝐴(x))| x€U} 

Where 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 : U →[0, 1] and for all x€U. 

0 ≤ 𝑇𝐴(x) + 𝐼𝐴(x) + 𝐹𝐴(x) ≤ 3. 

2.2 Hesitant Fuzzy Sets 

 Hesitant fuzzy sets, proposed by Torra [4], address situations where decision-makers 

are uncertain about the exact membership degree of an element. 

Definition 2.2.1: Let U be a fixed set. A hesitant fuzzy set (HFS) on U is defined in terms of 

a function h that returns a subset of [0, 1] when applied to U:[4] 

A = {(x, ℎ𝐴(x))| x€U} 

Where ℎ𝐴(x)⊆ [0, 1] is a finite set of positive membership degree of x in A. 

2.3 Spherical Fuzzy Sets 

 Spherical fuzzy sets, introduced by Kutlu Gündoğdu and Kahraman [5], impose a 

spherical constraint on membership degrees. 

Definition 2.3.1 : A spherical fuzzy set A on universe U is defined as:[5] 

A = {(x, (µ𝐴(x),  𝜐𝐴(x), 𝜋𝐴(x))) | x€U} 

with µ𝐴(x),  𝜐𝐴(x), 𝜋𝐴(x)€ [0, 1] satisfying 

0 ≤ µ𝐴
2 (x) + 𝜐𝐴

2(x) + 𝜋𝐴
2((x) ≤ 1. 

The hesitancy degree is calculated as 

𝜋𝐴(x) = √1 −  µ𝐴
2 (x)  −  𝜐𝐴

2(x) 

2.4 Spherical Neutrosophic Hesitant Fuzzy Sets 

 Building upon these concepts, we now introduce spherical Neutrosophic hesitant 

fuzzy sets, which integrate neutrosophic logic, hesitant fuzzy sets and the spherical 

constraint. 

Definition 2.4.1: A Spherical neutrosophic hesitant Fuzzy set (SNHFS) A on universe U is 

defined as: 

A = {(x, (𝑇𝐴(x),  𝐼𝐴(x), 𝐹𝐴(x)))| x€U} 

Where,𝑇𝐴(x) = {+, +2, . . . . +𝑛}⊆ [0, 1] is the set of possible truth-membership degrees. 

𝐼𝐴(x) = {𝑖, 𝑖2, . . . . . 𝑖𝑚}⊆ [0, 1] is the set of indeterminacy-membership degrees.  
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𝐹𝐴(x) = {𝑓1, 𝑓2, . . . . 𝑓𝑘}⊆ [0, 1] is the set of falsity-membership degrees.  

For all t €𝑇𝐴(x), i€𝐼𝐴(x), f€𝐹𝐴(x), the spherical condition 𝑡2+𝑖2+𝑓2≤ 1 must hold. The 

Collection of all SNHFS on U is denoted by SNHFS(U). 

3. Main Results 

3.1 Basic Operations and Properties 

Definition 3.1.1: Let A & B be two SNHFS on universe U. The following operations are 

defined: 

1. Complement: 𝐴𝐶  = {(x, (𝐹𝐴(x),  𝐼𝐴(x),𝑇𝐴(x)))| x€U} 

2. Union: A⋃B = {(x, (𝑇A∪B(x),  𝐼A∪B(x), 𝐹A∪B(x)))| x€U} 

where, 𝑇A∪B(x) = {max (𝑡𝐴, 𝑡𝐵) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x)} 

            𝐼A∪B(x) = {min (𝑖𝐴, 𝑖𝐵) | 𝑖𝐴€𝐼𝐴(x); 𝑖𝐵€𝐼𝐵(x)} 

          𝐹A∪B(x) = {min (𝑓𝐴, 𝑓𝐵) | 𝑓𝐴€𝐹𝐴(x); 𝑓𝐵€𝐹𝐵(x)} 

3. Intersection: A∩B = {(x, (𝑇A∩B(x),  𝐼A∩B(x), 𝐹A∩B(x)))| x€U} 

where, 

𝑇A∩B (x) = {min (𝑡𝐴, 𝑡𝐵) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x)} 

𝐼A∩B (x) = {max (𝑖𝐴, 𝑖𝐵) | 𝑖𝐴€𝐼𝐴(x); 𝑖𝐵€𝐼𝐵(x)} 

𝐹A∩B (x) = {max (𝑓𝐴, 𝑓𝐵) | 𝑓𝐴€𝐹𝐴(x); 𝑓𝐵€𝐹𝐵(x)} 

3.2 Fundamental Theorems 

Theorem 3.2.1 (Idempotent laws): For any SNHFS A in universe U, 

a) A⋃A = A                   b) A⋂A = A 

Proof: 

a) For A⋃A: Lets examine each component separately. 

For the truth membership: 

𝑇A∪A(x) = {max (𝑡1, 𝑡2) | 𝑡1, 𝑡2€𝑇𝐴(x)}=𝑇𝐴(x) 

𝐼A∪A(x) = {min (𝑖1, 𝑖2) | 𝑖1, 𝑖2€𝐼𝐴(x)}=𝐼𝐴(x) 

𝐹A∪A(x) = {min (𝑓1, 𝑓2) | 𝑓1, 𝑓2€𝐹𝐴(x)}=𝐹𝐴(x) 

Since all three components remain unchanged we have A⋃A = A. 

b) The proof of A⋂A = A follows a similar approach by examining each component and 

applying the minimum and maximum operations to identical values. 

Theorem 3.2.2 (Commutatively Laws):  

  For any SNHFSs A and B in universe U, 

a) A⋃B =B⋃A                         b) A⋂B = B⋂A 

Proof: 

a) For A⋃B, 

Truth Membership: 𝑇A∪B(x) = {max (𝑡𝐴, 𝑡𝐵) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x)} 

𝐼A∪B(x) = {min (𝑖𝐴, 𝑖𝐵) | 𝑖𝐴€𝐼𝐴(x); 𝑖𝐵€𝐼𝐵(x)} 

𝐹A∪B(x) = {min (𝑓𝐴, 𝑓𝐵) | 𝑓𝐴€𝐹𝐴(x); 𝑓𝐵€𝐹𝐵(x)} 

Similarly for B⋃A, the same operations hold with arguments swapped. Since max(a, b) = 

max(b, a) and min(a, b) = min(b, a). We conclude: 

A⋃B =B⋃A 
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b) The proof for A⋂B = B⋂A follows the same reasoning, using the commutatively of 

min and max operations. 

 

 

Theorem 3.2.3 (Associativity Laws):  For any SNHFSs A, B and C in universe U, 

a) (A⋃B)⋃C =A⋃(B⋃C) 

b) (A⋂B)⋂C =A⋂(B⋂C) 

Proof: 

a) For (A⋃B)⋃C: 

First compute A⋃B, 

𝑇A∪B(x) = {max (𝑡𝐴, 𝑡𝐵) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x)} 

𝐼A∪B(x) = {min (𝑖𝐴, 𝑖𝐵) | 𝑖𝐴€𝐼𝐴(x); 𝑖𝐵€𝐼𝐵(x)} 

𝐹A∪B(x) = {min (𝑓𝐴, 𝑓𝐵) | 𝑓𝐴€𝐹𝐴(x); 𝑓𝐵€𝐹𝐵(x)} 

Then,  compute(A⋃B)⋃C, 

𝑇(A⋃B)⋃C(x) = {max(max(𝑡𝐴, 𝑡𝐵), 𝑡𝐶) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x); 𝑡𝐶€𝑇𝐶(x)} 

                    = {max(𝑡𝐴,max(𝑡𝐵, 𝑡𝐶)) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x); 𝑡𝐶€𝑇𝐶(x)} 

                    = 𝑇A⋃(B⋃C)(x) 

b) The proof for (A⋂B)⋂C =A⋂(B⋂C) follows a similar approach by using the 

associativity of min and max operations. 

Theorem 3.2.1 (De Morgan’s Laws): For any SNHFs A and B in universe U, 

a) (A⋃B)𝐶 = 𝐴𝐶⋂𝐵𝐶                           b) (A⋂B)𝐶 = 𝐴𝐶⋃𝐵𝐶 

Proof: 

a) For (A⋃B)𝐶, 

𝑇(A⋃B)𝐶(x) = 𝐹A∪B(x) = {min (𝑓𝐴, 𝑓𝐵) | 𝑓𝐴€𝐹𝐴(x); 𝑓𝐵€𝐹𝐵(x)} 

                                   = {min (𝑡𝐴𝐶, 𝑡𝐵𝐶) | 𝑡𝐴𝐶€𝑇𝐴𝐶(x); 𝑡𝐵𝐶€𝑇𝐵𝐶(x)} 

                                   = 𝑇𝐴𝐶 ⋂ 𝐵𝐶(x) 

𝐼(A⋃B)𝐶(x) = 𝐼A∪B(x)= {min (𝑖𝐴, 𝑖𝐵) | 𝑖𝐴€𝐼𝐴(x); 𝑖𝐵€𝐼𝐵(x)} 

                                  = {max (𝑖𝐴𝐶, 𝑖𝐵𝐶) | 𝑖𝐴𝐶€𝐼𝐴𝐶(x); 𝑖𝐵𝐶€𝐼𝐵𝐶(x)} 

                                  = 𝐼𝐴𝐶 ⋂ 𝐵𝐶(x) 

𝐹(A⋃B)𝐶(x) = 𝑇A∪B(x) = {max (𝑡𝐴, 𝑡𝐵) | 𝑡𝐴€𝑇𝐴(x); 𝑡𝐵€𝑇𝐵(x)} 

                                   = {max (𝑓𝐴𝐶, 𝑓𝐵𝐶) | 𝑓𝐴𝐶€𝐹𝐴𝐶(x); 𝑓𝐵𝐶€𝐹𝐵𝐶(x)} 

                                   = 𝐹𝐴𝐶 ⋂ 𝐵𝐶(x) 

Comparing the corresponding components, we see that 

𝑇(A⋃B)𝐶(x) =𝑇𝐴𝐶 ⋂ 𝐵𝐶(x) 

𝐼(A⋃B)𝐶(x) =𝐼𝐴𝐶 ⋂ 𝐵𝐶(x) 

𝐹(A⋃B)𝐶(x) =𝐹𝐴𝐶 ⋂ 𝐵𝐶(x) 

          ∴(A⋃B)𝐶 = 𝐴𝐶⋂ 𝐵𝐶  

b) The proof for (A⋂B)𝐶 = 𝐴𝐶⋃𝐵𝐶 follows a similar approach. 

3.3 Properties of SNHF Topological Spaces 
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Theorem 3.3.1: In a SNHF topological space (X, τ) for any SNHFS A and B in X, 

a) int(A⋂B) = int(A) ⋂ int(B) 

b) int(A) ⋃ int(B) ⊆ int(A⋃B) 

Proof: 

a) To Prove: int(A⋂B) = int(A) ⋂ int(B) 

STEP 1: Show that int(A⋂B) ⊆ int(A) ⋂ int(B) 

By definition int(A⋂B) is the largest open SNHFS contained in A⋂B. Since A⋂B ⊆  A and 

A⋂B ⊆  B, we have 𝑖𝑛𝑡(A⋂B) ⊆ int(A) and 𝑖𝑛𝑡(A⋂B) ⊆ int(B) 

∴ 𝑖𝑛𝑡(A⋂B) ⊆ int(A) ⋂ int(B) 

STEP 2: Show that int(A) ⋂ int(B) ⊆ int(A⋂B) 

int(A) ⊆ A and int(B) ⊆ B, So int(A) ⋂ int(B) ⊆ A⋂B 

int(A) and int(B) are open SNHFS and the intersection of open sets is open in a topology.  

Therefore, int(A) ⋂ int(B) is an open SNHFS contained in A⋂B. Since int(A⋂B) is the largest 

open SNHFS contained in A⋂B, we have 

int(A) ⋂ int(B) ⊆ int(A⋂B) 

Combining STEP 1 & 2, we conclude that, int(A⋂B) = int(A) ⋂ int(B) 

b) To Prove: int(A) ⋃ int(B) ⊆ int(A⋃B) 

int(A)⊆ A and int(B) ⊆ B imply that int(A) ⋃ int(B) ⊆ A⋃B. 

int(A) and int(B) are open SNHFS and the union of open sets is open in a topology.  

Therefore, int(A) ⋃ int(B) is an open SNHFS contained in A⋃B. Since int(A⋃B) is the largest 

open SNHFS contained in A⋃B, we have 

∴ int(A) ⋃ int(B) ⊆ int(A⋃B). 

Note: The Reverse inclusion int(𝐴⋃B)⊆int(A) ⋃ int(B) does not generally hold, which can 

be demonstrated with counter examples. 
3.3 SNHF Topological Spaces 

Definition 3.3.1: A SNHF topology on a non-empty set X is a collection τ of SNHFS in X 

satisfying the following axioms: 

1. ŌĪ € τ where Ō = {x, ({0}, {1}, {1}) | x€X} 

                       Ī = {x, ({1}, {0}, {0}) | x€X} 

2. If A, B € τ, then A∩B€τ 

3. If {𝐴𝑖 | i€J}⊆τ, then ⋃ 𝐴𝑖𝑖⊂𝐽 € τ. 

The pair (X, τ) is called a SNHF Topological space. The member of τare called SNHF open 

sets, and their complements are called SNHF closed sets. 

Theorem 3.3.1: In a SNHF topological space (X, τ) for any SNHFS A and B in X:  

a) int(A∩B) = int(A) ∩ int(B)       b) int(A) ∪ int(B) ⊆ int(A∪B) 

Theorem 3.3.2: In a SNHF topological space (X, τ) for any SNHFS A and B in X:  

a) cl(A∪B) = cl(A) ∪ cl(B)           b) cl(A) ∩ cl(B) ⊇ cl(A∩B) 

3.4 Distance Measures  

Definition 3.4.1: Let A and B be two SNHFS in universe U. The Spherical neutrosophic 

hesitant fuzzy distance between A and B is defined as: 
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Theorem 3.4.1: Let A & B be two SNHFS in universe U. The Spherical neutrosophic 

hesitant fuzzy distance between A and B denoted by 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) satisfies the following 

properties, 

a) 0 ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) ≤ 1 

b) 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 0 if and only if A = B 

c) 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵)= 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐴) [Symmetry] 

d) 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐶)≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) + 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐶)[Triangular Inequality] 

Proof: 

Let define SNHF distance as: 

𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 
1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐴(𝑥), 𝐼𝐵(𝑥))  + 𝑑𝐻𝐹𝑆(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))]𝑥⊂𝑈  

Where 𝑑𝐻𝐹𝑆 is the distance between hesitant fuzzy element defined as: 

𝑑𝐻𝐹𝑆(ℎ1, ℎ2) = 
1

max(|ℎ1|,|ℎ2|)
∑ |ℎ1

𝜎(𝑖)  −  ℎ2
𝜎(𝑖)|

max(|ℎ1|,|ℎ2|)

𝑖=1
 

Here, |ℎ1| 𝑎𝑛𝑑 |ℎ2| denote number of elements I  hesitant fuzzy elements ℎ1 𝑎𝑛𝑑ℎ2. 

ℎ1
𝜎(𝑖) 𝑎𝑛𝑑ℎ2

𝜎(𝑖) are the 𝑖𝑡ℎ element of ℎ1 𝑎𝑛𝑑 ℎ2 after arranged them in increasing order. 

a) To Prove: 0 ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) ≤ 1 

STEP 1: 𝑑𝐻𝐹𝑆(ℎ1, ℎ2) measures the average absolute difference between corresponding 

elements in ℎ1 𝑎𝑛𝑑 ℎ2 and these elements are in [0, 1]. We have,  

0 ≤ 𝑑𝐻𝐹𝑆(ℎ1, ℎ2)≤ 1 

STEP 2: Since 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) is the average of 𝑑𝐻𝐹𝑆 for truth, indeterminacy and falsity 

memberships and each 𝑑𝐻𝐹𝑆 is bounded by 0 and 1, we have 0 ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) ≤ 1  

b) To Prove: 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 0 if and only if A = B 

STEP 1: If A=B, then 𝑇𝐴(𝑥) = 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) = 𝐼𝐵(𝑥) and 𝐹𝐴(𝑥) = 𝐹𝐵(𝑥) for all x € U 

This implies, 

𝑑𝐻𝐹𝑆(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) = 𝑑𝐻𝐹𝑆(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)) = 𝑑𝐻𝐹𝑆(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)) = 0 for all x € U 

Therefore, 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 0 

c) To Prove: 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐴) 

STEP 1: From the definition of 𝑑𝐻𝐹𝑆, we have 

𝑑𝐻𝐹𝑆(ℎ1, ℎ2) =𝑑𝐻𝐹𝑆(ℎ1, ℎ2) because the absolute difference |a-b| = |b-a|. 

STEP 2: Using the symmetry of 𝑑𝐻𝐹𝑆, we have 

𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) =
1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐴(𝑥), 𝐼𝐵(𝑥))  + 𝑑𝐻𝐹𝑆(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))]𝑥⊂𝑈  

                     = 
1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐵(𝑥), 𝑇𝐴(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐵(𝑥), 𝐼𝐴(𝑥))  + 𝑑𝐻𝐹𝑆(𝐹𝐵(𝑥), 𝐹𝐴(𝑥))]𝑥⊂𝑈  

                     = 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐴) 

Hence, 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) = 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐴) 

d) To Prove: 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐶) ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) + 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐶) 

STEP 1: For hesitant fuzzy elements, 𝑑𝐻𝐹𝑆 satisfies the triangular inequality. 

𝑑𝐻𝐹𝑆(ℎ1, ℎ3) ≤ 𝑑𝐻𝐹𝑆(ℎ1, ℎ2) + 𝑑𝐻𝐹𝑆(ℎ2, ℎ3) 

STEP 2: Using the triangular inequality for 𝑑𝐻𝐹𝑆, we have 

𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐶) = 
1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐴(𝑥), 𝑇𝐶(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐴(𝑥), 𝐼𝐶(𝑥))  + 𝑑𝐻𝐹𝑆(𝐹𝐴(𝑥), 𝐹𝐶(𝑥))]𝑥⊂𝑈  

                     ≤ 
1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐴(𝑥), 𝐼𝐵(𝑥))  + 𝑑𝐻𝐹𝑆(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))]𝑥⊂𝑈  +    
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1

3𝑛
∑ [𝑑𝐻𝐹𝑆(𝑇𝐵(𝑥), 𝑇𝐶(𝑥)) +  𝑑𝐻𝐹𝑆(𝐼𝐵(𝑥), 𝐼𝐶(𝑥))  +  𝑑𝐻𝐹𝑆(𝐹𝐵(𝑥), 𝐹𝐶(𝑥))]𝑥⊂𝑈   

                     ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) + 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐶) 

Hence, 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐶) ≤ 𝑑𝑆𝑁𝐻𝐹(𝐴, 𝐵) + 𝑑𝑆𝑁𝐻𝐹(𝐵, 𝐶) 

These Fundamental theorems have laid the foundation for topological study of spherical 

Neutrosophic hesitant fuzzy sets. 

 

 

 

4. Continuity in SNHF Topological Spaces 

Definition 4.1.1: Let (𝑋, τ1) and (𝑌, τ2) be two SNHF topological spaces. A function f : X → 

Y is called SNHF continuous if for every SNHF open set B in Y, the preimage 𝑓−1(𝐵) in an 

SNHF open set in X. 

Theorem 4.1.1: Let (𝑋, τ1) and (𝑌, τ2) be two SNHF topological spaces and  

 f : X → Y be a function. The following statements are equivalent, 

a) f is SNHF continuous 

b) For each x€X and each SNHF neighbourhood N of f(x) in Y, there exist an SNHF 

neighbourhood M of x in X such that f(M) ⊆ N. 

c) For each SNHFS A in X, f(cl(A)) ⊆ cl(f(A)) 

d) For each SNHF B in Y, cl(𝑓−1(𝐵))⊆𝑓−1(𝑐𝑙(𝐵)) 

e) For each SNHF B in Y, 𝑓−1(𝑖𝑛𝑡(𝐵))⊆int(𝑓−1(𝐵)) 

Proof: 

(a)⇔(b) Assume f is SNHF continuous. Let x € X and N be a SNHF neighbourhood of f(x) in 

Y. By definition, there exist a SNHF open set O in Y such that f(x) € O ⊆ N. 

Since f is SNHF continuous, 𝑓−1(𝑂)is an SNHF open set in X.  

Also x €𝑓−1(𝑂) because f(x) € O.  

Therefore, 𝑓−1(𝑂) is an SNHF neighbourhood of x in X. Let M = 𝑓−1(𝑂), then 

𝑓(𝑀)  =  𝑓(𝑓−1(𝑂)) ⊆  𝑂 ⊆  𝑁 as required. 

(b)⇔(c) Let A be an SNHFS in X and Y € f(cl(A)) then there exist x € cl(A) such that f(x)=y. 

To show that 𝑦 € 𝑐𝑙(𝑓(𝐴)), we need to show that every SNHF neighbourhood of y intersects 

f(A). Let N be an SNHF neighbourhood M of x in X such that f(M)⊆N. 

Since 𝑥 € 𝑐𝑙(𝐴), M intersects A 

i.e., there exist a 𝑝𝑜𝑖𝑛𝑡 𝑧 € 𝑀⋂𝐴, 𝑡ℎ𝑒𝑛 𝑓(𝑧) € 𝑓(𝑀)  ⊆  𝑁 𝑎𝑛𝑑 𝑓(𝑧) € 𝑓(𝐴).  

Since N intersects f(A), which implies y € cl(f(A)).  

Thus, 𝑓(𝑐𝑙(𝐴))  ⊆  𝑐𝑙(𝑓(𝐴)) 

5. Applications and Future Directions 

The SNHFS framework has significant potential for applications in: 

1. Multi-criteria Decision Making: The framework can handle complex decision 

scenarios where experts have hesitant opinions about truth, indeterminacy, and falsity 

degrees. 

2. Pattern Recognition: SNHFS can provide more nuanced classification in scenarios 

with uncertain and incomplete information. 
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3. Risk Assessment: The framework can model various types of uncertainties in risk 

evaluation processes. 

4. Artificial Intelligence: SNHFS can enhance reasoning systems by providing more 

comprehensive uncertainty representation. 

 

6. Conclusion 

This paper has introduced and developed the mathematical framework of Spherical 

Neutrosophic Hesitant Fuzzy Sets (SNHFS), which represents a significant advancement in 

uncertainty modeling by integrating neutrosophic logic, hesitant fuzzy sets and spherical 

constraints. The key contributions of this work include: 

❖ The Spherical Neutrosophic Hesitant Fuzzy Sets (SNHFS) framework, integrating 

neutrosophic logic, hesitant fuzzy sets, and spherical constraints to model complex 

uncertainty more effectively. 

❖ Developed rigorous mathematical foundations, including operations and properties 

like commutativity, associativity and De Morgan’s laws. 

❖ Proposed a topological structure and distance measure for SNHFS, enabling analysis 

of continuity and comparison of uncertain elements. 

❖ Highlighted advantages such as comprehensive uncertainty representation, geometric 

interpretability, and enhanced flexibility in decision-making. 

❖ The theoretical developments presented in this paper lay the groundwork for 

numerous applications in multi-criteria decision-making, pattern recognition, risk assessment, 

and artificial intelligence. 
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